BAB II

PERANCANGAN STRUKTUR ATAS

2.1 Deskripsi Umum Struktur

Pada bab ini dijelaskan mengenai proses desain struktur Panti Wredha di Kabupaten Gunungkidul. Struktur Panti Wredha terdiri dari 3 lantai yang didesain menggunakan system rangka pemikul momen khusus (SRPMK) berdasarkan SNI 1726:2019. Elemen struktur berupa pelat lantai, balok, kolom pada struktur didesain menggunakan material beton bertulang.

2.2 Spesifikasi Material Struktur

Spesifikasi material yang digunakan dalam desain struktur disajikan sebagai berikut:

- 1. Baja profil
 - Baja profil yang digunakan adalah BJ 37 dengan tegangan leleh, fy = 240 MPa dan tegangan ultimit, fu = 370 MPa
 - Modulus elastisitas baja, E_s = 200.000 MPa
- 2. Beton
 - Kuat tekan beton pada umur 28 hari, fc' = 30 MPa (struktur bawah)
 - Modulus elastisitas beton, $E_c = 4700 \sqrt{fc'} = 23500 \text{ MPa}$
- 3. Baja tulangan
 - Baja tulangan dengan D > 12 mm, digunakan baja tulangan ulir (deform) dengan tegangan leleh, fy = 390 MPa
 - Baja tulangan dengan D ≤ 12 mm, digunakan baja tulangan polos dengan tegangan leleh, fy = 235 MPa
 - Modulus elastisitas baja, Es = 200.000 Mpa

2.3 Beban Rencana

2.3.1 Beban Gravitasi

Beban gravitasi yang digunakan berdasakan SNI 1727:2013 Beban Minimum untuk Perancangan Bangunan Gedung dan Struktur Lain. Berikut ini beban gravitasi dalam desain struktur antara lain:

a. Berat Sendiri Struktur (DL)

Berat sendiri struktur/*dead load* adalah berat dari masing-masing elemen struktur berupa pelat lantai, balok, kolom, dll yang menjadi bagian dari struktur utama. Dalam pemodelan struktur dengan menggunakan *software*, berat sendiri struktur akan dihitung otomatis oleh *software* berdasarkan data berat jenis material dan dimensi elemen struktur yang diinputkan dalam software tersebut.

b. Beban Mati Tambahan (ADL)

Beban mati tambahan/additional dead load adalah beban tambahan akibat penggunaan komponen non-struktural (arsitektural dan MEP) yang melekat dan membebani struktur utama bangunan. Beban mati tambahan tersebut dijelaskan sebagi berikut:

1. Beban Mati Tambahan Pada Pelat Lantai

2	Pasir (tebal 5 cm)	$= 0.05 \text{ x } 16 \text{ kN/m}^3$	2	$= 0,80 \text{kN/m}^2$	
2	Spesi (tebal 3 cm)	$= 0,03 \text{ x } 22 \text{ kN/m}^3$	2	$= 0,66 \text{kN/m}^2$	
).	Keramik (tebal 1 cm) $= 0,0$	01 x 24 kN/m ³	=0,	24kN/m²	
•	Plafon dan penggantung			$= 0,2kN/m^2$	
•	Instalasi MEP		= 0,	25kN/m²	
Т	otal Beban Mati Tambahan			= 2,15kN/m ²	
2. Beban Mati Tambahan Pada Balok					
•	Dinding (tinggi efektif 3 m)	= 3,	15 kN/m²	

c. Beban Hidup (LL)

Beban hidup/*live load* adalah beban yang terjadi akibat penggunaan struktur bangunan. Beban hidup tersebut dapat berasal dari orang/barang yang dapat berpindah tempat. Berdasarkan SNI 1727:2013 panti termasuk dalam kategori ruang publik sehingga Beban Hidup ditetapkan sebagai berikut:

• Beban hidup = 4,79 kN/m2

2.3.2 Beban Gempa

Beban gempa ditetapkan berdasarkan SNI 1726:2019 Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Nongedung. Langkahlangkah perhitungan beban gempa rencana disajikan sebagai berikut:

a. Menentukan kategori risiko bangunan (I-IV)

Kategori risiko bangunan ditentukan berdasarkan fungsi operasional/jenis pemanfaatan dari suatu bangunan. Dalam SNI 1726:2019, kategori risiko bangunan dibedakan menjadi 4 jenis yaitu kategori risiko I, II, III, dan IV (lihat Tabel 2.1). Dalam pekerjaan ini, struktur Panti Wredha termasuk dalam kategori bangunan untuk orang jompo sehingga ditetapkan sebagai kategori risiko bangunan III.

Tabel 2.1 Kategori risiko bangunan gedung dan non gedung

Jenis Pemanfaatan	Kategori Resiko
 Gedung dan non gedung yang memiliki risiko rendah terhadap jiwa manusia pada saat terjadi kegagalan, termasuk, tapi tidak dibatasi untuk, antara lain: Fasilitas pertanian, perkebunan, perternakan, dan perikanan Fasilitas sementara Gudang penyimpanan Rumah jaga dan struktur kecil lainnya 	Ι
 Semua gedung dan struktur lain, kecuali yang termasuk dalam kategori risiko I,III,IV, termasuk, tapi tidak dibatasi untuk: Perumahan Rumah toko dan rumah kantor Pasar Gedung perkantoran Gedung apartemen/ rumah susun Pusat perbelanjaan/ mall Bangunan industri Fasilitias manufaktur Pabrik 	Π
 Gedung dan non gedung yang memiliki risiko tinggi terhadap jiwa manusia pada saat terjadi kegagalan, termasuk, tapi tidak dibatasi untuk: Bioskop Gedung pertemuan Stadion Fasilitas kesehatan yang tidak memiliki unit bedah dan unit gawat darurat Fasilitas penitipan anak Penjara Bangunan untuk orang jompo Gedung dan non gedung, tidak termasuk kedalam kategori risiko IV, yang memiliki potensi untuk menyebabkan daMPak ekonomi yang besar dan/atau gangguan massal terhadap kehidupan masyarakat sehari-hari bila terjadi kegagalan, termasuk, tapi tidak dibatasi untuk: Pusat pembangkit listrik biasa Fasilitas penanganan limbah Pusat telekomunikasi 	III

Gedung dan non gedung yang tidak termasuk dalam kategori risiko IV, (termasuk, tetapi tidak dibatasi untuk fasilitas manufaktur, proses, penanganan, penyimpanan, penggunaan atau tempat pembuangan bahan bakar berbahaya, bahan kimia berbahaya, limbah berbahaya, atau bahan yang mudah meledak) yang mengandung bahan beracun atau peledak di mana jumlah kandungan bahannya melebihi nilai batas yang disyaratkan oleh instansi yang berwenang dan cukup menimbulkan bahaya bagi masyarakat jika terjadi kebocoran.	
 termasuk, tetapi tidak dibatasi untuk: Bangunan-bangunan monumental Gedung sekolah dan fasilitas pendidikan Rumah sakit dan fasilitas kesehatan lainnya yang memiliki fasilitas bedah dan unit gawat darurat Fasilitas pemadam kebakaran, ambulans, dan kantor polisi, serta garasi kendaraan darurat Tempat perlindungan terhadap gempa bumi, angin badai, dan teMPat perlindungan darurat lainnya Fasilitas kesiapan darurat, komunikasi, pusat operasi dan fasilitas lainnya untuk tanggap darurat Pusat pembangkit energi dan fasilitas publik lainnya yang dibutuhkan pada 	IV
 saat keadaan darurat Struktur tambahan (termasuk menara telekomunikasi, tangki penyimpanan bahan bakar, menara pendingin, struktur stasiun listrik, tangki air pemadam kebakaran atau struktur rumah atau struktur pendukung air atau material atau peralatan pemadam kebakaran) yang disyaratkan untuk beroperasi pada saat keadaan darurat Gedung dan non gedung yang dibutuhkan untuk mempertahankan fungsi struktur bangunan lain yang masuk ke dalam kategori risiko IV. 	

Sumber: SNI 1726:2019

b. Menentukan faktor keutamaan gempa (Ie)

Faktor keutamaan gempa ditentukan berdasarkan kategori risiko bangunan. Dalam Tabel 2.2 disajikan faktor keutamaan gempa (I_e) sesuai dengan SNI 1726:2019. Dalam pekerjaan ini, struktur rumah tinggaltermasuk dalam kategori risiko bangunan III sehingga faktor keutamaan gempa (I_e) ditetapkan sebesar 1,25.

Kategori risiko	Faktor keutamaan gempa, I _e
I atau II	1,0
III	1,25
IV	1,50

Tabel 2.2 Faktor keutamaan	gempa	(I_e)
----------------------------	-------	---------

Sumber: SNI 1726:2019

c. Menentukan parameter percepatan tanah (Ss dan S1)

Parameter percepatan tanah (S_S dan S₁) dipengaruhi oleh properti tanah pada lokasi proyek. Nilai S_S dan S₁ digunakan untuk menentukan respons spektral percepatan gempa MCER di permukaan tanah, dimana S_S dan S₁ berturut-turut merupakan parameter respons spektral percepatan gempa MCER terpetakan untuk periode pendek dan periode 1,0 detik. Dalam Gambar 2.1 dan 2.2 berturutturut disajikan nilai S_S dan S₁ untuk gempa maksimum yang dipertimbangkan risiko-tertarget (MCER) pada batuan dasar. Dalam pekerjaan ini, lokasi bangunan berada di Kota Jakarta sehingga digunakan nilai S_S = 0.788g dan S₁ = 0.389g.

Gambar 2.1 S_s, gempa maksimum yang dipertimbangkan risiko-tertarget (MCER) pada batuan dasar untuk periode pendek (0,2 detik) (Sumber: SNI 1726:2019)

Gambar 2.2 S₁ gempa maksimum yang dipertimbangkan risiko tertarget (MCER) pada batuan dasar untuk periode 1 detik (Sumber: SNI 1726:2019)

d. Menentukan klasifikasi situs (SA - SF)

Karakteristik lokasi proyek khususnya yang berhubungan dengan aspek geoteknik harus diidentifikasi dengan baik dalam proses perencanaan melalui kegiatan penyelidikan lokasi proyek (*site investigation*). Kegiatan penyelidikan lokasi proyek ini dapat berupa penyelidikan tanah di lapangan dan di laboratorium. Selanjutnya hasil dari penyelidikan lokasi proyek tersebut akan digunakan sebagai dasar dalam penentuan klasifikasi situs. Dalam SNI 1726:2019 klasifikasi situs dibedakan menjadi 6 jenis yaitu SA (batuan keras), SB (batuan), SC (tanah keras), SD (tanah sedang), SE (tanah lunak), dan SF (tanah khusus) (lihat Tabel 2.3).

Kelas situs	(m/detik)	atau	(kPa)	
SA (batuan keras)	>1500	N/A	N/A	
SB (batuan)	750 s/d 1500	N/A	N/A	
SC (tanah keras, sangat	350 s/d 750	>50	≥100	
padat dan batuan lunak)				
SD (tanah sedang)	175 s/d 350	15 s/d 50	50 s/d 100	
SE (tanah lunak)	<175	<15	<50	
	Atau setiap profil tanah yang mengandung lebih dari 3 m			
	tanah dengan karakteristik sebagai berikut:			
	1. Indeks plastisitas, $PI > 20$			
	2. Kadar air, $w \ge 40\%$			
	3. Kuat geser niralir, $s_u < 25$ kPa			

Tabel 2.3 Klasifkasi Situs

SF (tanah khusus, yang	Setiap profil lapisan tanah yang memiliki salah satu atau
membutuhkan	lebih dari karakteristik berikut:
investigasi geoteknik	1. Rawan dan berpotensi gagal atau runtuh akibat beban
spesifik dan analisis	gempa seperti mudah likuifaksi, lempung sangat
respons spesifik-situs	sensitif, tanah tersementasi lemah
yang mengikuti Pasal	2. Lempung sangat organik dan/atau gambut (ketebalan H
6.10.1)	> 3 m)
	3. Lempung berplasitisitas sangat tinggi (letebalan $H > 7,5$
	m dengan Indeks Plastisiyas, $PI > 75$)
	4. Lapisan lempung lunak/setengah teguh dengan
	ketebalan $H > 35$ m dengan $s_u < 50$ kPa

Sumber: SNI 1726:2019

Berdasarkan hasil uji N-SPT yang dilakukan di lapangan, site proyek termasuk dalam klasifikasi situs SD (tanah sedang). Data N-SPT selengkapnya dapat dilihat dalam laporan penyelidikan tanah.

e. Menentukan koefisien situs (Fa dan Fv)

Untuk menentukan respons spektral percepatan gempa MCER terpetakan di permukaan tanah, diperlukan faktor amplifikasi pada periode 0,2 detik (F_a) dan 1 detik (F_v). Faktor amplifikasi tersebut ditentukan berdasarkan kelas situs dan parameter percepatan tanah. Faktor amplifikasi pada periode 0,2 detik (F_a) ditentukan oleh kelas situs dan parameter respons spektral percepatan gempa MCE_R terpetakan untuk periode 0,2 detik (S_s). Sedangkan faktor amplifikasi pada periode 1 detik (F_v) ditentukan oleh kelas situs dan parameter respons spektral percepatan gempa MCE_R terpetakan untuk periode 0,2 detik (S_s). Sedangkan faktor amplifikasi pada periode 1 detik (F_v) ditentukan oleh kelas situs dan parameter respons spektral percepatan gempa MCE_R terpetakan untuk periode 1 detik (S_1). Penentuan koefisien situs (F_a dan F_v) didasarkan pada Tabel 2.4 Dan 2.5.

