CHAPTER II UPPER STRUCTURE PLANNING

2.1 Preliminary Design

The planning work of the Assalafiyyah Islamic Boarding School building in the City of Yogyakarta, especially for structural work components using steel material for the main structure (slab, beams, and columns). The lower structure of the Assalifayyah Islamic Boarding School building uses reinforced concrete sloof beams and pile foundations. This building is planned to be divided into two parts with dilatation to avoid torsion in the building. Assallafiyyah Islamic Boarding School, Sleman Regency, Yogyakarta, consist of 2 main buildings which have 3 story level each and a 4-meter height each story. This building consists of several structural components which is beams, columns, and slab. This building has main structural columns with a size of $500 \times 500 \mathrm{~mm}$. In addition, this building has 14 types of main beams with a size of $400 \times 200 \mathrm{~mm}$ (BI 1 Dorm), a size of $350 \times 200 \mathrm{~mm}$ (BI 2 Dorm, BI 2 Edu, and BI 3 Edu), a size of 300×200 mm (BI 3 Dorm and BI 6 Edu), size $250 \times 200 \mathrm{~mm}$ (BI 4 Dorm, BI 4 Edu, BI 7 Edu, and BI 8 Edu), size $200 \times 200 \mathrm{~mm}$ (BI 5 Dorm, BI 5 Edu and BI 9 Edu). There are 8 types of support beam in this building with a size of $250 \times 200 \mathrm{~mm}$ (BA 1 Dorm, BA 3 Dorm, BA 1 Edu and BA 5 Edu), size $350 \times 200 \mathrm{~mm}$ (BA 2 Dorm, BA 2 Edu and BA 3 Edu) and size $400 \times 250 \mathrm{~mm}$ (BA 4 Edu).

2.1.1 Planning Regulations and Standards

Some of the planning rules and standards used in this work are as follows:

1. Minimum Load for Planning of Buildings and Other Structures (SNI 1727:2013)
2. Earthquake Resistance Planning Standards for Building Structures (SNI 1726:2019)
3. Procedures for Planning Steel Structures for Buildings (SNI 1729:2015)
4. Procedure for Calculation of Concrete Structures for Buildings (SNI 2847:2019)

2.1.2 Structural Material Specification

The specifications of the materials used in this work are as follows:

1. Steel Profile

- Profil steel we use is BJ 37 with yield stress, fy $=240 \mathrm{MPa}$ and ultimate voltage, $\mathrm{fu}=370 \mathrm{MPa}$
- Modulus of elasticity of steel, $\mathrm{Es}=200.000 \mathrm{MPa}$

2. Concrete

- The compressive strength of concrete at the age of 28 days fc' $=25 \mathrm{MPa}$ (bottom structure)
- Modulus of elasticity of concrete $\mathrm{Ec}=4700 \sqrt{ } \mathrm{fc}^{\prime}=23500 \mathrm{MPa}$

3. Reinforciement steel

- Reinforcement steel with $\mathrm{D}>12 \mathrm{~mm}$, deformed steel with yield stress, $\mathrm{fy}=$ 420 MPa is used
- Reinforcement steel with $\mathrm{D} \leq 12 \mathrm{~mm}$, plain reinforcing steel is used with yield stress, fy $=235 \mathrm{MPa}$
- Steel's modulus of elasticity, Es $=200.000 \mathrm{Mpa}$

2.2 Interpretation of Soil Data and Site Class Purchases

2.2.1 Define Site Classification (SA-SF)

The characteristics of the project site, especially those related to geotechnical aspects, must be identified properly in the planning process through site investigation activities. The project site investigation activities can be in the form of soil investigations in the field and in the laboratory. Furthermore, the results of the investigation of the

Site Class	$\overline{\boldsymbol{V} \boldsymbol{s}}$ (m/s)	\bar{N} or $\overline{N c h}$	$\overline{S u}(\mathbf{k P a})$
SA (batuan keras)	>1500	N/A	N/A
SB (batuan)	750 sampai 1500	N/A	N/A
SC (tanah keras, sangat padat dan batuan lunak)	350 sampai 750	>50	≥ 100
SD (tanah sedang)	175 sampai 350	15 sampai 50	50 sampai 100
SE (tanah lunak)	<175	<15	<50
	Atau setiap profil tanah yang mengandung lebih dari 3 m tanah dengan karakteristik sebagai berikut : 1. Indeks plastisitas, $\mathrm{PI}>20$ 2. Kadar air, $w \geq 40 \%$ 3. Kuat geser niralir $\overline{\mathrm{Su}}<25 \mathrm{kPa}$		
SF (tanah khusus, yang membutuhkan investugasu geoteknik spesifik dan analisis respon spesifik)	Setiap profil lapisaan tanah yang memiliki salah satu atau lebih dari karakteristik berikut: - Rawan dan berpotensi gagal atau runtuh akbiat beban gempa seperti mudah likuifaksi, lempung sangat sensitive, tanah tersementasi lemah - Lempung sangat organic dan/ atau gambut (ketebalan $\mathrm{H}>3$ m) - Lempung berplastisitas sangat tinggi (ketebalan $\mathrm{H}>7,5 \mathrm{~m}$ dengan indeks plastisitas, $\mathrm{PI}>75$) - Lapisan Lempung lunak/ setengah teguh dengan ketebalan $\mathrm{H}>35 \mathrm{~m}$ dengan $\overline{S u}<50 \mathrm{kPa}$		

project site will be used as a basis for determining site classification. In SNI 1726:2019 the site classification is divided into 6 types, namely SA (hard rock), SB (rock), SC (hard soil), SD (medium soil), SE (soft soil), and SF.

Based on the results of the N-SPT test conducted in the field, the project location is included in the SD location classification (medium soil). Complete N-SPT data can be seen in the soil investigation report.

2.2.2 Determine the site coefficients (Fa and Fv)

To determine the spectral response of the MCER earthquake acceleration mapped on the ground surface, an amplification factor is needed for a period of 0.2 seconds (Fa) and 1 second (Fv). The amplification factor is determined based on the location class and ground acceleration parameters. The amplification factor in the 0.2 second (Fa) period is determined by the location class and the MCER earthquake acceleration spectral response parameter is mapped for the 0.2 second (Ss) period. While the amplification factor in a period of 1 second (Fv) is determined by the site class and spectral response parameters The MCER earthquake acceleration is mapped for a period of 1 second (S1).

Determination of site coefficients (Fa and Fv) based on Tables 2.2 and 2.3

Site Class	Parameter respons spektral percepatan gempa maksimum yang dipertimbangkan risiko-tertarget (MCER) terpetakan pada periode pendek, $T=0,2$ detik, \mathbf{S}_{1}					
	$\mathbf{S}_{\mathbf{1}} \leq \mathbf{0 , 2 5}$	$\mathbf{S a}_{\mathbf{1}}=\mathbf{0 , 5}$	$\mathrm{S}_{\mathbf{1}}=\mathbf{0 , 7 5}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{1 , 0}$	$\mathbf{S}_{1}=\mathbf{1 , 2 5}$	$\mathrm{S}_{1} \geq 1,5$
SA	0,8	0,8	0,8	0,8	0,8	0,8
SB	0,9	0,9	0,9	0,9	0,9	0,9
SC	1,3	1,3	1,2	1,2	1,2	1,2
SD	1,6	1,4	1,2	1,1	1,0	1,0
SE	2,4	1,7	1,3	1,1	0,9	0,8
SF	$S S^{(a)}$					

Table 2. 2 Site Coefficient, Fa (SNI 1726:2019)

Notes: (a) $S S=$ Site requiring specific geotechnical investigation and site-specific response analysis, see 0

Site Class	Parameter respons spektral percepatan gempa maksimum yang dipertimbangkan risiko-tertarget (MCER) terpetakan pada periode 1 detik, S_{1}					
	$\mathbf{S}_{\mathbf{1}} \leq \mathbf{0 , 2 5}$	$\mathrm{S}_{1}=\mathbf{0 , 5}$	$\mathrm{S}_{\mathbf{1}}=\mathbf{0 , 7 5}$	$\mathrm{S}_{1}=\mathbf{1 , 0}$	$\mathrm{S}_{\mathbf{1}}=\mathbf{1 , 2 5}$	$\mathrm{S}_{1} \geq \mathbf{1 , 5}$
SA	0,8	0,8	0,8	0,8	0,8	0,8
SB	0,8	0,8	0,8	0,8	0,8	0,8
SC	1,5	1,5	1,5	1,5	1,5	1,4
SD	2,4	2,2	2,0	1,9	1,8	1,7
SE	4,2	3,3	2,8	2,4	2,2	2,0
SF	$S S^{(a)}$					

Table 2. 3 Site Coefficient, Fv (SNI 1726:2019)
Note: (a) SS = Site requiring specific geotechnical investigation and site-specific response analysis, see 0

Based on Table 2.2 and Table 2.3, for the SD site class (medium soil) the values of Fa and Fv are 1.07524 and 1.8125 , respectively. Furthermore, the values of Fa and Fv are used to determine the parameters of the acceleration response spectrum in the short period (SMS) and 1 second period (SM1) which can be calculated using the following equation:
$\mathrm{SMS}=\mathrm{Fa} \times \mathrm{Ss}=1.1418 \mathrm{~g}$

SM1 $=$ Fv x S1 $=0.8836$

2.2.3 Calculating design acceleration parameters (SDS dan SD1)

In the previous step, the SMS and SM1 values have been obtained. Furthermore, based on the SMS and SM1 values, the design spectral acceleration parameters for the short 0.2 second period (SDS) and 1 second period (SD1) need to be determined to construct the spectral response curve. SDS and SD1 values are calculated using the following equation:
$S D S=2 / 3 \times S M S=0.761 g$
$S D 1=2 / 3 \times S M 1=0.589 g$

2.2.4 Constructing the design spectrum response curve

Based on the response spectral parameters calculated in the previous stage, the response spectral design curve can be structured as follows (see Figure 2.4 and Figure 2.5):

Figure 2. 1 Response Spectrum Design Curve

T	Description	5 a	Description	T	Dexietiag	5a	Description
0,00	0	0,304	0.45 ds	3, 38	Ts+2,6	0,174	Ss = SD1/T
0.16	To	0,761	Sta	3.48	T $4+2,7$	0,169	$S_{2 a}=501 / T$
0,78	Ts	0,761	Sta	3,58	Tst2, 8	0,165	$S_{e}=5.01 / T$
0,78	Ts*0	0,755	$5 a=301 / \mathrm{T}$	3,68	Ts $+2,9$	0,160	Sa $=$ SD1/T
0,88	Tı $+0,1$	0,669	$5 a=501 / T$	3,78	Tst3	0,156	Se $=501 / \mathrm{T}$
0,98	Ts+0,2	0,601	$5 a=501 / T$	3.88	Ts 3,1	0,152	$5 a=5 D 1 / T$
1,08	Ts+0,3	0,545	$5 a=501 / T$	3.98	Ts+5,2	0,143	Se $=501 / T$
1,18	Ts+0,4	0,499	$5 a=501 / T$	4,06	Ts+3,3	0,144	Se 5 S01/T
1,28	Ts+0,5	0,460	$5 a=301 / \mathrm{T}$	4.15	Ts+3,4	0,141	Sa $=$ SD1/T
1,38	Ts+0,6	0,427	$53=501 / \mathrm{T}$	4,28	Ts $+3,5$	0,138	$S_{0}=501 / T$
1,48	Ts $+0,7$	0,398	$54=501 / T$	4,38	Ts 4 3,5	0,134	Sax $=5 \mathrm{D} 1 / \mathrm{T}$
1,58	Tst0, 8	0,373	$5 a=501 / \mathrm{T}$	4,48	Ta+3,7	0,131	$\mathrm{Sa}=\mathrm{SD}^{\text {S }}$ / $/ T$
1.68	Ts+0,9	0,351	$5 a=301 / T$	4,58	Ts $+1,8$	0,129	Se $=$ SD1/T
1,75	Ts+1	0,331	$5 a=501 / \mathrm{T}$	4,68	Ts+3,9	0,126	Se $=$ SD1/T
1.88	Ts+1,1	0,313	$3 \mathrm{a}=501 / \mathrm{T}$	4.78	Tst4	0,123	$5 \mathrm{~s}=5 \mathrm{DL} / \mathrm{T}$
1,98	Ts+1,2	0.297	$5 a=501 / \mathrm{T}$	4.88	Ts+4,1	0,121	$S_{8}=5 \mathrm{DL} 1 / \mathrm{T}$
2.08	Ts+1,3	0,283	$5 a=501 / T$	4.38	Ts $+4,2$	0,118	Sax = SD1/T
2,18	Ts +1.4	0,270	Say $=301 / \mathrm{T}$	5,08	Ts+4,7	0,116	$S a=5 D 1 / T$
2,28	Ts +1.5	0,238	$5 a=501 / T$	5.18	Tı+4,4	0,114	$S_{8}=501 / T$
2,38	Ts+1,6	0,247	Sa $=301 / T$	5.28	Ts $+4,5$	0,112	$S_{0}=501 / T$
2,48	Ts $+1,7$	0,238	$53=501 / \mathrm{T}$	5.38	Ts $+4,5$	0,109	Sas $=501 / T$
2,58	Ts+1.8	0,228	$54=501 / T$	5.48	T $3+4.7$	0,107	Sa $=501 / \mathrm{T}$
2,63	Ts $+1,9$	0,220	Sa $=301 / T$	5.58	Ty+4, 3	0,105	Saz $=$ SD1/T
2.78	Ts+2	0,212	$52=501 / \mathrm{T}$	5,68	Ts $+4,9$	0,104	$S_{s a}=S_{\text {S }} S_{1 / T}$
2,88	T $\mathrm{P}+2,1$	0,205	$5 e=301 / T$	5,78	Ts+5	0,102	Se $=$ SDI/T
2,98	Ts+2,2	0,198	5at $=501 / T$	5.88	Te+5,1	0,100	Se $=5 \mathrm{DD1/T}$
3,03	T $3+2,3$	0,191	5ay $50.501 / T$	5.98	Ts $+5,2$	0,098	Se $=501 / \mathrm{T}$
3,18	Ts+2,4	0,185	$50=501 / T$	6.00	Ts $5+5.22$	0,039	Se $=5 \mathrm{SD} 1 / \mathrm{T}$
3,28	Ts +2.5	0,180	$50=501 / T$	6.09	Ts+5,3	0,097	Se 0 SD1/T

Table 2. 4 Period Values and Response Spectrum Acceleration

2.2.5 Define seismic design category (KDS: A - F)

The designed structure must be determined to be included in the seismic design category (KDS) in accordance with Article 6.5 of SNI 1726:2019. In Figure 2.6 and Figure 2.7 are presented seismic design categories based on the relationship between SDS and SD1 with KDS.

Nilai $\boldsymbol{S}_{\boldsymbol{D} \boldsymbol{S}}$	Kategori risiko	
	I atau II atau III	IV
$S_{D 1}<0,067$	A	A
$0,067 \leq S_{D 1}<0,133$	B	C
$0,133 \leq S_{D 1}<0,20$	C	D
$0,20 \leq S_{D 1}$	D	D

Table 2.5 Seismic Design Categories based on values SDS (SNI 1726:2019)

Nilai $\boldsymbol{S}_{\boldsymbol{D} \mathbf{1}}$	Kategori risiko	
	I atau II atau III	IV
$S_{D S}<0,167$	A	A
$0,167 \leq S_{D 1}<0,33$	B	C
$0,33 \leq S_{D 1}<0,50$	C	D
$0,50 \leq S_{D 1}$	D	D

Table 2. 6 Seismic Design Categories based on Values SD1 (SNI 1726:2019)
In this work, based on Table 2.6 and Table 2.7, the seismic design categories (KDS) D.

2.2.6 Define system and structure parameters ($\mathrm{R}, \mathrm{Cd}, \boldsymbol{\Omega} \mathbf{0}$)

The seismic force resisting structural system is permitted to be set differently on each of the orthogonal axes of the structure. Parameter R, Cd, Ω o for each type of seismic force resisting structural system is presented in Table 2.7.

Tabel 12 - Faktor R, C_{d}, dan Ω_{0} untuk sistem pemikul gaya seismik

Slatem pemikul gaya salsmik	Koeflislen modifikasl respons, R^{*}	Faktor kuat lebln glatem, $\Omega_{\mathrm{e}}{ }^{\mathrm{b}}$	Faktor pembesaran defleksl. $C_{d}{ }^{=}$	Batasan slstem atruktur dan batasan tinggl atruktur, $h x(\mathrm{~m})^{\text {d }}$ Kategorl desalin selemik				
				B	C	D*	E*	F^{+}
A. Slstem dinding penumpu								
1. Dinding peser betan bertulanakhusus ${ }^{\text {a }}$	5	21/2	5	TB	TB	48	48	30
2. Dinding geser beton bertulang biasa ${ }^{3}$	4	2\%/	4	TB	TB	TI	TI	TI
3. Dinding geser beton polos didetail ${ }^{3}$	2	2\%/	2	TB	TI	TI	TI	TI
4. Dinding geser beton polos biasa ${ }^{\text {a }}$	11/8	21/8	11/2	TB	TI	TI	TI	TI
5. Dinding geser pracetak menengahe	4	2%,	4	TB	TB	12^{\prime}	12^{\prime}	12^{\prime}
6. Dinding peser pracetak biasa ${ }^{\text {a }}$	3	2\%	3	TB	TI	TI	TI	TI
7. Dinding geser batu bata bertulang khusus	5	2\%	$31 / 2$	TB	TB	48	48	30
8. Dinding peser batu bata bertulang menengah	31/2	21/2	2\%	TB	TB	TI	TI	TI
9. Dinding geser batu bala bertuiang biasa	2	2\%	1\%/4	TB	48	TI	TI	TI
10. Dinding peser batu bata polos didelai	2	2\%	13/4	TE	TI	TI	TI	TI
11. Dirding geser batur bata polos biasa	11/2	21/2	11/4	TB	TI	TI	TI	TI
12. Dinding geser batu bata prategang	11/2	21/2	1\%/4	TB	T1	TI	TI	TI
13. Dinding geser batu bata ringan (AAC) bertulang biasa	2	21/2	2	TB	10	TI	TI	TI
14. Dinding geser batu tala ringan (AAC) polos biasa	11/2	21/2	11/2	TE	TI	Ti	TI	TI
15. Dinding rangka ringan (kayu) diapisi dengan panel struktur kaypu yang ditujukan untuk tahanan geser, atau dengan iembaran baja	61/2	3	4	TB	TB	20	20	20
16. Dinding rangka ringan (baja canai dingin) yang dilapisi dengan panel siruktur kayu yang ditujukan uniuk tahanan geser, atau dengan lembaran baja	61/2	3	4	TB	TB	20	20	20
17.Dinding rangka ringan dengan panel geser dari semua material lainnya	2	21/2	2	TB	TB	10	TI	TI
18. Sistern dinding rangka ringan (baja canai dingin) manggunakan bresing strip datar	4	2	31/2	TB	TB	20	20	20
B. Slatem rangka bangunan								
1. Rangka baja dengan tresing eksentris	8	2	4	TB	TB	48	48	30
2. Rangka baja dengan bresing korisentris khusus	8	2	5	TB	TB	48	48	30
3. Rangka baja dengan tresing konsentris biasa	$31 / 4$	2	31/4	TB	TB	10	10	T
4. Dinding peser beton bertulana khusus ${ }^{\text {h }}$	6	2\%	5	TB	TB	48	48	30
5. Dinding geser beton bertulang biasa ${ }^{3}$	5	2\%	41/2	TB	TB	TI	TI	TI
6. Dinding geser beton polos detail ${ }^{3}$	2	2\%/2	2	TB	TI	TI	TI	TI
7. Dinding geser beton polos biasa ${ }^{\text {a }}$	11/8	2\%	1/2	TB	TI	TI	TI	TI
8. Dinding geser pracetak menangah	5	21/2	41/2	TB	TB	12^{\prime}	$12{ }^{\text {f }}$	12'
9. Dinding geser pracelak biasa?	4	21/2	4	TB	TI	TI	TI	TI
10. Rangka baja dan beton komposit dengan beresing eksentris	8	2	4	TB	TB	48	48	30
11.Rangka baja dan beton komposit dengan bresing korisentris khusus	5	2	4/2	TB	TB	48	48	30
12.Rangka baja daan beton komposit dengan bresing biasa	3	2	3	TB	TB	TI	Tl	TI
13. Dinding geser pelat baja dan betan kamposit	61/2	2\%	51/2	TB	TB	48	48	30
14.Dinding peser baja dan beton komposit khusus	6	2\%/	5	TB	TB	48	48	30
15. Dinding geser baja dan beton komposit biasa	5	2\%	41/2	TB	TB	TI	TI	TI
16. Dinding geser batu bata bertulang khusus	51/2	2\%	4	TB	TB	48	48	30
17.Dinding geser batu bata bertulang menengah	4	21/2	4	TB	TB	TI	TI	TI
18. Dinding geser batu bata bertulang biasa	2	21/2	2	TB	48	TI	TI	TI

Table 2. $7 R, C d, \Omega o$ for earthquake resisting system

Tabel 12 - Faktor R, C_{i}, dan Ω_{0} untuk sistem pemikul gaya seismik (lanjutan)

Slatem pemikul gaya salsmik	Koeflalan modifikasal respons, R^{*}	Faktor kuat labln alatem, $\Omega{ }^{b}$	Faktor pembesaran defleksl, $C_{6}=$	Batasan alatem struktur dan batasan tinggl struktur, $h_{n}(\mathrm{~m})^{d}$				
				Kategorl deasin aslamik				
				B	C	D^{*}	E^{*}	F
19. Dinding geser batu bata polos tidatai	2	21/8	2	TB	TI	TI	TI	TI
20. Dinding peser batu bata polos biasa	11/2	21/2	11/4	TB	TI	TI	TI	TI
21.Dinding geser batu bata prategang	11/2	21/2	$11 / 4$	TB	TI	TI	TI	TI
22. Dinding rangka ringan (kayu) yang diapisi dengan panel struktur kayu yang tamaksudkan untuk tahanam geser	7	21/2	41/2	TB	TB	22	22	22
23.Dinding rangka ringan (baja carai dingin) yang dilapisi dengan paned struktur kayu yang dimaksudkan untuk tahanan geser, atau dengan lembaran baja	7	21/2	4\%	TB	TB	22	22	22
24.Dinding rangka ringan dengan panel geser dari semta material lainnya	21/3	$21 / 2$	$21 / 2$	TB	TB	10	TB	TB
25.Rangka baja dengan bresing terkekang terhadap tekuk	8	21/2	5	TB	TB	48	48	30
26. Dinding geser pelat baja khusus	7	2	6	TB	TB	48	48	30
C. Slatem rangka pemikul momen								
1. Rangka baja pernikul momen khusus	8	3	51/2	TB	TB	TB	TB	TB
2. Rangka batang taja permikul momeri khusus	7	3	5\%/	TB	TB	48	30	TI
3. Rangka baja perniku/ momen menengah	41/2	3	4	TB	TB	10^{*}	Ti	T ${ }^{*}$
4. Rangka baja pernikul momen biasa	31/2	3	3	TB	TB	T ${ }^{\prime}$	Ti'	Tr
5. Rangka beton bertulang pemkul mamen khusus ${ }^{\text {m }}$	8	3	5\%/2	TB	TB	TB	TB	TB
6. Rangka beton bertilang perrikul mamen menengah	5	3	41/2	TB	TB	TI	TI	TI
7. Rangka beion beftulang pernikul marnen biasa	3	3	2\%	TB	TI	TI	TI	TI
8. Rangka baja dan betan kamposit pemikul mamen khusus	8	3	5\%	TB	TB	TB	TB	TB
9. Rangka bafa dan beton komposit pemikul mamen menengah	5	3	41/2	TB	TB	TI	TI	TI
10. Rangka baja dan beton kamposit terkekang parsial pernikul mamen	6	3	5\%/2	43	48	30	TI	TI
11. Rangka baja dan beton kamposit pervikL/ mamen biasa	3	3	2\%	TB	TI	T1	TI	T1
12. Rangka baja canai dingin pernikul momen khusus dergan pembautann	31/6	3°	31/2	10	10	10	10	10
D. Sletem ganda dengan rangka pemikul momen khusus yang mampu menahan palling sedlkut 25% gaya selemik yang ditatapkan								
1. Rangka baja dengan bresing eicsentris	8	21/s	4	TB	TB	TB	TB	TB
2. Rangka baja dengan bresing konsentris khusus	7	21/8	5\%	TB	TB	TB	TB	TB
3. Dinding geser beton bertulang khusus ${ }^{\text {ph }}$	7	21/8	5\%/	TB	TB	TB	TB	TB
4. Dinding peser beton bertulang biasa ${ }^{3}$	6	21/2	5	TB	TB	TI	TI	TI
5. Rangka baja dan beton komposit dengan bresing eksentris	8	21/2	4	TB	TB	TB	TB	TB
6. Rangka baja dan beton komposil dengan bresing konserifie khusus	6	21/2	5	TB	TB	TB	TB	TB
7. Dinding gaser pelat baja dan beton komposit	$71 / 2$	21/2	6	TB	TB	TB	TB	TB
8. Dinding peser bajar dan beton komposit khusus	7	21/2	6	TB	TB	TB	TB	TB
9. Dinding gaser baja darn beton komposit biasa	6	21/2	5	TB	TB	TI	TI	TI
10. Dinding geser batu bata bertulang khusus	51/2	3	5	TB	TB	TB	TB	TB
11.Dinding geser batu bala bertulang menengah	4	3	31/2	TB	TB	TI	TI	TI
12.Rangka baja dengan bresing terkekang terhadap tekuk	8	21/2	5	TB	TB	TB	TB	TB
13. Dinding geser pelat baja khusus	8	21/2	61/2	TB	TB	TB	TB	TB