Kelas	Paramete	r respons spektral percepatan gempa MCE _R terpetakan pada perioda pendek, T=0,2 detik, S _s				
Situs	$S_s \leq 0,25$	$S_{s} = 0,5$	$S_s = 0,75$	$S_{s} = 1,0$	$S_s = 1,25$	$S_s \ge 1,25$
SA	0,8	0,8	0,8	0,8	0,8	0,8
SB	0,9	0,9	0,9	0,9	0,9	0,9
SC	1,3	1,3	1,2	1,2	1,2	1,2
SD	1,6	1,4	1,2	1,1	1,0	1,0
SE	2,4	1,7	1,3	1,1	0,9	0,8
SE		SS^b				

Tabel 2.4 Koefisien situs, Fa

Sumber: SNI 1726:2019

Catatan:

- (a) Untuk nilai-nilai antara Ss, dapat dilakukan interpolasi linier
- (b) S_S = Situs yang memerlukan investigasi geoteknik spesifik dan analisis respons situs-spesifik, lihat Pasal 6.10.1

	Parameter	r respons spek	tral percepat	tan gempa N	ACE _R terpe	takan pada		
Kelas Situs	s perioda 1 detik, S ₁							
	$Ss \le 0,1$	Ss = 0,2	Ss = 0,3	Ss = 0,4	Ss = 0,5	$Ss \ge 0,5$		
SA	0,8	0,8	0,8	0,8	0,8	0,8		
SB	0,8	0,8	0,8	0,8	0,8	0,8		
SC	1,5	1,5	1,5	1,5	1,5	1,4		
SD	2,4	2,2	2,0	1,9	1,8	1,7		
SE	4,2	3,3	2,8	2,4	2,2	2,0		
SE				SS ^b	-			

Tabel 2.5 Koefisien situs, Fv

Sumber: SNI 1726:2019

Catatan:

- (a) Untuk nilai-nilai antara S1, dapat dilakukan interpolasi linier
- (b) S_s = Situs yang memerlukan investigasi geoteknik spesifik dan analisis respons situsspesifik, lihat Pasal 6.10.1

Berdasarkan Tabel 2.4 dan Tabel 2.5, untuk kelas situs SD (tanah sedang) didapatkan nilai F_a dan F_v berturut-turut 1 dan 1,531. Selanjutnya nilai F_a dan F_v tersebut digunakan untuk menentukan parameter spektrum respons percepatan pada periode pendek (S_{MS}) dan periode 1 detik (S_{M1}) yang dapat dihitung menggunakan persamaan berikut:

$$\begin{split} S_{MS} &= F_a \; x \; S_s = 1,1848 \; x \; 0,7881 &= 0,934 \; g \\ S_{M1} &= F_v \; x \; S_1 = 1,9114 \; x \; 0,3886 &= 0,743 \; g \end{split}$$

f. Menghitung parameter percepatan desain (S_{DS} dan S_{D1})

Pada langkah sebelumnya sudah didapatkan nilai S_{MS} dan S_{M1} . Selanjutnya berdasarkan nilai S_{MS} dan S_{M1} tersebut, parameter percepatan spektral desain untuk periode pendek 0,2 detik (S_{DS}) dan periode 1 detik (S_{D1}) perlu ditetapkan untuk menyusun kurva respons spektra. Nilai S_{DS} dan S_{D1} dihitung menggunakan persamaan berikut:

 $S_{DS} = 2/3 \text{ x } S_{MS} = 0,622 \text{ g}$

 $S_{D1} = 2/3 \times S_{M1} = 0,495 \text{ g}$

g. Menyusun kurva respons spektra desain

Berdasarkan parameter respons spektra yang dihitung pada tahap sebelumnya, kurva repons spektra desain dapat disusun sebagai berikut (lihat Tabel 2.6 dan Gambar 2.3):

Gambar 2.3 Kurva respons spektra desain

T (detik)	Sa (g)
0,0000	0,2490
0,1591	0,6225
0,7956	0,6225
0,8000	0,6190
0,9000	0,5503
1,0000	0,4952
1,1000	0,4502
1,2000	0,4127
1,3000	0,3809
1,4000	0,3537
1,5000	0,3302
1,6000	0,3095
1,7000	0,2913
1,8000	0,2751
1,9000	0,2606

Tabel 2.6 Nilai	periode dan	percepatan	respons	spektra
-----------------	-------------	------------	---------	---------

	2,0000	0,2476	
	2,1000	0,2358	
	2,2000	0,2251	
	2,3000	0,2153	
	2,4000	0,2063	
	2,5000	0,1981	
	2,6000	0,1905	
	2,7000	0,1834	
	2,8000	0,1769	
	2,9000	0,1708	
	3,0000	0,1651	
	3,1000	0,1598	
_	3,2000	0,1548	
	3,3000	0,1501	2
	3,4000	0,1457	
	3,5 <mark>0</mark> 00	0,1415	
	3,6000	0,1376	
	3,7000	0,1338	
	3,8000	0,1303	
	3,9000	0,1270	
	4,0000	0,1238	
	4,1000	0,1208	
	4,2000	0,1179	
	4,3000	0,1152	
	4,4000	0,1126	
	4,5000	0,1101	
	4,6000	0,1077	
	4,7000	0,1054	
	4,8000	0,1032	
	4,9000	0,1011	
	5,0000	0,0990	
	5,1000	0,0971	
	5,2000	0,0952	
	5,3000	0,0934	
	5,4000	0,0917	
	5,5000	0,0900	
	5,6000	0,0884	
	5,7000	0,0869	
	5,8000	0,0854	

h. Menentukan kategori desain seismik (KDS: A - F)

Struktur yang didesain harus ditetapkan termasuk dalam kategori desain seismik (KDS) sesuai dengan Pasal 6.5 $_{SNI}$ 1726:2019. Dalam Tabel 2.7 dan Tabel 2.8 disajikan kategori desain seismik yang didasarkan pada hubungan S_{DS} dan S_{D1} dengan KDS.

NUL-1 C	Kategori Risiko					
Nilai S _{DS}	I atau II atau III	IV				
$S_{DS} < 0,167$	A	А				
$0,167 \le S_{DS} < 0,33$	В	В				
$0,33 \le S_{DS} < 0,50$	CGL	С				
$0,500 \le S_{\rm DS}$	D	D				
0 1 ONI 1706 0010						

Tabel 2.7 Kategori desain seismik berdasarkan nilai S_{DS}

Sumber: SNI 1726:2019

Tabel 2.8 Kategori desain seismik berdasarkan nilai S_{D1}

	Kategori Risiko					
Nilai S _{D1}	I atau II atau III		IV			
$S_{D1} < 0,167$	А		А			
$0,067 \le S_{D1} < 0,133$	В		В			
$0,133 \le S_{D1} < 0,20$	С		С			
$0,20 \leq S_{D1}$	D		D			
Sumber: SNI 1726:2012						

Dalam pekerjaan ini, berdasarkan Tabel 2.7 dan Tabel 2.8 didapatkan kategori desain seismik (KDS) D.

i. Menentukan sistem dan parameter struktur (R, C_d, Ω_0)

Sistem struktur penahan gaya gempa diizinkan untuk ditetapkan berbeda pada masing-masing sumbu ortogonal struktur. Parameter R, C_d , Ω_o untuk setiap tipe sistem struktur penahan gaya gempa _{disajikan} dalam Tabel 2.9.

				Batasan sistem struktur dan ting struktur, h _n (m)				tinggi
Sistem penahan-gaya seismik	R	$\Omega_{ m o}$	C_d	d KDS			/	
				В	С	D	Е	F
A. Sistem dinding penumpu				5	6	7	8	9
1. Dinding geser beton bertulang	5	2.5	5	TB	TB	48	48	30
Khusus 2 Dinding geser beton bertulang	1	2.5	1	TB	ТВ	ті	ті	ті
biasa	4	2.3	4	ID	ID	11	11	11
3. Dinding geser beton polos didetail		2.5	2	TB	TI	TI	TI	TI
4. Dinding geser beton polos biasa	1.5	2.5	1.5	TB	TI	TI	TI	TI
5. Dinding geser pracetak menengah	4	2.5	4	TB	TB	12	12	12
6. Dinding geser pracetak biasa	3	2.5	3	TB	TI	TI	ΤI	TI
7. Dinding geser batu bata bertulang	5	2.5	3.5	TB	TB	48	48	30
khusus				$\backslash L$				
8. Dinding geser batu bata bertulang	3.5	2.5	2.25	TB	TB	TI	ΤI	ΤI
menengah		2.5	1.75			T	T	T
9. Dinding geser batu bata bertulang	2	2.5	1.75	TB	48	TI	TI	TI
10 Dinding geser batu bata polos	2	25	1 75	TR	ті	тт	ті	ті
didetail		2.5	1.75	ID	11	11	11	11
11. Dinding geser batu bata polos	1.5	2.5	1.15	TB	TI	TI	TI	TI
biasa								
12. Dinding geser batu bata	1.5	2.5	1.75	TB	TI	TI	TI	TI
prategang								
13. Dinding geser batu bata ringan	2	2.5	2	TB	10	TI	ΤI	ΤI
(AAC) bertulang biasa	1.5	2.7					- TT	
14. Dinding geser batu bata ringan $(A \land C)$ poles biose	1.5	2.5	1.5	TB	TI	TI	TI	TI
(AAC) polos blasa	65	3	4	TR	TB	20	20	20
dilapisi dengan panel kayu yang	0.5	5	4	ID	ID	20	20	20
ditujukan untuk tahanan geser. atau								
dengan lembaran baja								
16. Dinding rangka ringan (baja	6.5	3	4	TB	TB	20	20	20
canai dingin) yang dilapisi dengan								
panel struktur kayu yang ditujukan								
untuk tahanan geser, atau dengan								
lembaran baja		2.5		TD	TD	10	T	T
1/. Dinding rangka ringan dengan	2	2.5	2	TB	TB	10	11	11
lainnya								
18 Sistem dinding rangka ringan	4	2	35	TR	TR	20	20	20
(baja canai dingin) menggunakan		_	5.5			20	20	
bresing strip datar								
B.Sistem rangka bangunan								

1. Rangka baja dengan bresing eksentris	8	2	4	TB	TB	48	4	30
2. Rangka baja dengan bresing konsentris khusus	6	2	5	TB	TB	48	4	30
3. Rangka baja dengan bresing konsentris biasa	3.25	2	3.25	TB	TB	10	10	TI
4. Dinding geser beton bertulang	6	2.5	5	TB	TB	48	48	30
5. Dinding geser beton bertulang	5	2.5	4.5	TB	TB	TI	TI	TI
6. Dinding geser beton polos detail	2	2.5	2	TB	TI	TI	TI	TI
7. Dinding geser beton polos biasa	1.5	2.5	1.5	TB	TI	TI	TI	TI
8. Dinding geser pracetak menengah	A 5 1	2.5	4.5	ТВ	ТВ	12	12	12
9. Dinding geser pracetak biasa	4	2.5	4	TB	TI	TI	TI	TI
10. Rangka baja dan beton komposit dengan bresing eksentris	8	-2	4	TB	TB	48	48	30
11. Rangka baja dan beton komposit dengan bresing konsentris khusus	5	2	4.5	TB	TB	48	48	30
12. Rangka baja dan beton komposit dengan bresing biasa	3	2	3	TB	ТВ	TI	TI	TI
13. Dinding geser pelat baja dan beton komposit	6.5	2.5	5.5	ТВ	TB	48	48	30
14. Dinding geser baja dan beton	6	2.5	5	TB	TB	48	48	30
15. Dinding geser baja dan beton	5	2.5	4.5	TB	TB	TI	TI	TI
16. Dinding geser batu bata	5.5	2.5	4	TB	ТВ	48	48	30
bertulang Khusus	1	25	- 1	TD	тр	TI	тт	TI
17. Dinding geser datu data	4	2.5	4	IB	ТВ	11	11	11
18 Dinding geser batu bata	2	25	2	TB	/18	ті	ті	ті
hertulang biasa	2	2.5	2	ID	40	11	11	11
19. Dinding geser batu bata polos	2	2.5	2	TB	ТІ	ТІ	TI	TI
didetail	_	2.0	_					
20. Dinding geser batu bata polos	1.5	2.5	1.25	TB	TI	TI	ΤI	TI
biasa								
21. Dinding geser batu bata	1.5	2.5	1.75	TB	TI	TI	ΤI	TI
prategang								
22. Dinding rangka ringan (kayu)	7	2.5	4.5	TB	TB	22	22	22
yang dilapisi dengan panel struktur								
kayu yang dimaksudkan untuk								
tahana geser								
23. Dinding rangka ringan (baja	7	2.5	4.5	TB	TB	22	22	22
canal dingin) yang dilapisi dengan								
dimaksudkan untuk tahanan gasar								
atau dengan lembaran baja								