Figure 2. $8 R, C d, \Omega o$ for earthquake resisting system table (continuous)

Tabel 12 - Faktor R, C_{d}, dan Ω_{0} untuk sistem pemikul gaya seismik (lanjutan)

Slstem pemikul gaya selamik	Koertalen modifikasi respons, R^{*}	Faktor kuat leblh slatem, $\Omega 0^{\circ}$	Faktor pemberaran defieksl, $C e^{=}$	Batasan slatem atruktur dan Datasan tinggl atruktur, $h *(\mathrm{~m})^{d}$ Kategori desaln selsmik				
				B	C	D*	E*	F^{*}
E. Slatem ganda dengan rangka pemikul momen menengah mampu menahan palling sedilit 25% gaya selamik yang ditetapkan								
1. Rangka baja dengan bresing konsentris khususs ${ }^{\text {P }}$	6	2\%	5	TB	TB	10	TI	TI
2. Dinding geser betpn bertulang khusus ${ }^{2 \times}$	61/2	2\%	5	TB	TB	48	30	30
3. Dinding geser batu hata bertulang biasa	3	3	2\%/	TB	48	TI	TI	TI
4. Dinding geser batu bata bertulang menengah	31/2	3	3	TB	TB	TI	TI	TI
5. Rangka baja dan belon kornposit dengan bresing konsertris khusus	5\%	2\%	4\%	TB	TB	48	30	TI
6. Rangka baja dan belon kornposil dengan bresing biasa	3%	2\%	3	TB	TB	T1	TI	Tl
7. Dinding qeser baja dan beton kormposil biasa	5	3	4/2	TB	TB	TI	TI	TI
8. Dinding geser beton bertulang biasas	5\%	2\%	4\%	TB	TB	TI	TI	TI
F. Slatem Interaktif dinding geser-rangka dengan rangka pemikul momen beton bertulang blasa dan dinding geser beton bertulang blasa ${ }^{a}$	4/2	2\%	4	TB	TI	TI	TI	TI
G. Sistem kolom kantilever didetall untuk memenuhl parayaratan untuk:								
1. Sistern kolom baja dengan karntiever khusus	21/2	1/4	21/2	10	10	10	10	10
2. Sistern kolom taja dengan kantiever biasa	11/4	1\%/	11/4	10	10	Ti	Ti	Tr
3. Rangka betan bertulang permikul manen khusus?	2\%	1%	$2 / 5$	10	10	10	10	10
4. Rangka betan bertulang pernikul mamen menengah	11/2	1\%/		10	10	TI	TI	TI
5. Ranpka betan bertulang penikul mamen biasa	1	1\%/	1	10	TI	TI	TI	TI
6. Rangka kayu	11/2	11/2	11/2	10	10	10	TI	TI
H. Slatem baja tldak didetall secara khusus untuk ketahanan selsmlk tidak termasuk olstem kolom kantilever	3	3	3	TB	TB	TI	TI	TI

CATATAN
a Koefisien modifikasi respons, R, untuk penggunaan pada keseluruhan standar. Nilai R mereduksi gaya ke level kekuatan bukan pada level tegangan izin.
Jika nilai pada tabel faktor kuat lebih, Ω_{0}, lebih besar atau sama dengan 2,5 , maka Ω_{0} dízinkan untuk direduksi setengah untuk struktur dengan diafragma fleksibel.
Faktor pembesaran simpangan lateral, C_{4}. untuk penggunaan dalam 0,0 , dan 0
« $\mathrm{TB}=$ Tidak Dibatasi dan $\mathrm{Tl}=$ Tidak Dïzinkan.

* Lihat 7.2.5.4 untuk penjelasan sistem pemikul gaya seismik yang dibatasi sampai bangunan dengan ketinggian 72 m atau kurang.
f Lihat 7.2 .5 .4 untuk sistem pemikul gaya seismik yang dibatasi sampai bangunan dengan ketinggian 48 m atau kurang
Dinding geser didefinisikan sebagai dinding struktural.
Definisi "Dinding Struktural Khusus", termasuk konstruksi pracetak dan cor di tempat
'Penambahan ketinggian sampai 13.7 m diizinkan untuk fasilitas gudang penyimpanan satu tingkat.
'Rangka baja dengan bresing konsentrik biasa diizinkan pada bangunan satu tingkat sampai ketinggian 18 m di mana beban mati atap tidak melebihi $0,96 \mathrm{kN} / \mathrm{m}^{2}$ dan pada struktur griya tawang (penthouse).
Lihat 0 untuk struktur yang dikenai kategori desain seismik D, E, atau F.
Lihat 0 untuk struktur yang dikenai kategori desain seismik D, E, atau F.
" Definisi "Rangka Momen Khusus", termasuk konstruksi pracetak dan cor di tempat.

Figure 2. 9 R, Cd, Ω o for earthquake resisting system table (continuous)
The seismic force resisting structure system used in the residential structure is SRPMK so that the structural parameters are obtained as follows: $R=8, \mathrm{Cd}=5.5$, $\mathrm{dan} \Omega \mathrm{o}=3$

2.2.7 Evaluating structural systems for structural irregularities

In the design process, the structure must be classified as a regular or irregular structure by referring to SNI 1726:2019. Structural irregularities are divided into horizontal and vertical irregularities. Furthermore, the types and explanations of horizontal and vertical irregularities are presented in more detail in table 2.11

	Tipe dan penjelasan ketidakberaturan	Pasal referensi	Penerapan kategori desain seismik
1a.	Ketidakberaturan torsi didefinisikan ad ajika simpangan antar tingkat maksimum, yang dihitung termasuk torsi tak terduga dengan $A_{1}=1,0$, disalah satu ujung struktur melintang terhadap suatu sumbu adalah lebih dari 1,2 kali simpangan antar tingkat rata - rata di kedua ujung struktur. Persyaratan ketidakberaturan torsi dalam pasal-pasal teferensi berlaku hanya untuk struktur di mana diafragmanya kaku atau setengah kaku.	$\begin{array}{\|ll\|} \hline 0 & \\ 0 & \\ 0 & \\ 0 & \\ & \\ \text { Tabel } 16 \\ & \\ \hline \end{array}$	D, E, dan F B, C, D, E, dan F C, D, E, dan F C, D, E, dan F D, E, dan F B, C, D, E, dan F
1b.	Ketidakberaturan torsi berlebihan didefiniskan ada jika simpangan antar tingkat maksimum yang dihitung termasuk akibat torsi tak terduga dengan $A_{1}=1,0$, disalah satu ujung struktur melintang terhadap suatu sumbu adalah lebih dari 1,4 kali simpangan antar tingkat rata-rata di kedua ujung struktur. Persyaratan ketidakberaturan torsi berlebihan dalam pasalpasal referensi berlaku hanya untuk struktur di mana diafragmanya kaku atau setengah kaku.	0 0 0 0 0 0 Tabel 16 0	E dan F D B, C, dan D C dan D C dan D D B, C, dan D
2.	Ketidakberaturan sudut dalam didefinsikan ada jika kedua dimensi proyek denah struktur dari lokasi sudut dalam lebih besar dari 15\% dimensi denah struktur dalam arah yang ditinjau.	Tabel 16	D,E, dan F D, E, dan F
3.	Ketidakberaturan diskontinuitas diafragma didefinisikan ada jika terdapat suatu diafragma yang memiliki diskontinuitas atau variasi kekakuan mendadak, termasuk yang mempunyai daerah terpotong atau terbuka lebih besar dari 50% daerah diafragma bruto yang tertutup, atau perubahan kekakuan diafragma efektif lebih dari 50% dari suatu tingkat ke tingkat selanjutnya.	Tabel 16	$\begin{aligned} & \mathrm{D}, \mathrm{E}, \operatorname{dan} \mathrm{~F} \\ & \mathrm{D}, \mathrm{E}, \operatorname{dan} \mathrm{~F} \end{aligned}$
4.	Ketidakberaturan akibat pergeseran tegak lurus terhadap bidang didefinisikan ad ajika terdapa diskontinuitas dalam lintasan tahanan gaya lateral, seperti pergeseran tegak lurus terhadap bidang pada setidaknya satu elemen vertical pemikul gaya lateral.	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & \text { Tabel } 16 \end{aligned}$ 0	B, C, D,E, dan F D,E, dan F B,C,D,E dan F D,E, dan F B,C,D,E, dan F
5.	Ketidakberaturan sistem non parallel didefinisikan ada jika elemen vertical pemikul gaya lateral tidak parallel terhadap sumbu-sumbu orthogonal utama sistem pemikul gaya seismik.	$\begin{aligned} & \hline 0 \\ & 0 \\ & \text { Tabel } 16 \end{aligned}$ 0	C, D,E, dan F B, C, D, E, dan F D,E, dan F B,C,D,E, dan F

Table 2. 10 Types and descriptions of structural horizontal irregularities table

The following is the result of calculating and checking the horizontal irregularity of the structure:

- Torsional irregularity, defined to exist if the maximum story drift (calculated torque including unexpected torque) at an end of the structure transverse to the axis is more than 1.2 times the average story drift at both ends of the structure (see Figure 2.2). The torsional irregularity requirements in the reference articles apply only to structures whose diaphragms are rigid (rigid) or semi-rigid (semi-rigid).

Figure 2.2 Illustration of checking irregularities of type 1a and 1b (SNI 1726:2019)
Based on checking for torsional irregularities, the result is that the maximum floor deviation in the X and Y directions is less than 1.2 times the average floor deviation so that there is no type 1a horizontal irregularity in the structure under review.

- Excessive torsional irregularity is defined to exist if the maximum grade deviation (calculated torque including unexpected torque) at the ends of the structure transverse to the axis is more than 1.4 times the average grade deviation at both ends of the structure (see Figure 2.12). The excessive torsional irregularity requirement in the reference clause applies only to structures where the diaphragm is rigid or semi-rigid. Based on checking for excessive torsional irregularities, it was found that the maximum floor deviation in the X and Y directions is less than 1.4 times the average floor deviation so that there is no type 1 b horizontal irregularity in the structure under consideration.
- Inner angle irregularity, defined to exist if the two structural plan projections from the inner corner are greater than 15% of the structural plan dimensions in the specified direction (see Figure 2.3)

Based on checking the interior angle irregularities, it was found that the two structural plan projections from the interior angle were less than 15% of the structural plan dimensions in the specified direction so that there was no type 2 horizontal irregularity in the structure under consideration.

- Diaphragmatic discontinuity irregularities, defined to exist if there is a diaphragm with a sudden discontinuity or variation in stiffness, including one having a cut or open area greater than 50% of the gross diaphragm area surrounding it, or a change in effective diaphragm stiffness of more than 50% from one story to the next (see Figure 2.4)

Figure 2. 4 Illustration of checking type 3 horizontal irregularity (SNI 1726:2019)
Based on checking the interior angle irregularities, it was found that there was no type 3 horizontal irregularity in the structure under review

- Transverse displacement irregularities with respect to the plane, defined to exist if there is a discontinuity in the path of lateral resistance, such as transverse shear with respect to the plane of a vertical element (see Figure 2.5)

Based on checking the interior angle irregularities, it was found that there was no type 4 horizontal irregularity in the structure under review

- non-parallel system irregularity, defined to exist if the vertical lateral resisting elements are not parallel or symmetrical to the main orthogonal axes of the seismic resisting system (see Figure 2.6)

Table 2. 6 Illustration of checking type 5 horizontal irregularity (SNI 1726:2019)
Based on checking the interior angle irregularities, it was found that there was no type 5 horizontal irregularity in the structure under review.

	Tipe dan penjelasan ketidakberaturan	Pasal referensi	Penerapan kategori desain seismik
1a.	Ketidakberaturan Kekuatan Tingkat Lunak didefinisikan ada jika terdapat suatu tingkat yang kekakuan lateralnya kurang dari 70\% kekakuan lateral tingkat diatasnya atau kurang dari 80\% kekakuan rata-rata tiga tingkat diatasnya.	Tabel 16	D, E, dan F
1b.	Ketidakberaturan Kekakuan Tingkat Lunak Berlebihan didefinisikan ad ajika terdapat suatu tingkat yang kekakuan lateralnya kurang dari 60\% kekakuan lateral tingkat diatasnya atau kurang dari 70\% kekakuan rata-rata tiga tingkat diatasnya.	0 Tabel 16	E dan F D, E, dan F
2.	Ketidakberaturan Berat (Massa) didefinisikan ad ajika massa efektif di sebarang tingkat lebih dari 150% massa efektif tingkat di dekatnya. Atap yang lebih ringan dari lantai di bawahnya tidak perlu ditinjau.	Tabel 16	D, E, dan F
3.	Ketidakberaturan Geometri Vertikal didefinisikan ad ajika dimensi horizontal sistem pemikul gaya seismic di sebarang tingkat lebih dari 130\% dimensi horizontal sistem pemikul gaya seismic tingkat didekatnya.		D, E, dan F
4.	Ketidakberaturan Akibat Diskontinuitas Bidang pada Elemen Vertikal Pemikul Gaya Lateral didefinisikan ada jiak pergeseran arah bidang elemen pemikul gaya lateral lebih besar dari panjang elemen itu atau terdapat reduksi kekakuan elemen pemikul di tingkat dii bawahnya.	0 0 Tabel 16	$\begin{aligned} & \text { B, C, D, E, dan F } \\ & \mathrm{D}, \mathrm{E}, \operatorname{dan} \mathrm{~F} \\ & \mathrm{D}, \mathrm{E}, \operatorname{dan} \mathrm{~F} \end{aligned}$
5a.	Ketidakberaturan Tingkat Lemah Akibat Diskontinuitas pada Kekuatan Lateral Tingkat didefinisikan ad ajika kekuatan lateral suatu tingkat kurang dari 80\% kekuatan lateral tingkat diatasnya. Kekuatan lateral tingkat adalah kekuatan total semua elemen pemikul seismic yang berbagi geser tingkat pada arah yang ditinjau.	0 Tabel 16	E dan F D, E, dan F
5b.	Ketidakberaturan Tingkat Lemah Berlebihan Akibat Diskontinuitas pada Kekuatan Lateral Tingkat didefinsikan ad ajika kekuatan lateral suatu tingkat kurang dari 65\% kekuatan lateral tingkat diatasnya. Kekuatan lateral tingkat adalah kekuatan total semua elemen pemikul seismic yang berbagi geser tingkat pada arah yang ditinjau.	0 0 Tabel 16	$\begin{aligned} & \hline D, E, \operatorname{dan} F \\ & B \operatorname{dan} C \\ & D, E, \operatorname{dan} F \end{aligned}$

Table 2. 11 Types and descriptions of structural vertical irregularities table (SNI 1726:2019)
Following are the results of calculations and checking of structural vertical irregularities:

- Soft story stiffness irregularity is defined to exist if there is a story where the lateral stiffness is less than 70% of the lateral stiffness of the story above or less than 80% of the average stiffness of 3 stories above. Above it (see Figure 2.7). Based on checking the soft level stiffness irregularity, it was found that there was no type 1a vertical irregularity in the structure under review.

Figure 2. 7 Illustration of checking vertical irregularities of type $1 a$ and 1b (SNI 1726:2019)

- Excessive soft story stiffness irregularity, defined to exist if there is a story where the lateral stiffness is less than 60% of the lateral stiffness of the story above or less than 70% of the average stiffness. 3 levels above it (see Figure 2.18). Based on checking the excessive soft level stiffness irregularity, it was found that there was no type 1 b vertical irregularity in the structure under review.
- Heavy (mass) irregularity is defined to exist if the effective of all levels is more than 150% of the effective level of the nearby. A roof that is lighter than the floor below does not need to be considered (see Figure 2.8). Based on checking the weight (mass) irregularity, it was found that there was no type 2 vertical irregularity in the structure under review.

Figure 2. 8 Illustration of checking type 2 vertical irregularity (SNI 1726:2019)

- Vertical geometric irregularity, defined to exist if the horizontal dimension of the seismic retaining system at all levels is more than 130% of the horizontal dimension of the seismic restraint system of the adjacent story (see Figure 2.9).

Based on checking the vertical geometric irregularities, it was found that there was no type 3 vertical irregularity in the structure under review.

Figure 2. 9 Illustration of checking type 3 vertical irregularity (Source:SNI 1726:2019)

- The plane discontinuity in the irregularity of the vertical lateral resisting element is defined to exist if the plane displacement of the lateral resisting element is greater than the length of the element or there is a reduction in the stiffness of the retaining element in the story below (see Figure 2.10). Based on checking the irregularity of the discontinuity of the plane direction in the irregularity of the vertical lateral force resisting element, it was found that there was no type 4 vertical irregularity in the structure under review.

Figure 2. 10 Illustration of checking type 4 vertical irregularity (SNI 1726:2019)

- A discontinuity in the story lateral strength irregularity is defined to exist if the story lateral strength is less than 80% of the story above it. The story lateral strength is the total lateral strength of all seismic retaining elements sharing the story shear for the direction under consideration (see Figure 2.11). Based on checking the irregularities of the discontinuities in the lateral strength
irregularities of the story, it was found that there was no vertical irregularity of type 5a in the structure under review.

Figure 2. 11 Illustration of checking vertical irregularities types $5 a$ and $5 b$ (SNI 1726:2019)

- A discontinuity in the excessive story lateral strength irregularity, defined to exist if the story lateral strength is less than 65% of the story above it. The story lateral strength is the total strength of all seismic retaining elements sharing the story shear for the direction under consideration (see Figure 2.22). Based on checking the irregularity of the discontinuities in the excessive lateral strength irregularities, it was found that there was no type 5 bertical irregularity in the structure under review.

2.2.8 Determining the flexibility of the diaphragm

For structures having horizontal structural irregularities, the diaphragm should be modeled as semi-rigid. In this work, the residential structure does not have horizontal structural irregularities so that the diaphragm is modeled as a rigid diaphragm.

2.2.9 Determine the redundancy factor (ρ)

The redundancy factor (ρ) must be applied to the seismic force resisting structural system in each of the two orthogonal directions for all structures in accordance with Article 7.3.4 of SNI 1726:2019. The value of can be taken as equal to 1.0 if each story resisting more than 35% of the base shear force in the direction under consideration must comply with the requirements of table 2.12

Elemen pemikul gaya lateral	Persyaratan
Rangka dengan bresing	Penghilang suatu bresing individu, atau sambungan yang tehubung, tidak akan mengakibatkan reduksi kekuatan tingkat lebih dari 33, dan tidak akan menghasilkan system dengan ketidakberaturan torsi yang berlebihan (ketidakberaturan struktur horizontal Tipe 1b).
Rangka pemikul momen	Kehilangan tahananan momen di sambungan balok-kolom di kedua ujung suatu balok tunggal tidak akan mengakibatkan reduksi kekuatan tingkat lebih dari 33\%, dan tidak akan menghasilkan sistem dengan ketidakberaturan torsi yang berlebihan (ketidak beraturan struktur horizontal 1b).
Dinding geser atau pilar dinding dengan rasio tinggi terhadap panjang lebih besar dari 1.0	Penghilang suatu dinding geser atau pilar dinding dengan rasio tinggi terhadap panjang lebih besar dari 1.0 di seberang tingkat, atau sambungan kolektor yang terhubung, tidak akan mengakibatkan reduksi kekuatan tingkat lebih dari 33\%, dan tidak akan menghasilkan sistem dengan ketidakberaturan torsi yang berlebihan (ketidak beraturan struktur horizontal 1b).
Kolom kantilever	Kehilangan tahanan momen di sambungan dasar pada sebarang kolom kantilever tunggal tidak akan mengakibatkan reduksi kekuatan tingkat lebih dari 33\%, dan tidak akan menghasilkan sistem dengan ketidakberaturan torsi yang berlebihan (ketidak beraturan struktur horizontal 1b).
Tidak ada persyatan	

Table 2. 12 Requirements for individual stories resisting more than 35% of the base shear force (SNI 1726:2019)
Another condition that allows to be taken as equal to 1.0 is if the structure has a regular plan at all levels provided the seismic force resisting system consists of at least two seismic force resisting perimeter spans framing on each side of the structure in each of the orthogonal directions. in each grade resisting more than 35% of the base shear force. The number of spans for shear walls shall be calculated as the length of the shear wall divided by the story height or twice the length of the shear wall divided by the story height for light frame construction. If these conditions are not met then, must be taken equal to 1.3 . In this work, the redundancy factor used is 1.3

2.2.10 Selecting the lateral force/earthquake analysis procedure (ELF, RS, TH)

Earthquake loads regulated in SNI 1726:2019 can be carried out through 3 types of analytical procedures, namely the analysis of equivalent lateral forces, analysis of the response spectrum of the body (response spectra), and historical procedures.Seismic response (time history). The seismic load analysis procedure that is permitted to be used
is influenced by the seismic design category and structural characteristics as presented in table 2.13.

Based on table 2.13, in this work it is permitted to use the analysis of the variance response spectrum as the seismic load analysis procedure.

Kategori desain seismik	Karakteristik struktur	Analisis gaya lateral ekivalen pasal 0	Analisis spektrum response ragam pasal 0	Prosedur respons Riwayat waktu seismik pasal 0
B, C	Semua struktur MTM Jide	1	I	1
D, E, F	Bangunan dengan kategori risiko I atau Il yang tidak melabihi 2 tingkat diatas dasar		I	I
	Struktur tanpa ketidak beraturan structural dan ketinggian tidak melebihi $48,8 \mathrm{~m}$	1		I
	Struktur tanpa ketidak beraturan structural dengan ketinggian melebihi $48,8 \mathrm{~m}$ dan $T<3,5 T$	1	1	I
	Struktur dengan ketinggian tidak melebihi $48,8 \mathrm{~m}$ dan hanya memiliki ketidak beraturan horizontal tipe 2,3,4 atau 5 atau ketidak beraturan vertikal tipe 4, 5a atau 5b	1	1	I
	Semua struktur lainnya	TI	1	I

Calculating earthquake loads using the equivalent lateral force (ELF) procedure The equivalent lateral force (ELF) analysis procedure is based on the first response mode. This analytical procedure applies only to regular structures with $\mathrm{T}<3.5 \mathrm{~T}$ (where $\mathrm{T}=$ SD1/SDS), the stiffness of adjacent stories does not differ by more than 30%, the strengths of adjacent stories do not differ by more than 20%, and masses at adjacent levels do not differ by more than 50%. If this is not met, dynamic analysis procedures should be used, i.e. response spectrum analysis of variance or time history procedures. In general, the magnitude of the earthquake force generated by the ELF analysis procedure is a function of the effective earthquake weight (Wt) and the earthquake response coefficient (Cs). Furthermore, earthquake forces are distributed to each level of the building structure to be designed. Earthquake forces generated from the ELF analysis procedure need to be taken into account because if using dynamic analysis procedures, the resulting earthquake forces need to be compared with the earthquake forces generated by the ELF analysis
procedure. The steps for calculating earthquake forces using the ELF analysis procedure are presented as follows:

1. Determining the Period of the Natural Fundamental Structure (T)

The natural fundamental period of the structure will determine the value of the seismic response coefficient (Cs) which will also determine the value of the seismic base shear force (VELF). If a more accurate structural period (Tc) is not available, the structural period used can be taken as Ta. However, if a more accurate structural period (Tc) can be obtained (through structural modeling) then the structural period used should be determined by following the following conditions (see also Figure 2.12):

So $T=$

- If $\mathrm{Tc}>\mathrm{Cu} . \mathrm{TaCu} \cdot \mathrm{Ta}$
- If $\mathrm{Ta}<\mathrm{Tc}<\mathrm{Cu} . \mathrm{Ta}$ So $\mathrm{T}=\mathrm{Tc}$
- If $\mathrm{Tc}<\mathrm{Ta}$ So $\mathrm{T}=\mathrm{Ta}$