24. Dinding rangka ringan dengan	2.5	2.5	2.5	TB	TB	10	TB	ТВ
panel geser dari semua material								
lainnya								
25. Rangka baja dengan bresing	8	2.5	5	TB	TB	48	48	30
terkekang terhadap tekuk								
26. Dinding geser pelat baja khusus	7	2	6	TB	TB	48	48	30
C.Sistem rangka pemikul momen								
1. Rangka baja pemikul momen	8	3	5.5	TB	TB	TB	TB	TB
khusus								
2. Rangka batang baja pemikul	7	3	5.5	TB	TB	48	30	TI
momen khusus								
3. Rangka baja pemikul momen	4.5	3	4	TB	TB	10	TI	TI
menengah	AL							
4. Rangka baja pemikul momen	3.5	3	3	TB	TB	TI	TI	TI
biasa			^					
5. Rangka beton bertulang pemikul	8	3	5.5	TB	TB	TB	TB	TB
momen khusus			\sim	7				
6. Rangka beton bertulang pemikul	5	3	4	TB	TB	TI	TI	TI
momen menengah								
7. Rangka beton bertulang pemikul	3	3	3	TB	TI	TI	TI	TI
momen biasa				\sim				
8. Rangka baja dan beton komposit	8	3	5.5	TB	TB	TB	TB	TB
pemikul momen khusus								
9. Rangka baja dan beton komposit	5	3	4.5	TB	TB	TI	TI	TI
pemikul momen menengah								
10. Rangka baja dan beton komposit	6	3	5.5	48	48	30	TI	TI
terkekang parsial pemikul momen								
11. Rangka baja dan beton komposit	3	3	2.5	TB	TI	TI	TI	TI
pemikul momen biasa								
12. Rangka baja canai dingin	3.5	3	3.5	10	10	10	10	10
pemikul momen khusus dengan								
pembautan								
D. Sistem ganda dengan rangka								
pemikul momen khusus yang								
mampu menahan paling sedikit 25								
persen gaya gempa yang								
ditetapkan	, v							
1. Rangka baja dengan bresing	8	2.5	4	Т	TB	TB	TB	TB
eksentris								
2. Rangka baja dengan bresing	7	2.5	5.5	TB	TB	TB	TB	TB
konsentris khusus								
3. Dinding geser beton bertulang	7	2.5	5.5	TB	TB	TB	TB	TB
khusus								
4. Dinding geser beton bertulang	6	2.5	5	TB	TB	TI	TI	TI
biasa								
5. Rangka baja dan beton komposit	8	2.5	4	TB	TB	TB	TB	TB
dengan bresing eksentris								
6. Rangka baja dan beton komposit	6	2.5	5	TB	TB	TB	TB	TB
dengan bresing konsentris khusus								

7. Dinding geser pelat baja dan	7.5	2.5	6	TB	TB	TB	TB	TB
8 Dinding gasar hais dan hatan	7	2.5	6	тр	тр	тр	тр	тр
komposit khusus	/	2.3	0	ID	ID	ID	ID	ID
9 Dinding geser baia dan beton	6	2.5	5	TB	TB	ТІ	TI	TI
komposit biasa	Ũ	2.0	U	12	12		••	
10. Dinding geser batu bata	5.5	3	5	TB	TB	TB	TB	TB
bertulang khusus								
11. Dinding geser batu bata	4	3	3.5	TB	TB	TI	ΤI	TI
bertulang menen gah								
12. Rangka baja dengan bresing	8	2.5	5	TB	TB	TB	TB	TB
terkekang terhadap tekuk								
13. Dinding geser pelat baja khusus	<u> </u>	2.5	6.5	TB	TB	TB	TB	TB
E.Sistem ganda dengan rangka		MA						
pemikul momen menengah			ľ (),					
mampu menahan paling sedikit 25								
persen gaya gempa yang ditetapkan			\frown	74				
1. Rangka baja dengan bresing	6	2.5	5	ТВ	ТВ	10	TI	TI
konsentris khusus								
2. Dinding geser beton bertulang	6.5	2.5	5	TB	TB	48	30	30
khusus								
3. Dinding geser batu bata bertulang	3	3	2.5	TB	48	ΤI	ΤI	ΤI
Diasa	2.5	2	2	TD	TD	TI	TI	TI
4. Dinding geser batu bata bertulang menengah	3.5	3	-3	IB	IB	11	11	11
5. Rangka baja dan beton komposit	5.5	2.5	4.5	TB	TB	48	30	ΤI
dengan bresing konsentris khusus								
6. Rangka baja dan beton komposit	3.5	2.5	3	TB	TB	TI	TI	ΤI
dengan bresing biasa								
7. Dinding geser baja dan	5	3	4.5	TB	TB	TI	ΤI	ΤI
betonkomposit biasa								
8. Dinding geser beton bertulang	5.5	2.5	4.5	TB	TB	ΤI	ΤI	ΤI
biasa								
F.Sistem interaktif dinding geser-	4.5	2.5	4	TB	TI	TI	ΤI	ΤI
rangka dengan rangka pemikul								
momen beton bertulang biasa dan								
dinding geser beton bertulang								
Diasa C Sistem kolom kontilovon								
didetail untuk momonuhi								
nersyaratan untuk								
1 Sistem kolom baja dengan	2.5	1 25	2.5	10	10	10	10	B
kantilever khusus	2.5	1.23	2.5	10	10	10	10	D.
2 Sistem kolom baja dengan	1 25	1 25	1 25	10	10	ΤI	TI	TI
kantilever biasa	1.20	1.20	1.20	10	10		**	**
3.Rangka beton bertulang pemikul	2.5	1.25	1.5	10	10	10	10	10
momen khusus		_						

4. angka beton bertulang pemikul	1.5	1.25	1.5	10	10	TI	TI	TI
momen menengah								
5. Rangka beton bertulang pemikul	1	1.25	1	10	TI	TI	ΤI	ΤI
momen biasa								
6. Rangka kayu	1.5	1.5	1.5	10	10	10	ΤI	ΤI
H. Sistem baja tidak didetail	3	3	3	TB	TB	TI	TI	ΤI
secara khusus untuk ketahanan								
seismik, tidak termasuk sistem								
kolom kantilever s								

Sumber: SNI 1726:2012

Sistem struktur penahan gaya gempa yang digunakan pada struktur rumah tinggaladalah SRPMK sehingga diperoleh parameter struktur sebagai berikut:

R = 8, Cd = 5,5, dan $\Omega o = 3$

j. Mengevaluasi sistem struktur terhadap ketidakberaturan struktur

Dalam proses desain, struktur harus diklasifikasikan sebagai struktur beraturan atau tidak beraturan dengan mengacu pada Pasal 7.3.2 SNI 1726:2012. Ketidakberaturan struktur dibedakan menjadi ketidakberaturan horizontal dan vertikal. Selanjutnya tipe dan penjelasan ketidakberaturan horizontal dan vertikal berturut-turut disajikan lebih detail dalam Tabel 2.10 dan Tabel 2.11.

	Tipe dan Penjelasan Ketidakberaturan	Pasal Referensi	Penerapan Kategori Desain Seismik
1a	Ketidakberaturan torsi didefinisikan ada jika	7.3.3.4	D, E, F
	dihitung termasuk tak terduga, di sebuah ujung	7.8.4.3	C. D. E. F
	struktur melintang terhadap sumbu lebih dari 1,2	7.12.1	C, D, E, F
	kali simpangan antar lantai tingkat rata-rata di	Tabel 13	D, E, F
	kedua ujung struktur. Pesyaratan ketidakberaturan	12.2.2	B, C, D, E, F
	torsi dalam pasal-pasal referensi berlaku hanya		
	untuk struktur dimana diafragmanya kaku atau		
	setengah kaku		
1b	Ketidakberaturan torsi berlebihan didefinisikan	7.3.3.1	E, F
	ada jika simpangan antar lantai tingkat	7.3.3.4	D
	maksimum, torsi yang dihitung termasuk tak	7.7.3	B, C, D
	terduga, di sebuah ujung struktur melintang	7.8.4.3	C, D
	terhadap sumbu lebih dari 1,4 kali simpangan	7.12.1	C, D
	antar lantai tingkat rata-rata di kedua ujung	Tabel 13	D
	struktur. Persyaratan ketidakberaturan torsi	12.2.2	B, C, D

Tabel 2.10 Tipe dan penjelasan ketidakberaturan horizontal struktur

	berlebihan dalam pasal-pasal referensi berlaku		
	hanya untuk struktur dimana diafragmanya kaku		
	atau setengah kaku		
2	Ketidakberaturan sudut dalam didefinisikan ada	7.3.3.4	D, E, F
	jika kedua proyeksi denah struktur dari sudut	Tabel 13	D, E, F
	dalam lebih besar dari 15% dimensi denah		
	struktur dalam arah yang ditentukan		
3	Ketidakberaturan diskontinuitas diafragma	7.3.3.4	D, E, F
	didefinisikan ada jika terdapat diafragma dengan	Tabel 13	D, E, F
	diskontinuitas atau variasi kekakuan mendadak,		
	termasuk yang mempunya daerah terpotong atau		
	terbuka lebih besar dari 50% daerah difragma		
	bruto yang melingkupinya, atau perubahan		
	kekakuan difragma efektif lebih dari 50% dari		
	suatu tingkat ke tingkat selanjutnya		
4	Ketidakberaturan pergeseran melintang terhadap	7.3.3.3	B, C, D, E, F
	bidang didefinisikan ada jika terdapat	7.3.3.4	D, E, F
	diskontinuitas dalam lintasan tahanan gaya lateral,	7.7.3	B, C, D, E,
	seperti pergeseran melintang terhadap bidang	Tabel 13	D, E, F
	elemen vertikal	12.2.2	B, C, D, E, F
5	Ketidakberaturan sistem nonparalel didefinisikan	7.5.3	C, D, E, F
	ada jika elemen penahan gaya lateral vertikal tidak	7.7.3	B, C, D, E, F
	paralel atau simetris terhadap sumbu-sumbu	Tabel 13	D, E, F
	ortogonal utama sistem penahan gaya gempa	12.2.2	B, C, D, E, F

Sumber: SNI 1726:2012

Berikut disajikan hasil perhitungan dan pengecekan terhadap ketidakberaturan horizontal struktur:

1.a. Ketidakberaturan torsi, didefinisikan ada jika simpangan antar lantai tingkat maksimum (torsi yang dihitung termasuk torsi tidak terduga) di sebuah ujung struktur melintang terhadap sumbu lebih dari 1,2 kali simpangan antar lantai tingkat rata-rata di kedua ujung struktur (lihat Gambar 2.4). Persyaratan ketidakberaturan torsi dalam pasal-pasal referensi berlaku hanya untuk struktur yang diafragmanya kaku (*rigid*) atau setengah kaku (*semi-rigid*).

Gambar 2.4 Ilustrasi pengecekan ketidakberaturan tipe 1a dan 1b (Sumber: Budiono, 2011)

Berdasarkan pengecekan ketidakberaturan torsi, didapatkan hasil bahwa simpangan antar lantai tingkat maksimum pada arah X dan Y kurang dari 1,2 kali simpangan antar lantai tingkat rata-rata sehingga tidak terdapat ketidakberaturan horizontal tipe 1a pada struktur yang ditinjau.