Figure 2. 12 Determination of the period of the structure used (FEMA 481)
The approximation fundamental period (Ta) is determined on the basis of equation: $\mathrm{Ta}=$ $\mathrm{Ct} . \mathrm{hx}$. Where hn is the height of the structure (in m), while the coefficients Ct and x are determined based on

Tipe struktur	C_{i}	x
Sistem rangka pemikul momen di mana rangka memikul 100\% gaya seismic uang disyaratkan dan tidak dilingkupi atau dihubungkan dengan komponen yang lebih kaku dan akan mencegah rangka dari defleksi jika dikenai gaya seismik: $\bullet \quad$ Rangka baja pemikul momen $\bullet \quad$ Rangka beton pemikul momen		
Rangka baja dengan bresing eksentris	0,0724	0,8
Rangka baja dengan bresing terkekang terhadap tekuk	0,0466	0,9
Semua sistem struktur lainnya	0,0731	0,75

Table 2. 14 Parameter values for the approach period Ct and x table

The coefficient values for the upper limit of the calculated structure period (Cu) are set according to Table 2.15

Parameter percepatan response spectral desain pada $\mathbf{1}$ detik, $\mathbf{S}_{\boldsymbol{d} \mathbf{1}}$	Koefisien $\mathbf{C}_{\boldsymbol{s}}$
$\geq 0,4$	1,4
0,3	1,4
0,2	1,5
0,15	1,6
$\leq 0,1$	1,7

Table 2. 15 Coefficients for the upper bound in the calculated period
In this work, the type of structure used is a moment-bearing steel frame so that the values of $\mathrm{Ct}=0.0724$ and $\mathrm{x}=0.8$ are obtained. Furthermore, based on the value of $\mathrm{SD} 1=0.589$ g , the coefficient of $\mathrm{Cu}=1.4$ is obtained. So that the value of $\mathrm{Ta}=0.926$ seconds and $\mathrm{Cu} . \mathrm{Ta}=1.297$ seconds is obtained. The period value of the structure modeling results, Tc $=0.713$ seconds $(\mathrm{Ta}<\mathrm{Tc}<\mathrm{Cu} . \mathrm{Ta})$ so that the period of the structure used in the earthquake load analysis with the ELF procedure is 0.926 seconds.

2. Determining the Seismic Response Coefficient (Cs)

The seismic response coefficient (Cs) is determined based on the following equation: Cs $=$ SDS / (R / Ie) The Cs value calculated according to the above equation need not exceed the Cs value calculated by the following equation: $\mathrm{Cs}=\mathrm{SD} 1 /(\mathrm{Tx}(\mathrm{R} / \mathrm{Ie})$

However, the value of Cs must not be less than Cs which is calculated by the following equation:Cs $=0,044$ SDS Ie $\geq 0,01$

In this work, the results of the calculation of the seismic response coefficient (Cs) are as follows:
$\mathrm{Cs}=\mathrm{SDS} /(\mathrm{R} / \mathrm{Ie}) 0.142$
$\mathrm{Cs}=\mathrm{SD} 1 /(\mathrm{T} x(\mathrm{R} / \mathrm{Ie}) 0.110$
$\mathrm{Cs}=0,044$ SDS Ie $\geq 0,010.050$

3. Determining Effective Seismic Weight (W)

The effective seismic weight of the structure (W) shall include all dead loads and other loads included in the following list:

- In areas used for storage: a minimum of 25% live floor load (floor live load in public garages and open parking structures, and storage loads not exceeding 5% of the effective seismic weight on a floor, need not be included)
- If provisions for partitions are required in the floor load design: taken as the largest of the actual partition weight or minimum floor area weight of $0.48 \mathrm{kN} / \mathrm{m} 2$
- Total operating weight of permanent equipment
- Landscaping weight and other loads on roof gardens and other similar areas

Calculate and add orthogonal loads (if required) The addition of orthogonal loads is done by providing an additional load of 30% of the main lateral load, perpendicular to the direction of the main load under consideration (see Figure 2.13). Orthogonal loads need to be added and applied to structures with seismic design categories C, D, E, and F. In this work, the structures are included in seismic design category D so that additional orthogonal loads need to be done. This addition is accommodated in the combined design load.

Calculate and add torque loads (if required) The building structure for all seismic design categories (KDS) must consider the design torque and the unexpected torque.
Unexpected torque is applied to the structural model by providing an eccentricity of 5% in the X and Y axes, respectively (see Figure 2.14).

If the building structure is included in seismic design categories $\mathrm{C}, \mathrm{D}, \mathrm{E}$, and F and has torsional irregularities 1 a and 1 b , the unexpected torsional enlargement must be considered (see Figure 2.19). The unexpected torque magnification is calculated using the following equation:
ex $=e o x+(0.05 \mathrm{~B} \mathrm{Ax})$
ey $=$ eoy $+(0.05 \mathrm{~L}$ Ay $)$
means,
eox dan eoy are the congenital eccentricity, while 0.05 B Ax and 0.05 L Ay are the unexpected eccentricities.

Figure 2. 15 Unexpected torque magnification
In this work, the building structure is included in the seismic design category (KDS) D but there is no torsion irregularity 1 a and 1 b so there is no need to consider unexpected torque enlargement (it is enough to consider unexpected torque by giving 5\% eccentricity each in the X -axis direction and Y .)

2.2.11 Load Combination Plan

The ultimate load combination is determined based on Article 4.2.2 of SNI 1726:2019 . Procedure for Calculation of Concrete Structures for Buildings, which are as follows:

1. 1.4DL
2. $1.2 \mathrm{DL}+1.6 \mathrm{LL}+0.5(\mathrm{Lr}$ or R$)$
3. $1.2 \mathrm{DL}+1.6(\mathrm{Lr}$ or R$)+(1.0 \mathrm{~L}$ or 0.5 W$)$
4. $1.2 \mathrm{DL}+1.0 \mathrm{~W}+1.0 \mathrm{~L}+0.5(\mathrm{Lr}$ or R$)$
5. $1.2 \mathrm{DL}+1.0 \mathrm{E}+1.0 \mathrm{LL}$
6. $0.9 \mathrm{DL}+1.0 \mathrm{~W}$
7. $0.9 \mathrm{DL}+1.0 \mathrm{E}$

For load combinations number 5 and 7 which is a combination of earthquake loads, it is specifically regulated in Article 7.4 SNI 1726:2019 Earthquake Resistance Planning Standards for Building Structures, which are as follows:

1. $(1.2+0.2 \mathrm{SDS}) \mathrm{DL}+1.0 \mathrm{LL} \pm 0.3 \rho \mathrm{Ex} \pm 1.0 \rho \mathrm{Ey}$
2. $(1.2+0.2$ SDS $) \mathrm{DL}+1.0 \mathrm{LL} \pm 1.0 \rho \mathrm{Ex} \pm 0.3 \rho \mathrm{Ey}$
3. (0.9-0.2SDS)DL $\pm 0.3 \rho E x \pm 1.0 \rho E y$
4. (0.9-0.2SDS)DL $\pm 1.0 \rho E x \pm 0.3 \rho E y$

While the combination of service loads is determined based on Article 4.2.3 SNI 1726:2019 Procedures for Calculation of Concrete Structures for Buildings, which are as follows:

1. DL
2. $\mathrm{DL}+\mathrm{LL}$
3. $\mathrm{DL}+(\mathrm{Lr}$ or R$)$
4. $\mathrm{DL}+0.75 \mathrm{LL}+0.75(\mathrm{Lr}$ or R$)$
5. DL + (0.6W or 0.7E)
6. $\mathrm{DL}+0.75(0.6 \mathrm{~W}$ or 0.7 E$)+0.75 \mathrm{LL}+0.75(\mathrm{Lr}$ or R$)$
7. $0.6 \mathrm{DL}+0.6 \mathrm{~W}$
8. $0.6 \mathrm{DL}+0.7 \mathrm{E}$

With means,
$\mathrm{DL}=$ Dead load (self weight of structure and additional dead load)

LL = Live load
$\mathrm{Lr}=$ Live load on the roof structure
$\mathrm{R}=$ Rain load $\mathrm{W}=$ Wind load
$E x=$ earthquake load direction $x \mathrm{Ey}=$ earthquake load direction y
$\mathrm{SDS}=$ Design spectral acceleration parameter for a short period of 0.2 seconds
The ultimate load combinations used in this work are presented in table 2.16.

Kombinasi Beban	DL	LL	Ex	Ey
COMB1	1,40	-	-	-
COMB2	1,20	1,60	-	-
COMB3	1,296	1,00	1,30	0,39
COMB4	1,296	1,00	1,30	$-0,39$
COMB5	1,296	1,00	$-1,30$	0,39
COMB6	1,296	1,00	$-1,30$	$-0,39$
COMB7	1,296	1,00	0,39	1,30
COMB8	1,296	1,00	$-0,39$	1,30
COMB9	1,296	1,00	0,39	$-1,30$
COMB10	1,296	1,00	$-0,39$	$-1,30$
COMB11	0,8	-	1,30	0,39
COMB12	0,8	-	1,30	$-0,39$
COMB13	0,8	-	$-1,30$	0,39
COMB14	0,8	-	$-1,30$	$-0,39$
COMB15	0,8	-	0,39	1,30
COMB16	0,8	-	$-0,39$	1,30

Table 2. 16 Ultimate load combination

2.3 Structural System Determination

2.3.1 Structural System

The structure of the Assalafiyyah Islamic Boarding School is designed using a special moment-bearing frame system (SRPMK) with columns and beams as a moment reinforcement.

2.3.2 Structural Model

The structural design process is carried out based on the internal forces that occur in the structural elements due to the working ultimate load. This internal force can be obtained through structural modeling. Structural modeling is carried out in a three-dimensional model (3D model). In structural modeling, truss elements are used to idealize beams and columns. While the floor slab is idealized as a deck.

2.3.3 Use Limit Performance

Service limit performance is evaluated based on a combination of service loads. One of the service limit parameters that will be evaluated is the deviation between floors due to the influence of the design earthquake for each of the orthogonal axes of the structure. The deviation between floors that occurs must be smaller than the allowable deviation between floors with the aim of limiting the occurrence of excessive steel melting and concrete cracking, preventing non-structural damage, and preventing excessive deviations that cause discomfort for building occupants

2.3.4 Ultimate Limit Performance

At the ultimate limit performance, the ultimate load combination is used to analyze the internal forces that occur in the structural elements. These internal forces are then used in the design process of structural elements such as slabs, beams, columns, foundations, etc. The ultimate limit performance will determine the safety of the structure in supporting the ultimate design load acting on the structure.

2.4 Structure Loading Planning

2.4.1 Gravity Load

Gravity load is determined based on SNI 1727:2013 Minimum Load for Design of Buildings and Other Structures. The gravity load in the structural design of a residential house includes the structure's own weight/dead load (DL), additional dead load (ADL), and live load (LL). These expenses are explained as follows:

a. Self Weight Structure (DL)

The structure's own weight/dead load is the weight of each structural element in the form of floor slabs, beams, columns, etc. which are part of the main structure. In structural modeling using software, the self-weight of the structure will be calculated automatically
by the software based on the data on the density of the material and the dimensions of the structural elements entered in the software.

b. Additional Dead Load (ADL)

Additional dead load is an additional load due to the use of non-structural components (architectural and MEP) that are attached to and burden the main structure of the building. The additional dead load is explained as follows:

Additional Dead Load On Floor Slab

- Slab load $=(120 / 1000) \times 24 \mathrm{kN} / \mathrm{m}^{3}=2.88 \mathrm{kN} / \mathrm{m}^{2}$
- Sand (thickness 4 cm$)=0.04 \times 17 \mathrm{kN} / \mathrm{m}^{3}=0.68 \mathrm{kN} / \mathrm{m}^{2}$
- Spesi $($ thickness 2 cm$)=0.02 \times 20 \mathrm{kN} / \mathrm{m}^{3}=0.40 \mathrm{kN} / \mathrm{m}^{2}$
- Ceramic/cover (thickness $1=0.01 \times 24 \mathrm{kN} / \mathrm{m}^{3}=0.24 \mathrm{kN} / \mathrm{m}^{2}$
- Partition $=1 \mathrm{kN} / \mathrm{m}^{2}$
- Ceiling, MEP Installation, etc. $=0.25 \mathrm{kN} / \mathrm{m}^{2}$

Total Additional Dead Load $=5.45 \mathrm{kN} / \mathrm{m}^{2}$

Total Additional Dead Load (Software Input)
without Slab load $=2.57 \mathrm{kN} / \mathrm{m}^{2}$

c. Live Load (LL)

Live load is the load that occurs as a result of the use of the building structure. The living burden can come from people/goods that can move from place to place. The dormitory and educational building is included in the category of public space according to SNI 1727:2013 so that the living load is determined as follows:

Live Load $=4.79 \mathrm{kN} / \mathrm{m}^{2}$

2.4.2 Earthquake Load

Earthquake loads are determined based on SNI 1726:2019 Earthquake Resistance Planning Standards for Building Structures. The steps for calculating the design earthquake load are presented as follows:

a. Determine the building risk category (I-IV)

The building risk category is determined based on the operational function/type of utilization of a building. In SNI 1726:2019, building risk categories are divided into 4 types, namely risk categories I, II, III, and IV (see table 2.17). In this work, the structure of the Assalafiyyah Islamic boarding school is included in the category of public buildings so that it is designated as building risk category IV.