1.b. Ketidakberaturan torsi berlebihan, didefinisikan ada jika simpangan antar lantai tingkat maksimum (torsi yang dihitung termasuk torsi tidak terduga) di sebuah ujung struktur melintang terhadap sumbu lebih dari 1,4 kali simpangan antar lantai tingkat rata-rata di kedua ujung struktur (lihat Gambar 2.4). Persyaratan ketidakberaturan torsi berlebihan dalam pasalpasal referensi berlaku hanya untuk struktur yang diafragmanya kaku (rigid) atau setengah kaku (semi-rigid).

Berdasarkan pengecekan ketidakberaturan torsi berlebihan, didapatkan hasil bahwa simpangan antar lantai tingkat maksimum pada arah X dan Y kurang dari 1,4 kali simpangan antar lantai tingkat rata-rata sehingga tidak terdapat ketidakberaturan horizontal tipe 1b pada struktur yang ditinjau.

2. Ketidakberaturan sudut dalam, didefinisikan ada jika kedua proyeksi denah struktur dari sudut dalam lebih besar dari 15% dimensi denah struktur dalam arah yang ditentukan (lihat Gambar 2.5)

Gambar 2.5 Ilustrasi pengecekan ketidakberaturan horizontal tipe 2 (Sumber: FEMA 451B)

Berdasarkan pengecekan ketidakberaturan sudut dalam, didapatkan hasil bahwa kedua proyeksi denah struktur dari sudut dalam kurang dari 15% dimensi denah struktur dalam arah yang ditentukan sehingga tidak terdapat ketidakberaturan horizontal tipe 2 pada struktur yang ditinjau.

3. Ketidakberaturan diskontinuitas diafragma, didefiniskan ada jika terdapat diafragma dengan diskontinuitas atau variasi kekakuan mendadak, termasuk yang memiliki daerah terpotong atau terbuka lebih besar dari 50% daerah diafragma bruto yang melingkupinya, atau perubahan kekakuan diafragma efektif lebih dari 50% dari suatu tingkat ke tingkat selanjutnya (lihat Gambar 2.6)

Gambar 2.6 Ilustrasi pengecekan ketidakberaturan horizontal tipe 3 (Sumber: FEMA 451B)

Berdasarkan pengecekan ketidakberaturan sudut dalam, didapatkan hasil bahwa tidak terdapat ketidakberaturan horizontal tipe 3 pada struktur yang ditinjau.

4. Ketidakberaturan pergeseran melintang terhadap bidang, didefinisikan ada jika terdapat diskoninuitas dalam lintasan tahanan lateral, seperti pergeseran melintang terhadap bidang elemen vertikal (lihat Gambar 2.7)

(Sumber: Budiono, 2011)

Berdasarkan pengecekan ketidakberaturan sudut dalam, didapatkan hasil bahwa tidak terdapat ketidakberaturan horizontal tipe 4 pada struktur yang ditinjau.

5. Ketidakberaturan sistem nonparalel, didefinisikan ada jika elemen penahan lateral vertikal tidak paralel atau simetris terhadap sumbu-sumbu ortogonal utama sistem penahan seismik (lihat Gambar 2.8)

Gambar 2.8 Ilustrasi pengecekan ketidakberaturan horizontal tipe 5 (Sumber: FEMA 451B)

Berdasarkan pengecekan ketidakberaturan sudut dalam, didapatkan hasil bahwa tidak terdapat ketidakberaturan horizontal tipe 5 pada struktur yang ditinjau.

			Penerapan
	The des Desideres Kytidale esteres	Pasal	Kategori
	Tipe dan Penjelasan Ketidakberaturan	Referensi	Desain
			Seismik
	Ketidakberaturan kekakuan tingkat lunak,	Tabel 13	D, E, F
1	didefinisikan ada jika terdapat suatu tingkat		
la	dimana kekakuan lateralnya kurang dari 70%		
	kekakuan lateral tingkat di atasnya atau kurang		
	dari 80% kekakuan rata-rata 3 tingkat di atasnya		
	Ketidakberaturan kekakuan tingkat lunak	7.3.3.1	E, F
	berlebihan, didefinisikan ada jika terdapat suatu	Tabel 13	D, E, F
11.	tingkat dimana kekakuan lateralnya kurang dari		
10	60% kekakuan lateral tingkat di atasnya atau		
	kurang dari 70% kekakuan rata-rata 3 tingkat di		
	atasnya		
2	Ketidakberaturan berat (massa), didefinisikan ada	Tabel 13	D, E, F
2	jika massa efektif semua tingkat lebih dari 150%		
I		1	

Tabel 2.11 Tipe dan penjelasan ketidakberaturan vertikal struktur

	massa efektif tingkat di dekatnya. Atap yang		
	lebih ringan dari lantai di bawahnya tidak perlu		
	ditinjau		
	Ketidakberaturan geometri vertikal didefinisikan	Tabel 13	D, E, F
	ada jika dimensi horizontal sistem penahan gaya		
3	gempa di semua tingkat lebih dari 130% dimensi		
	hirozontal sistem penahan gaya gempa tingkat di		
	dekatnya		
	Diskontinuitas arah bidang dalam	7.3.3.3	B, C, D, E, F
	ketidakberaturan elemen penahan gaya lateral	7.3.3.4	D, E, F
	vertikal didefinisikan ada jika pergeseran arah 🕟	Tabel 13	D, E, F
4	bidang elemen penahan gaya lateral lebih besar	Z	
4	dari panjang elemen itu atau terdapat reduksi	Z	
	kekakuan elemen penahan di tingkat di		
	bawahnya		
	Diskontinuitas dalam ketidakberaturan kuat	7.3.3.1	E, F
	lateral tingkat didefinisikan ada jika kuat lateral	Tabel 13	D, E, F
50	tingkat kurang dari 80% kuat lateral tingkat di		
Ja	atasnya. Kuat lateral tingkat adalah kuat lateral		
	total semua elemen penahan seismik yang		
	berbagi geser tingkat untuk arah yang ditinjau		
	Diskontinuitas dalam ketidakberaturan kuat	7.3.3.1	D, E, F
	lateral tingkat yang berlebihan didefinisikan ada	7.3.3.2	B, C
5h	jika kuat lateral tingkat kurang dari 65% kuat	Tabel 13	D, E, F
50	lateral tingkat di atasnya. Kuat tingkat adalah		
	kuat total semua elemen penahan seismik yang		
	berbagi geser tingkat untuk arah yang ditinjau		

Sumber : SNI 1726:2012

Berikut disajikan hasil perhitungan dan pengecekan terhadap ketidakberaturan vertikal struktur:

1.a. Ketidakberaturan kekakuan tingkat lunak, didefinisikan ada jika terdapat suatu tingkat yang kekakuan lateralnya kurang dari 70% kekakuan lateral tingkat di atasnya atau kurang dari 80% kekakuan rata-rata 3 tingkat di atasnya (lihat

Gambar 2.9). Berdasarakan pengecekan ketidakberaturan kekakuan tingkat lunak, didapatkan hasil bahwa tidak terdapat ketidakberaturan vertikal tipe 1a pada struktur yang ditinjau.

Gambar 2.9 Ilustrasi pengecekan ketidakberaturan vertikal tipe 1a dan 1b (Sumber: FEMA 451B)

- 1.b. Ketidakberaturan kekakuan tingkat lunak berlebihan, didefinisikan ada jika terdapat suatu tingkat yang kekauan lateralnya kurang dari 60% kekakuan lateral tingkat tingkat di atasnya atau kurang dari 70% kekakuan rata-rata 3 tingkat di atasnya (lihat Gambar 2.9). Berdasarakan pengecekan ketidakberaturan kekakuan tingkat lunak berlebihan, didapatkan hasil bahwa tidak terdapat ketidakberaturan vertikal tipe 1b pada struktur yang ditinjau.
- 2. Ketidakberaturan berat (massa), didefinisikan ada jika efektif semua tingkat lebih dari 150% efektif tingkat di dekatnya. Atap yang lebih ringan dari pada lantai di bawahnya tidak perlu ditinjau (lihat Gambar 2.10). Berdasarakan pengecekan ketidakberaturan berat (massa), didapatkan hasil bahwa tidak terdapat ketidakberaturan vertikal tipe 2 pada struktur yang ditinjau.

Gambar 2.10 Ilustrasi pengecekan ketidakberaturan vertikal tipe 2 (Sumber: FEMA 451B)

3. Ketidakberaturan geometri vertikal, didefinisikan ada jika dimensi horizontal sistem penahan seismik di semua tingkat lebih dari 130% dimensi horizontal sistem penahan seismik tingkat di dekatnya (lihat Gambar 2.11). Berdasarakan pengecekan ketidakberaturan geometri vertikal, didapatkan hasil bahwa tidak terdapat ketidakberaturan vertikal tipe 3 pada struktur yang ditinjau.

Gambar 2.11 Ilustrasi pengecekan ketidakberaturan vertikal tipe 3 (Sumber: FEMA 451B)

4. Diskontinuitas arah bidang dalam ketidakberaturan elemen penahan gaya lateral vertikal, didefinisikan ada jika pergeseran arah bidang elemen penahan lateral lebih besar dari panjang elemen itu atau terdapat reduksi kekakuan elemen penahan di tingkat di bawahnya (lihat Gambar 2.12). Berdasarakan pengecekan

ketidakberaturan diskontinuitas arah bidang dalam ketidakberaturan elemen penahan gaya lateral vertikal, didapatkan hasil bahwa tidak terdapat ketidakberaturan vertikal tipe 4 pada struktur yang ditinjau.

Gambar 2.12 Ilustrasi pengecekan ketidakberaturan vertikal tipe 4 (Sumber: FEMA 451B)

5.a. Diskontinuitas dalam ketidakberaturan kuat lateral tingkat, didefinisikan ada jika kuat lateral tingkat kurang dari 80% kuat lateral tingkat di atasnya. Kuat lateral tingkat adalah kuat lateral total semua elemen penahan seismik yang berbagi geser tingkat untuk arah yang ditinjau (lihat Gambar 2.13). Berdasarakan pengecekan ketidakberaturan diskontinuitas dalam ketidakberaturan kuat lateral tingkat, didapatkan hasil bahwa tidak terdapat ketidakberaturan vertikal tipe 5a pada struktur yang ditinjau.

Gambar 2.13 Ilustrasi pengecekan ketidakberaturan vertikal tipe 5a dan 5b (Sumber: FEMA 451B)

5.b. Diskontinuitas dalam ketidakberaturan kuat lateral tingkat yang berlebihan, didefinisikan ada jika kuat lateral tingkat kurang dari 65% kuat lateral tingkat di atasnya. Kuat lateral tingkat adalah kuat total semua elemen penahan seismik yang berbagi geser tingkat untuk arah yang ditinjau (lihat Gambar 2.13). Berdasarakan pengecekan ketidakberaturan diskontinuitas dalam ketidakberaturan kuat lateral tingkat yang berlebihan, didapatkan hasil bahwa tidak terdapat ketidakberaturan vertikal tipe 5b pada struktur yang ditinjau.

k. Menentukan fleksibilitas diafragma

Untuk struktur yang mempunyai ketidakberaturan struktur horizontal, diafragma harus dimodelkan sebagai semi-rigid. Dalam pekerjaan ini, struktur rumah tinggaltidak memiliki ketidakberaturan struktur horizontal sehingga diafragma dimodelkan sebagai diafragma rigid.

l. Menentukan faktor redundansi (ρ)

Faktor redundansi (ρ) harus dikenakan pada sistem struktur penahan gaya gempa pada masing-masing kedua arah ortogonal untuk semua struktur sesuai dengan Pasal 7.3.4 SNI 1726:2012. Nilai ρ dapat diambil sama dengan 1,0 jika masingmasing tingkat yang menahan lebih dari 35% gaya geser dasar pada arah yang ditinjau harus memenuhi persyaratan Tabel 2.12.