Tabel 3 - Kategori risiko bangunan gedung dan nongedung untuk beban gempa

Jenis pemanfaatan	Kategori risiko
Gedung dan nongedung yang memiliki risiko rendah terhadap jiwa manusia pada saat terjadi kegagalan, termasuk, tapi tidak dibatasi untuk, antara lain: - Fasilitas pertanian, perkebunan, perternakan, dan perikanan - Fasilitas sementara - Gudang penyimpanan - Rumah jaga dan struktur kecil lainnya	I
Semua gedung dan struktur lain, kecuali yang termasuk dalam kategori risiko I,III,IV, termasuk, tapi tidak dibatasi untuk: - Perumahan - Rumah toko dan rumah kantor - Pasar - Gedung perkantoran - Gedung apartemen/ rumah susun - Pusat perbelanjaan/ mall - Bangunan industri - Fasilitas manufaktur - Pabrik	II
Gedung dan nongedung yang memilki risiko tinggi terhadap jiwa manusia pada saat terjadi kegagalan, termasuk, tapi tidak dibatasi untuk: - Bioskop - Gedung pertemuan - Stadion - Fasilitas kesehatan yang tidak memiliki unit bedah dan unit gawat darurat - Fasilitas penitipan anak - Penjara - Bangunan untuk orang jompo	
Gedung dan nongedung, tidak termasuk kedalam kategori risiko IV, yang memiliki potensi untuk menyebabkan dampak ekonomi yang besar dan/atau gangguan massal terhadap kehidupan masyarakat sehari-hari bila terjadi kegagalan, termasuk, tapi tidak dibatasi untuk: - Pusat pembangkit listrik biasa - Fasilitas penanganan air - Fasilitas penanganan limbah - Pusat telekomunikasi Gedung dan nongedung yang tidak termasuk dalam kategori risiko IV, (termasuk, tetapi tidak dibatasi untuk fasilitas manufaktur, proses, penanganan, penyimpanan, penggunaan atau tempat pembuangan bahan bakar berbahaya, bahan kimia berbahaya, limbah berbahaya, atau bahan yang mudah meledak) yang mengandung bahan beracun atau peledak di mana jumlah kandungan bahannya melebihi nilai batas yang disyaratkan oleh instansi yang berwenang dan cukup menimbulkan bahaya bagi masyarakat jika terjadi kebocoran.	III

Table 2. 17 Building and non-building risk categories (SNI 1762:2019)

Jenis pemanfaatan	Kategori risiko
Gedung dan nongedung yang dikategorikan sebagai fasilitas yang penting. termasuk, tetapi tidak dibatasi untuk: - Bangunan-bangunan monumental - Gedung sekolah dan fasilitas pendidikan - Rumah ibadah - Rumah sakit dan fasilitas kesehatan lainnya yang memiliki fasilitas bedah dan unit gawat darurat - Fasilitas pemadam kebakaran, ambulans, dan kantor polisi, serta garasi kendaraan darurat - Tempat perlindungan terhadap gempa bumi, tsunami, angin badai, dan tempat perlindungan darurat lainnya - Fasilitas kesiapan darurat, komunikasi, pusat operasi dan fasilitas lainnya untuk tanggap darurat - Pusat pembangkit energi dan fasilitas publik lainnya yang dibutuhkan pada saat keadaan darurat - Struktur tambahan (termasuk menara telekomunikasi, tangki penyimpanan bahan bakar, menara pendingin, struktur stasiun listrik, tangki air pemadam kebakaran atau struktur rumah atau struktur pendukung air atau material atau peralatan pemadam kebakaran) yang disyaratkan untuk beroperasi pada saat keadaan darurat	IV
Gedung dan nongedung yang dibutuhkan untuk mempertahankan fungsi struktur bangunan lain yang masuk ke dalam kategori risiko IV.	

Table 2. 18 Building and non-building risk categories (SNI 1762:2019) (continues)

b. Determine the earthquake priority factor (Ie)

The earthquake priority factor is determined based on the building risk category. In Table 2.19, the earthquake priority factor (Ie) is presented in accordance with SNI 1726:2019. In this work, the residential structure is included in the building risk category II so that the earthquake priority factor (Ie) is set at 1.50

Kategori risiko	Faktor keutamaan gempa, $\boldsymbol{I}_{\boldsymbol{e}}$
I atau II	1,0
III	1,25
IV	1,50

Table 2. 19 Earthquake priority factor

c. Determine the ground acceleration parameters (Ss and S1)

Soil acceleration parameters (Ss and S1) are influenced by soil properties at the project site. The values of Ss and S1 are used to determine the spectral response to the acceleration of the MCER earthquake at ground level, where Ss and S1 are respectively the parameters of the spectral response to the acceleration of the MCER earthquake which are mapped for a short period and a period of 1.0 second. In Table 2.6 and 2.7, respectively, the values of Ss and S1 are presented for the maximum considered risktargeted earthquake (MCER) in bedrock. In this work, the location of the building is in the city of Yogyakarta, so the values of $\mathrm{Ss}=1.0619 \mathrm{~g}$ and $\mathrm{S} 1=0.4875 \mathrm{~g}$ are used. It based on figure 2.16 and 2.17.

Figure 2. 16 Ss, maximum considered risk-targeted (MCER) earthquake on bedrock for a short period (0.2 seconds)
(Source: SNI 1726:2019)

Figure 2. 17 S1 maximum considered target risk earthquake (MCER) on bedrock for a period of 1 second (Source: SNI 1726:2019)

2.5 Structure Modeling

Structural modeling is carried out to determine the internal forces that occur in structural elements and structural behavior due to workloads. The results of the structural modeling are used as the basis for designing the required cross-sectional dimensions of the structural elements.

2.5.1 Structural System

The structure of the Assalafiyyah Islamic Boarding School is designed using a special moment-bearing frame system (SRPMK) with columns and beams as a moment reinforcement.

2.5.2 Structural Model

The structural design process is carried out based on the internal forces that occur in the structural elements due to the working ultimate load. This internal force can be obtained through structural modeling. Structural modeling is carried out in a threedimensional model (3D model). In structural modeling, truss elements are used to idealize beams and columns. While the floor slab is idealized as a deck.

2.5.2.1 Use Limit Performance

Service limit performance is evaluated based on a combination of service loads. One of the service limit parameters that will be evaluated is the deviation between floors due to the influence of the design earthquake for each of the orthogonal axes of the structure. The deviation between floors that occurs must be smaller than the allowable deviation between floors with the aim of limiting the occurrence of excessive steel melting and concrete cracking, preventing non-structural damage, and preventing excessive deviations that cause discomfort for building occupants

2.5.2.2 Ultimate Limit Performance

At the ultimate limit performance, the ultimate load combination is used to analyze the internal forces that occur in the structural elements. These internal forces are then used in the design process of structural elements such as slabs, beams, columns, foundations, etc. The ultimate limit performance will determine the safety of the structure in supporting the ultimate design load acting on the structure.

Structural Material Specification

The specifications of the materials used in the structural design are presented as follows:

1. Profile steel

- The profile steel used is BJ 37 with yield stress, fy $=240 \mathrm{MPa}$ and ultimate
stress, $\mathrm{fu}=370 \mathrm{MPa}$
- Steel's modulus of elasticity, Es $=200.000 \mathrm{MPa}$

2. Concrete

- The compressive strength of concrete at the age of 28 days, $\mathrm{fc}{ }^{\prime}=25 \mathrm{MPa}$ (bottom structure)
- Modulus of elasticity of concrete, $\mathrm{Ec}=4700 \sqrt{ } \mathrm{fc}=23500 \mathrm{MPa}$

3. Reinforcing steel

- Reinforcement steel with D > 12 mm , used deformed steel with yield stress, fy $=420 \mathrm{MPa}$
- Reinforcement steel with $\mathrm{D} \leq 12 \mathrm{~mm}$, plain reinforcing steel with yield
stress is used, $\mathrm{fy}=235 \mathrm{MPa}$
- Steel's modulus of elasticity, Es $=200.000 \mathrm{MPa}$

2.5.2.3 Structure Modeling Using ETABS application

The structural model is carried out with several idealizations. For example, floor slabs are idealized as shell elements, while beams and columns are idealized as truss elements. The structural modeling carried out is able to accommodate the effects of steel damage during an earthquake, namely by reducing the moment of inertia of the crosssection of the structural elements.

The moment of inertia of the plate is reduced to 25% of the initial moment of inertia. In beam structural elements, the moment of inertia is reduced to 35% of the initial moment of inertia. In addition, the torque is also reduced by 25% to balance the reduction value against the inertia of the structural elements. Whereas in the column, the moment of inertia is reduced to 70% of the initial moment of inertia. The structure of the restaurant is designed using a structural system in the form of a special moment resisting frame structure. The structure is modeled in 3D models (3D Models) using software assistance (see Figure 2.25).

Figure 2. 18 Dormitory and Educational building structure model Building A (left) and Building B (right).

- Definition of Material

The materials used in the structural analysis are as follows:

Table 2.20 Material Specification

Material	$\mathbf{f y}$	$\mathbf{f u}$	fc'
Steel	240 MPa	370 MPa	-
Concrete (K300)	-	-	25 MPa
Steel Reinforcement	420 MPa	-	-
Plain Steel Reinforcement	240 MPa	-	-

Figure 2. 19 Material Properties

Figure 2. 20 Material Properties

- Definition of Beam and Column Profile

The beam and column cross sections are defined as follows

Figure 2. 21 Section Properties

Example of Column Section Properties (H 300)

After the material and section properties are complete, the next step is to create a 3D model. The model accommodates all sizes of beams and columns, along with the reinforcement planned to be installed as shown in figure 2.29 .

Figure 2. 23 3D Model of Building A (left) and Building B (right)

- Giving Workload

Broadly speaking, the loads acting on this structure are divided into:

- Dead load (self weight of steel, wall load),
- Additional dead load (ceramic load, pipe, ceiling etc.)
- Live load (moving load)
- Earthquake load. (response spectrum)

A complete explanation of the loading is found in the Loading section of this report.

Earthquake load is modeled in the program with the response spectrum function. Calculations and quantities can be seen in the Input data - response spectrum section. After obtaining the spectrum response graph, the graph is then input into the program, as shown in Figure 2.32.

After the earthquake load has entered, a combination of loading is carried out which allows several extreme loads to work together.

- Providing Combinations and Loading Factors

The load combination used refers to the 2012 Earthquake SNI, in this report the discussion of the load combination is carried out in the Data Input - Load Combination section.

Figure 2. 26 Load Combination Input

2.6 Interpretation of Modeling Output

After all the forces are installed, several treatments on the structure are carried out such as giving a mass source and a diaphragm, after which the program is run. The result of running the program is in the form of internal forces acting on the beams and columns
of the structure. This force is the key in analyzing the strength of the structure itself. The force obtained in the running results can be seen in Figure 2.34

2.6.1 Inner Style Results

The styles that have been obtained are then imported into excel, and analyzed. Each structural element is checked for safety values. The checking results are also displayed in excel as in the attachment.

2.6.2 Structure Behavior Check

2.6.2.1 Structural Fundamental Period Check

In this work, the type of structure used is a moment-bearing steel frame so that the value of. is obtained $\mathrm{Ct}=0.0724$ dan $\mathrm{x}=0.8$. Next based on the value $\mathrm{SD} 1=0.589 \mathrm{~g}$ get coefficient $\mathrm{Cu}=1.4$. So that the value of $\mathrm{Ta}=0.926$ seconds dan $\mathrm{Cu} . \mathrm{Ta}=1.297$ seconds. Structural modeling result period value, $\mathrm{Tc}=0.713$ seconds ($\mathrm{Ta}<\mathrm{Tc}<\mathrm{Cu} . \mathrm{Ta}$). So the period of the structure used is $\mathrm{T}=0.926$ seconds.

2.6.2.2 Checking Modal Participation Mass Ratio

Based on the results of structural modeling, the capital participation mass ratio is presented in Table 2.17. The number of modes (modes) required to determine the natural vibrational variation for the structure must be sufficient to obtain a combined mass participation of at least 90% of the actual mass of each orthogonal horizontal direction of the response considered by the model, in accordance with Article 7.9.1 of SNI 1726:2019.Based on the results of structural modeling, it is found that in both directions involving 582 modes of vibration, it is sufficient to produce more than 90% of the actual mass in both X and Y directions (see Table 2.35).
(Building A)

Case	Mode	Sum UX	Sum UY
Modal	1	0.7732	0.0002
Modal	2	0.7739	0.7722
Modal	3	0.783	0.7886
Modal	4	0.8811	0.7886
Modal	5	0.8811	0.8807
Modal	6	0.8813	0.8814
Modal	7	0.883	0.8816
Modal	8	0.8843	0.8816
Modal	9	0.8843	0.8816
Modal	10	0.956	0.8837
Modal	11	0.9621	0.9284
Modal	12	0.9625	0.9642
Modal	13	0.9626	0.9642
Modal	14	0.9626	0.9642
Modal	15	0.9627	0.9643
Modal	16	0.9992	0.9643
Modal	17	0.9992	0.9993
Modal	18	0.9998	0.9998

Table 2.21 Capital Participation Mass Ratio
(Building B)

Case	Mode	Sum UX	Sum UY
Modal	1	0,2636	0,0003
Modal	2	0,8388	0,0032
Modal	3	0,8401	0,8379
Modal	4	0,8428	0,8386
Modal	5	0,8630	0,9016
Modal	6	0,9290	0,9196
Modal	7	0,9290	0,9652
Modal	8	0,9329	0,9656
Modal	9	0,9812	0,9656
Modal	10	0,9812	0,9812
Modal	11	0,9856	0,9813
Modal	12	0,9857	0,9988
Modal	13	0,9997	0,9988
Modal	14	0,9997	0,9997
Modal	15	0,9997	0,9999
Modal	16	0,9997	0,9999
Modal	17	0,9997	1
Modal	18	0,9999	1

Table 2.22 Capital Participation Mass Ratio (continue)

2.6.2.3 Basic Sliding Style Check (Base Shear)

In the seismic load analysis procedure of the variance response spectrum (RS), the base shear obtained must be compared with the base shear resulting from the equivalent lateral force (ELF) seismic load analysis procedure. The base shear of the variance response spectrum (RS) shall be not less than 85% of the equivalent lateral force (ELF) base shear. If this is not met then the force scale factor on the variance response spectrum (RS) must be recalculated. In the following, the results of the calculation and checking of the base shear are presented to determine whether or not it is necessary to recalculate the forcescale factor of the variance response spectrum (RS). The following is the base shear from ETABS.

2.6.2.4 Eccentricity Check

The building structure for all seismic design categories (KDS) must consider the design torque and the unexpected torque. Unexpected torque is applied to the structural model by providing 5\% eccentricity in the X and Y axes respectively. In this work, the building structure belongs to the seismic design category D so that the design torque and unexpected torque must be considered. Furthermore, if the building structure belongs to the seismic design category $\mathrm{C}, \mathrm{D}, \mathrm{E}$, and F and has torsional irregularities 1 a and 1 b , the unexpected torsional enlargement must be considered. In this work, there are no torsional irregularities 1 a and 1 b in the building structure under consideration so that the unexpected torsional enlargement can be neglected.

2.6.3. Inter-Story Deviation

Story response of the 3 -storey building with SRPMK concrete structure type, with design force deflection ($\delta x e$) which can be seen in the Story Response table (ETABS) as shown on figure 2.49.

EXI

EYI

The allowable deviation between levels / story can be seen in figure 2.50.

Struktur	Kategori		
	I atau II	III	IV
Struktur, selain dari struktur dinding geser batu bata, 4 tingkat atau kurang dengan dinding interior, partisi, langit-langit dan sistem dinding eksterior yang telah didesain untuk mengakomodasi simpangan antar tingkat.	$0,025 h_{s x}^{c}$	$0,020 h_{s x}$	$0,015 h_{s x}$
Struktur dinding geser kantilever batu bata	$0,010 h_{s x}$	$0,010 h_{s x}$	$0,010 h_{s x}$
Struktur dinding geser batu bata lainnya	$0,007 h_{s x}$	$0,007 h_{s x}$	$0,007 h_{s x}$
Semua struktur lainnya	$0,020 h_{s x}$	$0,015 h_{s x}$	$0,010 h_{s x}$

Table 2.24 Table of SNI Savings Between Permit Levels
Calculations on the deviation between story can use the equation below:

$$
\begin{align*}
& \delta_{\mathrm{x}}=\frac{\mathrm{Cd} \delta_{\mathrm{Xe}}}{\mathrm{I}_{\mathrm{e}}}=\frac{5.5 \delta_{\mathrm{Xe}}}{1.5}=5.5 \delta_{X E} \tag{2.1}\\
& \frac{\Delta_{\mathrm{a}}}{\rho}=\frac{0.015 \mathrm{~h}}{1.3}=0.0115 \mathrm{~h} \ldots \ldots \ldots . . \tag{2.2}
\end{align*}
$$

	Story	bx	h	yee	Δ	Al	\triangle Allowable ${ }^{\text {P }}$	Desc.
EX		mm	mm	mm	mm	mmin	mm	
	Roof	16000	4000	149,708	9,50068	0,60529	46,1538462	OK
	3rd Story	12000	4000	140,17	8,89539	1,12743	46,1538462	OK
	2nd Story	8000	4000	122,404	7,76796	1,77054	46,1538462	OK
	1st Story	4000	4000	94,5049	5,99743	5,99743	46,1538462	OK
	Base						-	-

Story	hx	h	yxe	Δ	Δi	$\Delta A l l o w a b l e$	Desc.
	mm	mm	mm	mm	mm	man	
Roof	16000	4000	218,582	13,8715	0,28282	46,1538462	OK
EY	Brd Story	12000	4000	214,125	13,5887	0,68651	46,1538462
2nd Story	8000	4000	203,307	12,9022	1,09873	46,1538462	OK
1st Story	4000	4000	185,994	11,8035	11,8035	46,1538462	OK
Base						-	-

Table 2.25 Result Recapitulation of Inter-Story Deviation

Based on the calculation above, it can be concluded that the deviation that occurs in this 3-storey structure does not exceed the permit deviation.

2.7 Roof Structure Design

2.7.1 Dormitory Roof

Table 2. 26 Profile Canal-C

- Specification

- C Channel Profile
- Thickness
- Section Area
- Unit Weight
- Ix
- Iy
- Zx (W3)
- Zy (W2)
- Bitumen roof mass
- Ceiling mass
- Truss Spacing
- Purlin Spacing $: 1.74$ meter
- α
: 50°

-	\varnothing	$: 0.9$
-	E	$: 200000$
-	Truss Weight	$: 79.849 \mathrm{~kg}$

2.7.1.1 Gording Design Plan

1. Gording Load

The calculation of the curtain load includes self-weight, roof weight, and ceiling weight so that the dead load (D) of the gording moment will be obtained. Own weight is taken as $8.72 \mathrm{~kg} / \mathrm{m}$. The calculation of the weight of the roof is calculated using the formula:
Roof weight $=\frac{\text { Purlin Spacing }}{\operatorname{Cos} a} \times$ Bitumen Roof Weight

$$
\begin{aligned}
& =\frac{1.74}{\operatorname{Cos} 50} \times 0.13 \\
& =0.3519 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

The calculation of ceiling weight is calculated using the formula:
Ceiling's weight $=$ Purlin Spacing \times ceiling weight

$$
\begin{aligned}
& =1.74 \times 0.2 \\
& =0.348 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

The calculation of Dead Load (D) is calculated using the formula:
Dead Load $=$ Weight of Gording + Roof + Ceiling

$$
\begin{aligned}
& =0.0855+0.3519+0.384 \\
& =0.785 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

The live load (P) is taken 1.0 kN .

2. Gording Moment Plan

The calculation of the gording moment plan includes the gording loads in the 2nd and 3rd axes directions. The gording load in the 2nd axis direction of this building uses the formula:

$$
\begin{aligned}
\mathrm{M}_{2, \mathrm{D}} & =\frac{1}{8} \mathrm{q} \sin \propto\left(\frac{\mathrm{~L}}{2}\right)^{2} \\
& =\frac{1}{8} \times 0.785 \sin 40\left(\frac{1.2}{3}\right)^{2} \\
& =0.0101 \mathrm{kN} / \mathrm{m} \\
\mathrm{M}_{2, \mathrm{~L}} & =\frac{1}{4} \mathrm{P} \sin \propto\left(\frac{\mathrm{~L}}{2}\right) \\
& =\frac{1}{4} 1 \sin 40 \propto\left(\frac{1.2}{2}\right)
\end{aligned}
$$

Gording Moment Plan

$$
\begin{aligned}
\mathrm{M}_{3, \mathrm{D}} & =\frac{1}{8} \times q \times \cos a \times L 2 \\
& =1 / 8 \times 0.785 \times \operatorname{COS} 50 \times 1.2^{2} \\
& =0.0909 \mathrm{knm} \\
& =\frac{1}{4} \times P \cos a \times L \\
& =1 / 4 \times 1 \times \operatorname{COS} 50 \times 1.2 \\
& =0.193 \mathrm{knm} \\
\mathrm{M}_{3, \mathrm{~L}} & =\frac{1}{8} \times q \times \sin a \times \frac{L}{32} \\
& =1 / 8 \times 0.785 \times \sin 40 \times 1.2 / 3^{2} \\
\mathrm{M}_{2, \mathrm{D}} & =0.0101 \mathrm{knm} \\
& =\frac{1}{4} \times P \times \sin a \times L / 3 \\
& =1 / 4 \times 1 \times \sin 40 \times 1.2 / 3 \\
& =0.0643 \\
\mathrm{M}_{2, \mathrm{~L}} & =1.4 M 3, D \\
& =1.4 \times 0.0909 \\
\mathrm{M}_{3, \mathrm{U}} & =0.127 \mathrm{knm} \\
& =1.2 \mathrm{M} 3, D+1.6 \mathrm{M} 3, L \\
\mathrm{M}_{3, \mathrm{U}} & =1.2 \times 0.0909+1.6 \times 0.193 \\
& =0.418 \mathrm{knm}
\end{aligned}
$$

Choose the big one that is 0.418 knm
$\mathrm{M}_{2, \mathrm{U}}$

$$
\begin{aligned}
& =1.4 M 2, D \\
& =1.4 \times 0.0101 \\
& =0.014 \\
& =1.2 M 2, D+1.6 M 2, L \\
& =1.2 \times 0.0101+1.6 \times 0.0643 \\
& =0.115
\end{aligned}
$$

$\mathrm{M}_{2, \mathrm{U}}$

Choose the big one that is 0.115 knm

Stress

$f b=\frac{\mathrm{M} 3, \mathrm{U}}{\emptyset \mathrm{W} 3}+\frac{\mathrm{M} 2, \mathrm{U}}{\emptyset \mathrm{Ww}} \leq F y$ with value $\emptyset=0.9$
$=0.418 /(0.9 \times 67600)+0.115 /(0.9 \times 15000)$
$=0.0000153794 \times 1000000$
$=15.37939577$ (because $111.439 \leq 240 \mathrm{MPa}$, the C profile stress is safe)

Gording Deflection Check

$$
\begin{aligned}
\delta 2= & \frac{5}{384} \times \frac{q \cos \alpha L^{4}}{E I}+\frac{1}{48}+\frac{P \cos \alpha L^{3}}{E I} \\
\delta 2= & 5 / 384 \times\left(0.785 \times \cos 50^{\circ} \times 1200^{4} / 200000 \times 6760000\right)+ \\
& (1 / 48) \times\left(1 \times \cos 50^{\circ}\right) \times\left(1200^{3}\right) / 20000 \times 6760000 \\
= & 0.0101 \\
\delta 3= & \frac{5}{384} \times \frac{q \sin \alpha}{E I}+\left(\frac{1}{3}\right)^{4}+\frac{1}{8} \frac{P \sin \alpha}{E I}+\left(\frac{L}{3}\right)^{3}
\end{aligned}
$$

$\delta 3=5 / 384 \times\left(0.785 \times \sin 50^{\circ}\right) /(200000 \times 800000) \times(1200 / 3)^{4}+(1 / 48 \times 1 \times \sin$
$50) /(200000 \times 800000) \times(1200 / 3)^{3}$
$=0.0013$
$\delta=\sqrt{\delta 2^{2}+} \delta 3^{2} \leq \frac{1}{240} L$
$\delta=\sqrt{ } 0.0101^{2}+0,0013^{2}$
$=0.0102 \leq 5.000$
because the gording deflection is $2.0618 \leq 12.5$ then the gording deflection is safe.