Tabel 2.12 Persyarata	n untuk masi	ng-masing	tingkat yang	g menahan le	bih dari 35% gaya
-----------------------	--------------	-----------	--------------	--------------	-------------------

Elemen Penahan Gaya Lateral	Persyaratan
Rangka dengan bresing	Pelepasan bresing individu, atau sambungan yang terhubung, tidak
	akan mengakibatkan reduksi kuat tingkat sebesar lebih dari 33%, atau
	sistem yang dihasilkan tidak mempunyai ketidakberaturan torsi yang
	berlebihan (ketidakberaturan struktur horizontal tipe 1b)
Rangka pemikul	Kehilangan tahanan momen di sambungan balok ke kolom di kedua
momen	ujung balok tunggal tidak akan mengakibatkan lebih dari reduksi kuat
	tingkat sebesar 33%, atau sistem yang dihasilkan tidak mempunyai
	ketidakberaturan torsi yang berlebihan (ketidakberaturan struktur
	horizontal tipe 1b)
Dinding geser atau	Pelepasan dinding geser atau pier dinding dengan rasio tinggi
pilar dinding dengan	terhadap panjang lebih besar dari 1,0 di semua tingkat, atau
rasio tinggi terhadap	sambungan kolektor yang terhubung, tidak akan mengakibatkan
panjang lebih besar dari	lebih dari reduksi kuat tingkat sebesar 33%, atau sistem yang
1,0	dihasilkan mempunyai ketidakberaturan torsi yang berlebihan
	(ketidakberaturan struktur horizontal tipe 1b)

geser dasar

Kolom kantilever	Kehilangan tahanan momen di dasar sambungan dasar semua
	kolom kantilever tungggal tidak akan mengakinbatkan lebih dari
	reduksi kuat tingkat sebesar 33%, atau sistem yang dihasilkan
	mempunyai ketidakberaturan torsi yang berlebihan (ketidakberaturan
	struktur horizontal tipe 1b)
Lainnya	Tidak ada persyaratan

Sumber: SNI 1726:2012

Ketentuan lain yang mengizinkan ρ dapat diambil sama dengan 1,0 adalah jika struktur dengan denah teratur di semua tingkat asalkan sistem penahan gaya gempa terdiri dari paling sedikit dua bentang perimeter penahan gaya gempa yang merangka pada masing-masing sisi struktur dalam masingmasing arah ortogonal di setiap tingkat yang menahan lebih dari 35% gaya geser dasar. Jumlah bentang untuk dinding geser harus dihitung sebagai panjang dinding geser dibagi dengan tinggi tingkat atau dua kali panjang dinding geser dibadi dengan tinggi tingkat untuk konstruksi rangka ringan. Jika kondisi tersebut tidak dipenuhi maka, ρ harus diambil sama dengan 1,3. Dalam pekerjaan ini, faktor redundansi yang digunakan adalah 1,3.

m. Memilih prosedur analisis gaya lateral/gempa (ELF, RS, TH)

Beban gempa yang diatur dalam SNI 1726:2012 dapat dikerjakan melalui 3 jenis prosedur analisis yaitu analisis gaya lateral ekivalen (*equivalent lateral forces*), analisis spektrum respons raga (*respons spectra*), dan prosedur riwayat respons seismik (*time history*). Prosedur analisis beban gempa yang diizinkan untuk digunakan dipengaruhi oleh kategori desain seismik dan karakteristik struktur seperti yang disajikan dalam Tabel 2.13. Berdasarkan Tabel 2.13, dalam pekerjaan ini diizinkan untuk menggunakan analisis spektrum respons ragam sebagai prosedur analisis beban gempa.

Kategori Desian Seismik	Karakteristik Struktur	Analisis Gaya Lateral Ekivalen (pasal 7.8)	Analisis Spektrum Respons Ragam (Pasal 7 9)	Prosedur Riwayat Respons Seismik (Pasal 11)
B, C	Bangunan dengan kategori risiko I atau II dari konstruksi rangka	I	I	I

Tabel 2.13 Prosedur analisis yang boleh digunakan

	ringan dengan ketinggian tidak			
	melebihi 3 tingkat			
	Bangunan lainnya dengan			
	kategori risiko I atau II, dengan	Ι	Ι	Ι
	ketinggian tidak melebihi 2 tingkat			
	Semua struktur lainnya	Ι	Ι	Ι
D, E, F	Bangunan dengan kategori			
	risiko I atau I dari konstruksi	т	т	т
	rangka ringan dengan ketinggian	1	1	1
	tidak melebihi 3 tingkat			
	Bangunan lainnya dengan			
	kategori risiko I atau II dengan	Ι	Ι	Ι
	ketinggian tidak melebihi 2 tingkat			
	Struktur beraturan dengan T $< 3,5$			
	Ts dan semua struktur dari	Í CI	Ι	Ι
	konstruksi rangka ringan			
	Struktur tidak beraturan dengan T <			
	3,5 Ts dan mempunyai hanya			
	ketidakberaturan horizontal tipe 2,	T	× T	т
	3, 4, atau 5 dari Tabel 10 atau	1 λ		1
5	ketidakberaturan vertikal tipe 4, 5a,			
	atau 5b dari Tabel 11			
	Semua struktur lainnya	TI	Ι	Ι
Sumber S	NI 1726-2012			

Sumber: SNI 1726:2012

n. Menghitung beban gempa dengan prosedur gaya lateral ekivalen (ELF)

Prosedur analisis gaya lateral ekivalen (ELF) didasarkan pada respons ragam pertama (*first modes*). Prosedur analisis ini berlaku hanya untuk struktur reguler dengan T < 3,5 Ts (dimana Ts = SD1/SDS), kekakuan tingkat-tingkat yang berdekatan tidak berbeda lebih dari 30%, kekuatan tingkat-tingkat yang berdekatan tidak berbeda lebih dari 20%, dan massa pada tingkat-tingkat yang berdekatan tidak berbeda lebih dari 50%. Jika hal tersebut tidak dipenuhi maka harus digunakan prosedur analisis dinamik yaitu analisis spektrum respons ragam atau prosedur riwayat waktu. Secara umum besar gaya gempa yang dihasilkan oleh prosedur analisis ELF adalah fungsi dari berat seismik efektif (Wt) dan koefisien respons seismik (Cs). Selanjutnya gaya gempa tersebut didistribusikan ke setiap tingkat dari struktur gedung yang akan didesain. Gaya gempa hasil dari prosedur analisis ELF perlu dihitung karena jika digunakan prosedur analisis dinamik, gaya gempa yang dihasilkan perlu dibandingkan dengan gaya gempa hasil dari prosedur analisis ELF. Langkah perhitungan gaya gempa dengan prosedur analisis ELF disajikan sebagai berikut:

1. Menentukan Periode Fundamental Alami Struktur (T)

Periode fundamental alami struktur akan menetukan nilai koefisien respons seismik (Cs) yang juga akan menentukan nilai gaya geser dasar seismik (VELF). Jika periode struktur yang lebih akurat (Tc) tidak dimiliki maka periode struktur yang digunakan dapat diambil sebesar Ta. Namun, jika periode struktur yang lebih akurat (Tc) bisa didapatkan (melalui pemodelan struktur) maka periode struktur yang digunakan harus ditetapkan dengan mengikuti ketentuan berikut ini (lihat juga Gambar 2.14):

Periode fundamental pendekatan (T_a) ditentukan dengan berdasarkan persamaan: $T_a = C_t \cdot h_n^x$. Dimana hn adalah ketinggian struktur (dalam m), sedangkan koefisien C_t dan x ditentukan berdasarkan Tabel 2.14.

Tipe Struktur	Ct	Х
Sistem rangka pemikul momen dimana rangka memikul 100% gaya gempa yang disyaratkan dan tidak dilingkupi atau dihubungkan dengan komponen yang lebih kaku dan akan mencegah rangka dari defleksi jika dikenai gaya gempa:		
Rangka baja pemikul momen	0,0724	0,8
Rangka beton pemikul momen	0,0466	0,9
Rangka baja dengan bresing eksentris	0,0731	0,75
Rangka baja dengan bresing terkekang terhadap tekuk	0,0731	0,75
Semua sistem struktur lainnya	0,0488	0,75

Tabel 2.14 Nilai parameter periode pendekatan Ct dan x

Nilai koefisien untuk batas atas periode struktur yang dihitung (C_u) ditetapkan berdasarkan Tabel 2.15.

Parameter percepatan respons spektral desain pada 1 detik, S _{D1}	Koefisien C _u
$\geq 0,4$	1,4
0,3	1,4
0,2	1,5
0,15	1,6
$\leq 0,1$	1,7

Tabel 2.15 Koefisien untuk batas atas pada periode yang dihitung

Pada pekerjaan ini, tipe struktur yang digunakan adalah rangka baja pemikul momen sehingga didapatkan nilai $C_t = 0,0466$ dan x = 0,9. Selanjutnya berdasarakan nilai $S_{D1} = 0.495$ g didapatkan koefisien $C_u = 1,4$. Sehingga didapatkan nilai $T_a = 0.446$ detik dan $C_u.T_a = 0,624$ detik. Nilai periode struktur hasil pemodelan struktur, $T_c = 0,713$ detik ($T_a < T_c < C_u.T_a$) sehingga periode struktur yang digunakan dalam analisis beban gempa dengan prosedur ELF adalah 0,535 detik.

2. Menentukan Koefisien Respons Seismik (C_s)

Koefisien respons seismik (Cs) ditentukan berdasarkan persamaan berikut:

 $C_s = S_{DS} / (R / I_e)$

Nilai C_s yang dihitung sesuai dengan persamaan di atas tidak perlu melebihi nilai C_s yang dihitung dengan persamaan berikut:

 $C_s = S_{D1} / (T x (R / I_e))$

Namun nilai C_s harus tidak boleh kurang dari C_s yang dihitung dengan persamaan berikut:

 $Cs = 0,044 \text{ SDS Ie} \ge 0,01$

Pada pekerjaan ini, hasil perhitungan koefisien respons seismik (C_s) adalah sebagai berikut:

0,097

$C_{s} = S_{D1} / (T \times (R / I_{e}))$	0,174
	· · · ·

 $Cs = 0.044 \text{ SDS Ie} \ge 0.01$ 0.034

3. Menentukan Berat Seismik Efektif (W)

Berat seismik efektif struktur (W) harus menyertakan seluruh beban mati dan beban lainnya yang termasuk dalam daftar berikut ini:

- Dalam daerah yang digunakan untuk penyiMPanan: minimum sebesar 25% beban hidup lantai (beban hidup lantai di garasi publik dan struktur parkiran terbuka, serta beban penyiMPanan yang tidak melebihi 5% dari berat seismik efektif pada suatu lantai, tidak perlu disertakan)
- Jika ketentuan untuk partisi disyaratkan dalam desain beban lantai: diambil sebagai yang terbesar diantara berat partisi aktual atau berat daerah lantai minimum sebesar 0,48 kN/m²
- Berat operasional total dari peralatan yang permanen
- Berat lansekap dan beban lainnya pada taman atap dan luasan sejenis lainnya

Dalam pekerjaan ini, berdasarkan hasil perhitungan didapatkan berat seismik efektif (W_A) = 4631.7571kN dan W_b =2592.87 kN.

4. Menghitung Gaya Geser Dasar Seismik (V_{ELF})

Gaya geser dasar seismik (V_{ELF}) dapat dihitung dengan operasi perkalian antara koefisien respon seismik (C_s) dengan berat seismik efektif struktur (W). V_A = 666.97 N dan V_B = 373.73 kN.

o. Menghitung dan menambahkan beban ortogonal (jika disyaratkan)

Penambahan beban ortogonal dikerjakan dengan cara memberikan beban tambahan sebesar 30% dari beban lateral utama, tegak lurus terhadap arah beban utama yang ditinjau (lihat Gambar 2.15). Beban ortogonal perlu ditambahkan dan belaku pada struktur dengan kategori desain seismik C, D, E, dan F. Pada pekerjaan ini, struktur termasuk dalam kategori desain seismik D sehingga *penambahan* beban ortogonal perlu dilakukan. Penambahan ini diakomodasi dalam kombinasi beban rencana.

Gambar 2.15 Beban ortogonal (Sumber: FEMA 451B)

p. Menghitung dan menambahkan beban torsi (jika disyaratkan)

Struktur gedung untuk semua kategori desain seismik (KDS) harus mempertimbangkan torsi *rencana* dan torsi tak terduga. Torsi tak terduga dikerjakan pada model struktur dengan memberikan eksentrisitas sebesar 5% masing-masing pada arah sumbu X dan Y (lihat Gambar 2.16).

Gambar 2.16 Torsi tak terduga

Apabila struktur gedung termasuk dalam kategori desain seismik C, D, E, dan F serta memiliki ketidakberaturan torsi 1a dan 1b maka harus mempertimbangkan adanya pembesaran torsi tak terduga (lihat Gambar 2.17). Pembesaran torsi tak terduga dihitung menggunakan persamaan berikut:

$$e_x = e_{ox} + (0,05 \text{ B } A_x)$$

 $e_y = e_{oy} + (0,05 \text{ L } A_y)$ dimana,

 e_{ox} dan e_{oy} adalah eksentrisitas bawaan,sedangkan 0,05 B A_x dan 0,05 L A_y adalah eksentrisitas tak terduga

Gambar 2.17 Pembesaran torsi tak terduga

Pada pekerjaan ini, struktur gedung termasuk dalam kategori desain seismik (KDS) D namun tidak terjadi ketidakberaturan torsi 1a dan 1b sehingga tidak perlu mempertimbangkan pembesaran torsi tak terduga (cukup mempertimbangkan torsi tak terduga dengan memberikan eksentrisitas sebesar 5% masing-masing pada arah sumbu X dan Y).

2.4 Kombinasi Beban Rencana

Kombinasi beban ultimit ditetapkan berdasarkan Pasal 4.2.2 SNI 1726:2012 Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung, yaitu sebagai berikut:

- 1. 1,4DL
- 2. 1,2DL + 1,6LL + 0,5(Lr atau R)
- 3. 1,2DL + 1,6(Lr atau R) + (1,0L atau 0,5W)
- 4. 1,2DL + 1,0W + 1,0L + 0,5(Lr atau R)
- 5. 1,2DL + 1,0E + 1,0LL
- 6. 0.9DL + 1.0W
- 7. 0,9DL + 1,0E

Untuk kombinasi beban nomor 5 dan 7 yang merupakan kombinasi beban gempa, diatur secara khusus dalam Pasal 7.4 SNI 1726:2012 Standar Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung, yaitu sebagai berikut:

- 1. $(1,2+0,2SDS)DL + 1,0LL \pm 0,3\rho Ex \pm 1,0\rho Ey$
- 2. $(1,2+0,2SDS)DL + 1,0LL \pm 1,0\rho Ex \pm 0,3\rho Ey$
- 3. $(0,9-0,2SDS)DL \pm 0,3\rho Ex \pm 1,0\rho Ey$
- 4. $(0,9-0,2SDS)DL \pm 1,0\rho Ex \pm 0,3\rho Ey$

Sedangkan kombinasi beban layan ditetapkan berdasarkan Pasal 4.2.3 SNI 1726:2012 Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung, yaitu sebagai berikut:

1. DL

- **2.**DL + LL
- **3**. DL + (Lr atau R)
- 4. DL + 0,75LL + 0,75(Lr atau R)
- 5. DL + (0,6W atau 0,7E)
- 6. DL + 0,75(0,6W atau 0,7E) + 0,75LL + 0,75(Lr atau R)
- 7. 0,6DL + 0,6W
- **8**. 0,6DL + 0,7E

dimana,

- DL = Beban mati (berat sendiri struktur dan beban mati tambahan)
- LL = Beban hidup
- Lr = Beban hidup pada struktur atap

R = Beban hujan

- W = Beban angin
- Ex = Beban gempa arah x
- Ey = Beban gempa arah y
- ρ = Faktor redundansi
- S_{DS} = Parameter percepatan spektral desain untuk periode pendek 0,2 detik

Kombinasi beban ultimit yang digunakan dalam pekerjaan ini disajikan dalam Tabel 2.16.

Kombinasi Beban	DL	ADL	LL	Ex	Ey
COMB1	1,40	1,40	-	-	-
COMB2	1,20	1,20	1,60	-	-
COMB3	1,357	1.357	1,00	-1,30	-0,39
COMB4	1,357	1.357	1,00	-1,30	+0,39
COMB5	1,357	1.357	1,00	+1,30	-0,39
COMB6	1,357	1.357	1,00	+1,30	+0,39
COMB7	1,357	1.357	1,00	-0,39	-1,30
COMB8	1,357	1.357	1,00	-0,39	+1,30
COMB9	1,357	1.357	1,00	+0,39	-1,30

Tabel 2.16 Kombinasi beban ultimit

COMB10	1,357	1.357	1,00	+0,39	+1,30
COMB11	0,743	0,743	-	-1,30	-0,39
COMB12	0,743	0,743	-	-1,30	+0,39
COMB13	0,743	0,743	-	+1,30	-0,39
COMB14	0,743	0,743	-	+1,30	+0,39
COMB15	0,743	0,743	-	-0,39	-1,30
COMB16	0,743	0,743	-	-0,39	+1,30
COMB17	0,743	0,743	-	+0,39	-1,30
COMB18	0,743	0,743	-	+0,39	+1,30

Kombinasi beban layan yang digunakan dalam pekerjaan ini disajikan dalam Tabel 2.17

	Kombinasi Beban	DL	ADL	LL	Ex	Ey
\leq	COMB1	1,00	1,00	1,00	\sim	
	COMB2	1,00	1,00	-	-0,70	-0,21
	COMB3	1,00	1,00	-	-0,70	+0,21
	COMB4	1,00	1,00	-	+0,70	-0,21
	COMB5	1,00	1,00	-	+0,70	+0,21
	COMB6	1,00	1,00	-	-0,21	-0,70
	COMB7	1,00	1,00	-	-0,21	+0,70
	COMB8	1,00	1,00	-	+0,21	-0,70
	COMB9	1,00	1,00	-	+0,21	+0,70

Tabel 2.17 Kombinasi beban layan

2.5 Pemodelan Struktur

Pemodelan struktur dilakukan untuk mengetahui gaya-gaya dalam yang terjadi pada elemen struktur serta perilaku struktur akibat beban yang bekerja. Hasil dari pemodelan struktur digunakan sebagai dasar untuk mendesain dimensi penampang elemen struktur yang diperlukan. Model struktur dikerjakan dengan beberapa idealisasi. Sebagai contoh, pelat lantai diidealisasikan sebagai elemen *shell*, sedangkan balok dan kolom diidealisasikan sebagai elemen *frame*. Pemodelan struktur yang dilakukan mampu mengakomodasi pengaruh kerusakan baja ketika terjadi gempa yaitu melalui reduksi momen inersia penampang elemen struktur. Momen inersia pada pelat lantai direduksi menjadi 25% dari momen inersia awal. Pada elemen struktur balok, momen inersia direduksi menjadi 25% untuk menyeimbangkan

nilai reduksi terhadap inersia elemen struktur. Sedangkan pada kolom, momen inersia direduksi menjadi 70% dari momen inersia awal.

Struktur restoran didesain dengan menggunakan sistem struktur berupa struktur rangka pemikul momen khsusus (SRPMK). Struktur tersebut dimodelkan dalam model 3 dimensi (*3D Models*) menggunakan bantuan *software* (lihat Gambar 2.18).

Gambar 2.18 Model struktur bangunan Panti Wredha

a. Definisi Material

Material yang digunakan dalam analisa struktur adalah sebagai berikut:

Baja	: fy 240 MPa fu 370 MPa
Beton	: fc' 30 MPa / K300
Baja Tulangan Ulir	: fy 420 MPa
Baja Tulangan Polos	: fy 280 MPa

	🛐 Material Property Data	×
	General Data Material Name Material Type Directional Symmetry Type Material Display Color Material Notes	Beton Fo 30 Concrete V Isotropic V Change Modfy/Show Notes
	Material Weight and Mass Specify Weight Density Weight per Unit Volume Mass per Unit Volume	 Specify Mass Density 24 kN/m³ 2447,319 kg/m³
Saltestas	Mechanical Property Data Modulus of Elasticity, E Poisson's Ratio, U Coefficient of Thermal Expansion, A Shear Modulus, G Design Property Data Modify/Show M Advanced Material Property Data Nonlinear Material Data Time D OK Gambar 2.19 Material	25742,96 MPa 0.2 0.0000099 1/C 10726,23 MPa Astenal Property Design Data Material Damping Properties Pependent Properties Cancel
	General Data Material Name Material Type	Tulangan Utama 420 MPa Rebar V
	Directional Symmetry Type Material Display Color Material Notes	Uniaxial Change Modify/Show Notes
	Material Weight and Mass Specify Weight Density Weight per Unit Volume Mass per Unit Volume 	 Specify Mass Density 76.9729 kN/m³ 7849.047 kg/m³
	Mechanical Property Data Modulus of Elasticity, E Coefficient of Thermal Expansion, A	199947,98 MPa 0.0000117 1/C
	Design Property Data Modify/Show M	Material Property Design Data
	Nonlinear Material Data	Material Damping Properties
	OK	Cancel

Gambar 2.20 Material Properties Tulangan Utama

b. Definisi Profil Balok dan Kolom

Penampang balok dan kolom di definisikan sebagai berikut:

Gambar 2.22 Section Properties Kolom K1

c. Pemodelan 3D struktur

Setelah material dan section properties sudah lengkap, langkah selanjutnya adalah membuat model 3D. Model mengakomodasi semua ukuran balok dan kolom, beserta tulangan yang direncanakan untuk terpasang ditunjukkan pada Gambar 4 berikut ini.

Gambar 2.23 Model 3D Gedung Utama

d. Memberikan Beban yang Bekerja

Secara garis besar, beban yang bekerja pada struktur ini dibedakan menjadi:

- beban mati (berat sendiri baja, beban dinding),
- beban mati tambahan (beban keramik, pipa, plafond dll)
- beban hidup (beban yang bekerja), dan
- beban gempa. (respons spektrum)

Penjelasan lengkap terkait pembebanan terdapat pada bagian Pembebanan dalam laporan ini.

Gambar 2.24 Pembebanan Pelat Lantai di Model 3D

e. Memberikan Beban Gempa

Beban gempa dimodelkan dalam Program dengan fungsi respon spectrum. Perhitungan dan besaran dapat dilihat pada bagian Input data – respon spektrum. Setelah didapat grafik respon spektrum, grafik kemudian di input ke dalam program, seperti yang ditunjukkan oleh Gambar 6 berikut.

Gambar 2.25 Input Beban Gempa

Setelah beban gempa berhasil masuk, dilakukan kombinasi pembebanan yang memungkinkan beberapa beban ekstrim bekerja bersamaan.

f. Memberikan Kombinasi dan Faktor Pembebanan

Kombinasi pembebanan yang digunakan mengacu pada SNI Gempa 2012, dalam laporan ini pembahasan kombinasi pembebanan dilakukan pada bagian Input Data - Kombinasi Pembebanan.

g. Running Program

Setelah semua gaya terpasang, beberapa perlakuan terhadap struktur dilakukan seperti pemberian mass source dan diafragma, setelah itu dilakukan running program. Hasil dari running program adalah berupa gaya gaya dalam yang bekerja pada balok dan kolom struktur. Gaya ini adalah kunci dalam menganalisa kekuatan struktur itu sendiri. Gaya yang didapat pada hasil running dapat dilihat pada Gambar 8.

Gambar 2.27 Gaya yang berkerja

Gambar 2.28 Hasil Running Program

h. Hasil Gaya Dalam

Gaya yang sudah di dapat kemudian diexport ke dalam excel, dan dilakukan analisa. Setiap elemen struktur dicek nilai keamanannya. Hasil pengecekan juga ditampilkan dalam excel seperti pada lampiran.

2.6 Pengecekan Perilaku Struktur

2.6.1 Pengecekan Periode Fundamental Struktur

Pada pekerjaan ini, tipe struktur yang digunakan adalah rangka baja pemikul momen sehingga didapatkan nilai Ct = 0,0466 dan x = 0,9. Selanjutnya berdasarakan nilai SD1 = 0,4952 g didapatkan koefisien Cu = 1,4. Sehingga didapatkan nilai Ta = 0,446 detik dan Cu.Ta = 0,6244 detik. Sehingga periode struktur yang digunakan adalah T = 0,446 detik.

2.6.2 Pengecekan Modal Participation Mass Ratio

Berdasarkan hasil pemodelan struktur, rasio partisipasi modal massa (modal participation mass ratio) disajikan dalam Tabel 2.18. Jumlah ragam (modes) yang disyaratkan untuk menentukan ragam getar alami bagi struktur harus cukup untuk mendapatkan partisipasi massa ragam terkombinasi sebesar paling sedikit 90% dari massa aktual masing-masing arah horizonal ortogonal dari respons yang ditinjau oleh model, sesuai dengan Pasal 7.9.1 SNI 1726:2012.

Berdasarkan hasil pemodelan struktur, diperoleh bahwa pada kedua arah denganmelibatkan ragam getar (modes), cukup untuk menghasilkan lebih dari 90% dari massa aktual di kedua arah X dan Y (lihat Tabel 2.18).

-	TABLE: M				
_	Case	Mode	Period	SumUX	SumUY
			sec		
_	Modal	1	0.817	0.94	0.0003
	Modal	2 MA J	A \0.808	0.9403	0.9333
	Modal	3	0.723	0.9405	0.9406
	Modal	4	0.514	0.9414	0.9406
S	Modal	5	0.386	0.9414	0.9406
Š.	Modal	6	0.377	0.9416	0.9406
	Modal	7	0.332	0.9418	0.9406
	Modal	8	0.193	0.9685	0. 9635
	Modal	9	0.193	0.9908	0.9909
	Modal	10	0.149	0.9909	0.9917
	Modal	11	0.094	0.9994	0.9918
	Modal	12	0.088	0.9995	0.9999

Tabel 2.18 Modal Participation Mass Ratio

2.6.3 Pengecekan Gaya Geser Dasar (Base Shear)

Pada prosedur analisis beban gempa spektrum respons ragam (RS), gaya geser dasar (base shear) yang diperoleh harus dibandingkan dengan gaya geser dasar (base shear) hasil prosedur analisis beban gempa gaya lateral ekivalen (ELF). Base shear spektrum respons ragam (RS) harus tidak kurang dari 85% base shear gaya lateral ekivalen (ELF). Jika hal ini tidak dipenuhi maka faktor skala gaya pada spektrum respons ragam (RS) harus dihitung ulang. Berikut ini disajikan hasil perhitungan dan pengecekan base shear untuk menentukan perlu tidaknya perhitungan ulang faktor skala gaya spektrum respons ragam (RS).

2.6.4 Pengecekan Eksentrisitas

Struktur gedung untuk semua kategori desain seismik (KDS) harus mempertimbangkan torsi rencana dan torsi tak terduga. Torsi tak terduga dikerjakan pada model struktur dengan memberikan eksentrisitas sebesar 5% masing-masing pada arah sumbu X dan Y. Pada pekerjaan ini, struktur gedung termasuk dalam kategori desain seismik D sehingga harus mempertimbangkan torsi rencana dan torsi tak terduga.

Selanjutnya, apabila struktur gedung termasuk dalam kategori desain seismik C, D, E, dan F serta memiliki ketidakberaturan torsi 1a dan 1b maka harus mempertimbangkan adanya pembesaran torsi tak terduga. Pada pekerjaan ini, tidak terdapat ketidakberaturan torsi 1a dan 1b pada struktur gedung yang ditinjau sehingga pembesaran torsi tak terduga dapat diabaikan.

2.7 Perancangan Struktur Atap

2.7.1 Perencanaan Gording

Gording merupakan salah satu bagian dari perancangan struktur atap. Gording memiliki fungsi untuk menahan beban dari atap.

2.7.1.1 Data-data Perencanaan Gording

Bentang kuda-kuda	= 7	m
Jarak antar kuda-kuda (J	L) = 2,5	m
Jarak gording	= 1,75	m
Sudut kemiringan atap	= 30°	
Jarak Sag-rod	= 1,667	m
Profil gording	= CNP 1	50 x 65 x 20 x 3,2
Berat Gording	= 7,51	kg/m
Mutu baja	= BJ 37	
Tegangan leleh (fy)	= 240	MPa
Tegangan Ultimit (fu)	= 370	MPa
Massa atap	= 0,5	kN/m²
Beban angin	= 0,25	kN/m²

Selain itu, adapun data dari profil gording dengan ukuran CNP 150 x 65 x 20 x 3,2 bisa dilihat pada tabel di bawah ini.

								U					
Dimension	Thick-	Unit	Section	Cen	ter of	Cent	er of	Mom	ent of	Radi	us of	Mod	lulus
Dimension	ness	Woight	Area Gravity		Gravity Shear Inertia Gyration o		Shear Iner		Gyration		of Se	ection	
HxBxC	t	weight	Α	Cx	Cy	Sx	Sy	I_x	Iy	ix	iy	Z_x	Zy
mm	mm	kg/m	cm^2	cm	cm	cm	cm	cm ⁴	cm ⁴	cm	cm	cm ³	cm ³
150 x 65 x 20	3,2	7,51	9,57	0	2,11	5,1	0	332	54	5,89	2,37	44,3	12,2

Tabel 2.19 Data Profil Gording

2.7.1.2 Perhitungan Gording

Untuk perhitungan gording ada beberapa langkah yang perlu diperhatikan. Berikut ini adalah langkah-langkah dalam perhitungan gording.

- a. Pembebanan Gording
 - Beban Mati (DL)

Beban mati yang bekerja sebagai berikut:

Rerat penutup atan	$-\frac{\text{jarak antar gording}}{X} \times \text{massa atan}$
Berat penatup atap	$- \cos \alpha$
	$=\frac{1,75}{\cos 20} \times 0,5$
	= 1.01 kN/m
Berat sendiri	= 7,51 kg/m
T	= 0,07 kN/m
Berat plafon	= jarak antar gording x massa plafon
JA-	= 1,75 x 0,2
~~~~	= 0,35 kN/m
	1' ' 1 1 1 40 I NI/

Maka, beban mati rencana gording ialah 1,43 kN/m

• Beban Hidup (LL)

Beban hidup yang bekerja diasumsikan beban pekerja pada atap yaitu 1,0 kN

b. Perencanaan Momen Gording

Dalam menentukan momen yang bekerja pada gording searah sumbu 2 dan 3 seperti gambar di bawah ini.

Gambar 2.29 Momen gording searah sumbu 2 dan 3

Berikut persamaan dan hasil perhitungan untuk menentukan momen arah sumbu 3, yaitu:

α



Gambar 2.30 Momen gording searah sumbu 3

$$\mathbf{M}_{3,\mathrm{D}} = \frac{1}{8} \times q_D \times \cos \alpha \times L^2$$

$$= \frac{1}{8} \times 1,43 \times \cos 30 \times 2,5^{2}$$
$$= 0,968 \text{ kNm}$$
$$M_{3,L} = \frac{1}{4} \times q_{L} \times \cos \alpha \times L$$
$$= \frac{1}{4} \times 1 \times \cos 30 \times 2,5$$
$$= 0,541 \text{ kNm}$$

Berikut persamaan dan hasil perhitungan untuk menentukan momen arah sumbu 2, yaitu:



Selanjutnya, menentukan momen berfaktor arah sumbu 2 dan 3 dengan menggunakan persamaan di bawah ini:

$$\begin{split} M_{3,U} &= 1,4M_{3,D} \\ &= 1,4 \ x \ 0,968 \\ &= 1,355 \ kNm \\ M_{3,U} &= 1,2M_{3,D} + 1,6M_{3,L} \\ &= 1,2 \ x \ 1,355 + 1,6 \ x \ 0,541 \\ &= 2,027 \ kNm \end{split}$$

Lalu, pilih nilai momen berfaktor arah sumbu 3 yang terbesar adalah 2,027 kNm.

$$\begin{array}{ll} M_{2,U} &= 1,4M_{2,D} \\ &= 1,4 \; x \; 0,062 \\ &= 0,087 \; kNm \\ M_{2,U} &= 1,2M_{2,D} + 1,6M_{2,L} \\ &= 1,2 \; x \; 0,062 + 1,6 \; x \; 0,104 \\ &= 0,241 \; kNm \end{array}$$

Dan, pilih nilai momen berVfaktor arah sumbu 2 yang terbesar adalah 0,241 kNm.

#### c. Pemeriksaan Tegangan Profil C

Dalam memeriksa tegangan yang bekerja pada profil C  $150 \times 65 \times 20$  dengan ketebalan 3,2 mm dapat menggunakan persamaan di bawah ini.

$$f_b = \frac{M_{3,U}}{\emptyset W_3} + \frac{M_{2,U}}{\emptyset W_2} \le f_y$$
  
=  $\frac{2,027}{0,9 \times 44300} + \frac{0,241}{0,9 \times 12200} \le 240$  MPa  
= 72,8  $\le 240$  MPa

Karena  $f_b \leq f_y$  yaitu 72,8 MPa  $\leq$  240 MPa, maka tegangan profil C memenuhi syarat.

#### d. Pemeriksaan Defleksi Gording

Setelah memeriksa tegangan profil C, selanjutnya memeriksa defleksi dari gording dapat menggunakan persamaan di bawah ini.

$$\delta_{2} = \frac{5}{384} \times \frac{q \cos \alpha L^{4}}{EI_{x}} + \frac{1}{48} \times \frac{P \cos \alpha L^{3}}{EI_{x}}$$

$$\delta_{3} = \frac{5}{384} \times \frac{q \sin \alpha}{EI_{y}} \times \left(\frac{L}{3}\right)^{4} + \frac{1}{48} \times \frac{P \sin \alpha}{EI_{y}} \times \left(\frac{L}{3}\right)^{3}$$

$$\delta_{2} = \sqrt{\delta_{2}^{2} + \delta_{3}^{2}} \leq \frac{1}{f_{y}}$$

Berikut hasil pemeriksaan defleksi gording dimana nilai  $E = 2.10^5$  serta data dari profil C  $I_x = 3320000 \text{ mm}^4$  dan  $I_y = 540000 \text{ mm}^4$ , yaitu:

$$\delta_{2} = \frac{5}{384} \times \frac{1,43.\cos 30.2500^{4}}{2.10^{5}.3320000} + \frac{1}{48} \times \frac{1.\cos 30.2500^{3}}{2.10^{5}.3320000}$$
  
= 0,949 mm  
$$\delta_{3} = \frac{5}{384} \times \frac{1,43.\sin 30}{2.10^{5}.540000} \times \left(\frac{2500}{3}\right)^{4} + \frac{1}{48} \times \frac{1.\sin 30}{2.10^{5}.540000} \times \left(\frac{2500}{3}\right)^{3}$$
  
= 0,042 mm  
$$\delta = \sqrt{0,949^{2} + 0,042^{2}}$$
  
= 0,950 mm

Karena  $\delta \leq \frac{1}{f_y}$  yaitu 0,950 mm  $\leq$  20,8 mm, maka profil defleksi dari gording memenuhi syarat.

#### e. Perencanaan Diameter Sagrod

Berikut ini persamaan dalam menententukan diameter sagrod dimana jumlah sagrod yang direncanakan adalah 4, yaitu:

$$F_{t,D} = n \left(\frac{L}{2} \times q \times \sin \alpha\right)$$
  
=  $4 \left(\frac{2.5}{2} \times 1.43 \times \sin 30\right)$   
= 2.383 kN  
$$F_{t,L} = \frac{n}{2} \times P \times \sin \alpha$$
  
=  $\frac{4}{2} \times 1 \times \sin 30$   
= 1 kN

Selanjutnya, menghitung kombinasi pembebanan dengan persamaan di bawah ini.

 $F_{t,U} = 1,4F_{t,D}$ 

$$= 1,4 \text{ x } 2,383$$
  
= 3,337 kN  
$$F_{t,U} = 1,2F_{t,D} + 1,6F_{t,L}$$
  
= 1,2 x 2,383 + 1,6 x 1  
= 4,460 kN

Dan, pilih nilai kombinasi pembebanan yang terbesar adalah 4,460 kN. Kemudian menghitung luas batang sagrod yang dibutuhkan.

$$A_{sr} = \frac{F_t \times 10^3}{\emptyset F_y}$$
$$= \frac{4,460 \times 10^3}{0,9 \times 240}$$
$$= 20.648 \text{ mm}^2$$

Sehingga dapat diketahui diameter sagrod, yaitu:

$$D_{sr} = \sqrt{\frac{A_{sr} \times 4}{\pi}}$$
$$= \sqrt{\frac{20,648 \times 4}{\pi}}$$
$$= 5,127 \text{ mm}$$

### 2.7.2 Perencanaan Elemen Kuda-Kuda

### 2.7.2.1 Perhitungan Beban Kuda-Kuda

Dalam merencanakan kuda-kuda sebuah atap, perlu menghitung beban kudakuda terlebih dahulu. Dimana berat kuda-kuda adalah 0,089 kN/m, berat gording adalah 0,07 kN/m, berat atap adalah 1,01 kN/m, dan berat plafon adalah 0,35 kN/m.



Gambar 2.32 Perencanaan Beban Kuda-Kuda

- a. Beban P₁
  - Berat sendiri kuda-kuda= $\frac{a}{2}$  x berat kuda-kuda
  - Berat gording • Berat atap  $=\frac{1.75}{2} \times 0,089$  = 0,078 kN = L x berat gording per m'  $= 2,5 \times 0,07$  = 0,175 kN  $= \frac{\left(\frac{a}{2} + b\right)}{\cos \alpha} \times L \text{ x berat atap}$

	$=\frac{\left(\frac{1.75}{2}+1\right)}{\cos 30} \ge 2,5 \ge 1,01$
• Berat planfon	$= (\frac{a}{2} + h) \times L \times \text{ berat platon}$
• Defat planton	$-\binom{1,75}{2}$ + 1) x 2.5 x 0.25
	$=\left(\frac{1}{2}+1\right) \times 2.5 \times 0.55$
	-1,041 KIN
Maka, diperoleh Beban P	1 adalah 7,362 kN.

b. Beban P₂

•	Berat sendiri kuda	-kuda= a x berat kuda-kuda	
		= 1,75 x 0,089	
	- AT	= 0,156  kN	
•	Berat gording	= L x berat gording per m	1

41	= 2,5 x 0,07
$\mathcal{A}$	= 0,175 kN
Berat atap	$=\left(\frac{a}{\cos\alpha}\right) \times L \times berat atap$
	$=\left(\frac{1,75}{\cos 30}\right) \ge 2,5 \ge 1,01$
	= 5,104 kN
• Berat planfon	= a x L x berat plafon
	= 1,75 x 2,5 x 0,35
	= 1,531 kN

Maka, diperoleh Beban P2 adalah 6,966 kN.

c. Beban P₃

• Berat sendiri kuda-ku	uda= a x berat kuda-kuda
	= 1,75 x 0,089
	= 0,156 kN
• Berat gording	= 2  x L x berat gording per m
	$= 2 \times 2,5 \times 0,07$
	= 0,350  kN
• Berat atap	$=\left(\frac{a}{\cos\alpha}\right) \times L \times \text{berat atap}$
	$=\left(\frac{1,75}{\cos 30}\right) \ge 2,5 \ge 1,01$
	= 5,104 kN
• Berat planfon	= a x L x berat plafon
	= 1,75 x 2,5 x 0,35
	= 1,531 kN
Maka dinaralah Dahan	D. adalah 7 1/1 kN

Maka, diperoleh Beban P3 adalah 7,141 kN.

# 2.7.2.2 Perhitungan Beban Angin

Beban angin ditentukan oleh koefisien angin tiup  $(C_{ti})$  dan angin isap  $(C_{is})$  yang terdapat seperti pada gambar di bawah ini.

Tabel 2.20 Nilai C_{ti} dan C_{is}

	Di sisi angin datang							Di sisi angin pergi				
				Sudut	, θ (dera	njat)				Sudut, 0 (derajat)		
Arah Angin	h/L	10	15	20	25	30	35	45	≥ 60°	10	15	≥ 20
Tegak lurus	≤0,25	-0,7 -0,18	-0,5 0,0ª	-0,3 0,2	-0,2 0,3	-0,2 0,3	0,0ª 0,4	0,4	0,010	- 0,3	- 0,5	- 0,6
bubungan	0,5	-0,9 -0,18	-0,7 -0,18	-0,4 0,0ª	-0,3 0,2	-0,2 0,2	-0,2 0,3	0,0ª 0,4	0,010	- 0,5	- 0,5	- 0,6
θ≥10°	≥ 1,0	-1,3⁵ -0,18	-1,0 -0,18	-0,7 -0,18	-0,5 0,0ª	-0,3 0,2	-0,2 0,2	0,0ª 0,4	0,010	- 0,7	- 0,6	- 0,6
Arah Angin	h/L	Jarak tepi si	horizon si angin	tal dari datang		Cp						

Berikut ini perhitungan beban-beban angin yang terjadi pada atap Pembangunan Panti Wredha dimana nilai  $C_{ti} = 0,3$  dan  $C_{is} = -0,6$  dan beban angin  $(Q_W) = 0,25$  kN/m², yaitu:

a.	Beban W ₁	$= \frac{\left(\frac{a}{2}+b\right)}{\cos \alpha} \ge C_{ti} \ge L \ge Q_W$
b.	Beban W ₂	$= \frac{\left(\frac{1.75}{2} + 1\right)}{\cos 30} \ge 0.3 \ge 2.5 \ge 0.25$ = 0,406 kN = $\left(\frac{a}{2} + b\right) \ge C_{ti} \ge 2.5 \ge 0.25$ = $\left(\frac{1.75}{2} + 1\right) \ge 0.3 \ge 2.5 \ge 0.25$
c.	Beban W ₃	= 0.379  kN = $\frac{1}{2} \left( \frac{a}{2} + b \right) \ge C_{ti} \ge L \ge Q_W$ = $\frac{1}{2} \left( \frac{1.75}{2} + 1 \right) \ge 0.3 \ge 2.5 \ge 0.25$
d.	Beban W4	= 0,189  kN = $\frac{1}{2} \left( \frac{a}{\cos \alpha} \right) \times C_{is} \times L \times Q_W$ = $\frac{1}{2} \left( \frac{1,75}{\cos 30} \right) \times (-0,6) \times 2,5 \times 0,25$
e.	Beban W ₅	$= -0,379 \text{ kN}$ $= \left(\frac{a}{\cos \alpha}\right) \times C_{is} \times L \times Q_W$ $= \left(\frac{1,75}{2}\right) \times (-0.6) \times 2.5 \times 0.25$
f.	Beban W ₆	$= -0.758 \text{ kN}$ $= \frac{\left(\frac{a}{2} + b\right)}{\cos \alpha} \times C_{is} \times L \times Q_{W}$ $= \frac{\left(\frac{1.75}{2} + 1\right)}{\cos 30} \times (-0.6) \times 2.5 \times 0.25$ $= 0.812 \text{ kN}$



Gambar 2.33 Beban angin dari kiri joint



### 2.8 Perancangan Pelat Lantai

#### 2.8.1 Perencanaan Beban Pelat Lantai

Dalam perencangan pelat lantai, terlebih dahulu kita merencanakan beban pelat dimana pembebanan diatur sesuai dengan fungsi ruangan dan beban hidup. Berikut ini beberapa beban yang mempengaruhi pelat lantai, antara lain:

- a. Beban mati ( $Q_{DL}$ )
  - Beban sendiri = tebal pelat x berat volume
    - = 0,12 m x 24 kN/m³
    - = 2,88 kN/m²

- Beban pasir = tebal pasir x berat volume pasir

- = 0,05 m x 16 kN/m³
- = 0,80 kN/m²
- Beban spesi = tebal spesi x berat volume spesi
  - = 0,03 m x 22 kN/m³

= 0,66 kN/m²

- Keramik = tebal keramik x berat volume keramik
  - = 0,01 m x 24 kN/m³

$$= 0,24$$
 kN/m²

- Plafon dan penggantung = 0,20 kN/m²
- Instalasi MEP = 0,25 kN/m²

Maka, total beban mati pada pelat lantai adalah 5,03 kN/m².

b. Beban hidup ( $Q_{LL}$ ) = 4,79 kN/m²

Setelah menentukan perencanaan beban mati dan beban hidup, kemudian kombinasi beban  $1,2Q_{DL} + 1,6Q_{LL} = (1,2 \times 5,03) + (1,6 \times 4,79) = 13,7 \text{ kN/m}^2$ .

# 2.8.2 Perencanaan Desain Pelat Lantai

Dalam perhitungan perencanaan desain pelat lantai akan dilakukan pada pelat tipe A, dimana pelat lantai tipe lainnya dilakukan dengan perhitungan yang sama dengan ketebalan pelat lantai adalah 120 mm. Berikut ini diketahui data pelat dan tulangan, antara lain:

-	Dimensi balok induk	= 300 mm	x 600 mm
-	Dimensi balok anak	= 200 mm	x 400 mm
-	Dimensi kolom	= 600 mm	x 600 mm
-	Mutu beton kolom dan balok ( $f_{cb}$	) = 28	MPa
-	Mutu beton pelat ( $f_{cs}$ ')	= 28	MPa
-	Mutu baja tulangan $(F_y)$	= 420	MPa
-	Modulus elastisitas beton $(E_{cb})$	= 24870,0	62 MPa
-	Modulus elastisitas pelat ( $E_{cs}$ )	= 24870,0	62 MPa
-	Koefisien <i>F</i> _y	= 0,8	MPa
-	Tebal selimut $(t_s)$	= 30	mm
-	Diameter tulangan lentur	= 10	mm
-	Diameter tulangan susut	= 8	mm

### 2.8.3 Perhitungan Penulangan Pelat Lantai

1 37

**T** 1

Dalam perhitungan penulangan pelat lantai ini akan ditinjau pada perhitungan pelat lantai A sebagai contoh perhitungan pelat lantai lainnya:

1. Tulangan Lentur arah X  

$$Mn_{x} = \frac{Mu_{x}}{\varphi} = \frac{8,88953 \times 10^{6}}{0.9}$$

$$= 9877256,667 Nmm$$

$$Rn = \frac{Mn_{x}}{b \times d^{2}} = \frac{89877256,667}{1000 \times 85^{2}}$$

$$= 1,3670943$$

$$m = \frac{f_{y}}{0.85 \times f'c} = \frac{420}{0.85 \times 24}$$

$$= 17,64705882$$

$$\rho = \left(\frac{1}{1m}\right) \times \left(1 - \sqrt{1 - \left(\frac{2 \times m \times Rn}{fy}\right)}\right)$$

$$= \left(\frac{1}{1 \times 17,64705882}\right) \times \left(1 - \sqrt{1 - \left(\frac{2 \times 17,64705882 \times 1,3670943}{420}\right)}\right)$$

$$= 0,0034$$

$$\rho_{min} = 0,0014$$

$$\rho_{pakai} = 0,002$$

$$Asperlu= \rho_{pakai} x b x d$$

$$= 0,002 x 1000 x 85$$

$$= 170 mm^{2}$$

$$s_{max} = 3 x tebal pelat = 3 x 120$$

$$= 360 mm$$

 $S_{\text{pakai}} = 400 \text{ mm}$   $As_{\text{terpasang}} = \left(\frac{1000}{s_{pakai}}\right) \times \left(\frac{1}{4} \times \pi \times d_{tulangan}^2\right)$   $= \left(\frac{1000}{400}\right) \times \left(\frac{1}{4} \times \pi \times 10^2\right)$  = 196,3495408 mm

Maka dipasang tulangan pada pelat lantai A adalah D10-400.

Pelat		Tulangan Arah X														
	dx	Mnx	Dn	m	ρ	ρ	ρ	As	s s	s	As	Din	CEK			
			ĸn			min	nin   pakai	periu		pakai	terpasang		LEK			
	mm	N.mm					1	mm	mm	1	mm		_			
Α	85	9877256,667	1,3671	17,6471	0,0034	0,0014	0,002	170	360	400	196,3495	D	10	-	400	OK
В	85	5895166,667	0,8159	17,6471	0,0020	0,0014	0,002	170	360	400	196,3495	D	10	-	400	OK
С	85	5990250,000	0,8291	17,6471	0,0020	0,0014	0,002	170	360	400	196,3495	D	10	-	400	OK

# Tabel 2.21 Tulangan Lentur Arah X

Tabel 2.22 Tulangan Lentur Arah Y

Pelat				Tulangan Aran Y												
	dx	Mnx	Rn	m	ρ	ρ min	ρ pakai	As perlu	s	s	As terpasang	Di		pasang		CEK
	mm	N.mm	]					mm	mm	ракат	mm		tula			
Α	75	14452666,667	2,5694	17,6471	0,0065	0,0014	0,002	150	360	400	196,34954	D	10	-	400	OK
В	75	13311666,667	2,3665	17,6471	0,0059	0,0014	0,002	150	360	400	196,34954	D	10	-	400	OK
C	75	11124750,000	1,9777	17,6471	0,0049	0,0014	0,002	150	360	400	196,34954	D	10	-	400	OK

# Tabel 2.23 Tulangan Susust Arah X

		Tulangan Arah X														
Pelat	1							As			As					
	dx	Minx	Rn	m	ρ	ρ	ρρ		S S		terpasang	Dipasang tulangan			CEK	
	mm	N.mm				min	рака	mm	mm	ракат	mm					
Α	86	9877256,667	1,3355	17,6471	0,0033	0,0014	0,002	172	600	400	196,3495	D	8	-	400	OK
В	86	5895166,667	0,7971	17,6471	0,0019	0,0014	0,002	172	600	400	196,3495	D	8	1	400	OK
С	86	5990250,000	0,8099	17,6471	0,0020	0,0014	0,002	172	600	400	196,3495	D	8	I	400	OK

# Tabel 2.24 Tulangan Susut Arah Y

Pelat						Tula	ngan Ai	ah Y									
	t dx	dx Mnx Rn	Rn	m	ρ	ρ	ρ pakai	As perlu	s	S maltai	As terpasang	Dipasang		ıg	CEK		
	mm	N.mm	1			mm		mm	mm	рака	mm		tula	inga	n		
Α	78	14452666,667	2,3755	17,6471	0,0060	0,0014	0,002	156	600	400	196,3495	D	8	-	400	OK	
В	78	13311666,667	2,1880	17,6471	0,0055	0,0014	0,002	156	600	400	196,3495	D	8	-	400	OK	
C	78	11124750,000	1,8285	17,6471	0,0045	0,0014	0,002	156	600	400	196,3495	D	8	-	400	OK	