2.7.1.2 Sagrod Design Plan

Number of gording (n) under nok $=4$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{t}, \mathrm{D}} & =\mathrm{n}\left(\frac{L}{3} \times q \times \sin \alpha\right) \\
& =4(1.2 / 3 \times 0.785 \times \sin 50) \\
& =0.963 \mathrm{kN} \\
\mathrm{~F}_{\mathrm{t}, \mathrm{~L}} & =\frac{n}{2} \times P \times \sin \alpha \\
& =4 / 2 \times 1 \times \sin 50 \\
& =2 \mathrm{kN}
\end{aligned}
$$

Load Combination

$$
\begin{aligned}
\mathrm{F}_{\mathrm{t}, \mathrm{U}} & =1.4 \mathrm{Ft}, D \\
& =1.4 \times 0.963 \\
& =0.963 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{t}, \mathrm{U}} & =1.2 F t, D+1.6 F t, D \\
& =(1.2 \times 0.963)+(1.6 \times 2) \\
& =3.6065 \mathrm{kN}
\end{aligned}
$$

selected $\mathrm{F}_{\mathrm{t} . \mathrm{U}}=3.6065 \mathrm{kN}$

Sagrod Bar Area

$$
\begin{aligned}
\text { Asr } & =\frac{F t .10^{3}}{\emptyset F y} \\
& =\frac{3.6065 \times 10^{3}}{0.9 \times 240} \\
& =16,6969 \mathrm{kN}
\end{aligned}
$$

2.7.1.3 Truss Load Plan

1. Load P1

Truss own weight $\quad=\frac{\alpha}{2} \times$ weight truss

$$
\begin{aligned}
& =2 / 2 \times 0.5 \\
& =0.5 \mathrm{kN}
\end{aligned}
$$

Gording Weight $=L \times$ gording weight per m^{\prime}
$=4 \times 0.0855$
$=0.34 \mathrm{kN}$
Roof Weight $\quad=\frac{\frac{a}{2}+b}{\cos \alpha} \times L \times$ roof weight
$=2 / 2+\cos 50 \times 1.2 \times 0,3519$
$=1.4171 \mathrm{kN}$
Ceiling Weight $\quad=\left(\frac{a}{b}+b\right) \times L \times$ ceiling weight
$=(2 / 2+1.1570) \times 1.2 \times 0.348$
$=0.90077059 \mathrm{kN}$
Total (Load P1) $=3.159844694 \mathrm{kN}$

2. Load P2

Truss own weight $=a \times$ truss weight

$$
=2 \times 0.5
$$

$$
=1 \mathrm{kN}
$$

Gording Weight $\quad=L \times$ gording weight per m^{\prime}
$=1.2 \times 0.0855$
$=0.10 \mathrm{kN}$
Roof Weight

$$
=\frac{a}{\cos \alpha} \times L \times \text { roof weight }
$$

$$
\begin{aligned}
& =(2 / \cos 50) \times 1.2 \times 0.3519 \\
& =1.313919774 \mathrm{kN} \\
\text { Ceiling Weight } & =a \times L \times \text { ceiling weight } \\
& =2 \times 1.2 \times 0.348 \\
& =0.8352 \mathrm{kN} \\
\text { Total }(\text { Load P2) } & =3.251719774 \mathrm{kN}
\end{aligned}
$$

3. Load P3

$$
\begin{aligned}
\text { Truss own weight } & =a \times \text { truss weight } \\
& =2 \times 0.5 \\
& =1 \mathrm{kN} \\
\text { Gording Weight } & =2 \times L \times \text { gording weight per } m^{\prime} \\
& =2 \times 1.2 \times 0.855 \\
& =0.21 \mathrm{kN} \\
\text { Roof Weight } & =\frac{a}{\cos \alpha} \times L \times \text { roof weight } \\
& =(2 / \cos 50) \times 1.2 \times 0.3519 \\
& =1.313919774 \mathrm{kN}
\end{aligned}
$$

Ceiling Weight $\quad=a \times L \times$ ceiling weight

$$
=2 \times 1.2 \times 0.348
$$

$$
=0.8352 \mathrm{kN}
$$

Total (Load P3) $=3.354319774 \mathrm{kN}$

Wind Load

Load W1 $=\frac{\left(\frac{a}{2}+b\right)}{\cos a} \times C t i \times L \times Q w$

$$
\begin{aligned}
& =\frac{\left(\frac{2}{2}+1\right)}{\cos 50} \times 0.4 \times 1.2 \times 0.25 \\
& =0.3734 \mathrm{kN}
\end{aligned}
$$

Load W2

$$
=\frac{a}{\cos a} \times C t i \times L \times Q w
$$

$$
=\frac{2}{\cos 50} \times 0.4 \times 1.2 \times 0.25
$$

$$
=0.3133 \mathrm{kN}
$$

Load W3 $=\frac{1}{2} \frac{a}{\cos } \times C t i \times L \times Q w$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{2}{\cos 50} \times 0.4 \times 1.2 \times 0.25 \\
& =0.1566 \mathrm{kN} \\
\text { Load W4 } & =\frac{1}{2} \frac{a}{\cos a} \times C i s \times L \times Q w \\
& =\frac{1}{2} \times \frac{2}{\cos 50} \times(-0.6) \times 1.2 \times 0.25 \\
& =-0.2350 \mathrm{kN} \\
& =\frac{a}{\cos a} \times C i s \times L \times Q w \\
& =\frac{2}{\cos 50} \times(-0.6) \times 1.2 \times 0.25 \\
& =-0.4699 \mathrm{kN} \\
\text { Load W5 W6 } & =\frac{\left(\frac{a}{2}+b\right)}{\cos a} \times C i s \times L \times Q w \\
& =\frac{\frac{2}{2}+1}{\cos 50} \times(-0.6) \times 1.2 \times 0.25 \\
& =-0.3831 \mathrm{kN}
\end{aligned}
$$

2.7.2 Dormitory Second Roof

- Spesification
- C Channel Profile : C $200 \times 75 \times 20$
- Thickness : 2
- Area:
- Unit Weight : 8.72
- Ix : $6760000 \mathrm{~mm}^{4}$
- Iy : $800000 \mathrm{~mm}^{4}$
- Zx (W3) : $67600 \mathrm{~mm}^{3}$
- Zy (W2) : $15000 \mathrm{~mm}^{3}$
- Bitumen Roof Weight : $0.13 \mathrm{kN} / \mathrm{m}$
- Length : 2 m
- Purlin Spacing : 1.74 m
- $\alpha: 35^{\circ}$
- \quad : 0.9
- L: 1.2 m
- E: 200000

2.7.2.1 Gording Design Plan

Gording's weight $\quad=0.0855 \mathrm{knm}$
Roof's weight $\quad=\frac{\text { Purlin Spacing }}{\cos a} \times$ Bitumen Roof Weight

$$
\begin{aligned}
& =2 / \operatorname{COS} 35 \times 0.49 \\
& =1.1964 \mathrm{knm} \\
& =\text { Purlin Spacing } \\
& =2 \times 0.2 \\
& =0.4 \mathrm{knm}
\end{aligned}
$$

Ceiling's weight $\quad=$ Purlin Spacing $x 0.2$

Dead Load (D) plan gording q

Live Load (P)

$$
\begin{aligned}
& =\text { Weight of Gording }+ \text { Roof }+ \text { Ceiling } \\
& =0.0855+1.1964+4 \\
& =1.682 \mathrm{knm}
\end{aligned}
$$

$$
=1 \quad \mathrm{knm}
$$

GORDING MOMENT PLAN

$$
\begin{aligned}
\mathrm{M}_{3, \mathrm{D}} & =\frac{1}{8} \times q \times \cos a \times L^{2} \\
& =1 / 8 \times 1.682 \times \cos 35 \times 4^{2} \\
& =0.2480 \mathrm{knm} \\
& =\frac{1}{4} \times P \cos a \times L \\
\mathrm{M}_{3, \mathrm{~L}} & =1 / 4 \times 1 \times \operatorname{Cos} 35 \times 1.2 \\
& =0.246 \mathrm{knm}
\end{aligned}
$$

$M_{2, D}$
$=\frac{1}{8} \times q \times \sin a \times \frac{L^{2}}{3}$
$=1 / 8 \times 1.682 \times \sin 35 \times 1.2 / 3^{2}$
$=0.0193 \mathrm{knm}$
$=\frac{1}{4} \times P \times \sin a \times \frac{L}{3}$
$=1 / 4 \times 1 \times \sin 35 \times 1.2 / 3$
$=0.0574 \mathrm{knm}$

$$
\begin{aligned}
\mathrm{M}_{3, u} & =1.4 M 3, D \\
& =1.4 \times 0.2480 \\
& =0.347 \mathrm{knm} \\
& =1.2 M 3, D+1.6 M 3, L \\
\mathrm{M}_{3, \mathrm{u}} & =1.2 \times 0.2480+1.6 \times 0.246 \\
& =0.691 \mathrm{knm}
\end{aligned}
$$

Choose the big one that is 0.691 knm

$$
\begin{aligned}
\mathrm{M}_{2, \mathrm{U}} & =1.4 M 2, D \\
& =1.4 \times 0.0193 \\
& =0.027 \\
& =1.2 M 2, D+1.6 M 2, L \\
\mathrm{M}_{2, \mathrm{U}} & =1.2 \times 0.0193+1.6 \times 0.0574 \\
& =0.115
\end{aligned}
$$

Choose the big one that is 0.115 knm

STRESS

$f b=\frac{\mathrm{M} 3, \mathrm{U}}{\emptyset \mathrm{W} 3}+\frac{\mathrm{M} 2, \mathrm{U}}{\emptyset \mathrm{Ww}} \leq F y$ with value $\varnothing=0.9$
$=0.691 /(0.9 \times 67600)+0.115 /(0.9 \times 15000)$
$=0.0000198669 \times 1000000$
$=19.86689493$ (because $220.8624 \leq 240 \mathrm{MPa}$, the C profile stress is safe)

GORDING DEFLECTION CHECK

$\delta 2=\frac{5}{384} \times \frac{q \cos \alpha L^{4}}{E I}+\frac{1}{48}+\frac{P \cos \alpha L^{3}}{E I}$
$\delta 2=5 / 384 \times\left(1.682 \times \cos 35^{\circ} \times 4000^{4} / 200000 \times 6760000\right)+$
$(1 / 48) \times\left(1 \times \cos 35^{\circ}\right) \times\left(4000^{3}\right) / 20000 \times 6760000$
$=3.3975$
$\delta 3=\frac{5}{384} \times \frac{q \sin \alpha}{E I}+\left(\frac{1}{3}\right)^{4}+\frac{1}{8} \frac{P \sin \alpha}{E I}+\left(\frac{L}{3}\right)^{3}$
$\delta 3=5 / 384 \times\left(1.682 \times \sin 35^{\circ}\right) /(200000 \times 800000) \times(4000 / 3)^{4}+(1 / 48 \times 1 \times \sin$ $35) /(200000 \times 800000) \times(4000 / 3)^{3}$
$=1.2567$
$\delta=\sqrt{\delta 2^{2}+} \delta 3^{2} \leq \frac{1}{240} L$
$\delta=\sqrt{ } 1.2567^{2}+1,2567^{2}$
$=3.6225 \leq 16.667$ because the gording deflection is $7.5087 \leq 16.667$ then the gording deflection is safe.

2.7.2.2 Sagrod Design Plan

Number of gording (n) under nok $=2$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{t}, \mathrm{D}} & =\mathrm{n}\left(\frac{L}{3} \times q \times \sin \alpha\right) \\
& =2(1.2 / 2 \times 1.682 \times \sin 35) \\
& =1.158 \mathrm{kN} \\
\mathrm{~F}_{\mathrm{t}, \mathrm{~L}} & =\frac{n}{2} \times P \times \sin \alpha \\
& =2 / 2 \times 1 \times \sin 35 \\
& =1 \quad \mathrm{kN}
\end{aligned}
$$

LOADING COMBINATION

$$
\begin{aligned}
\mathrm{F}_{\mathrm{t}, \mathrm{U}} & =1.4 \mathrm{Ft}, \mathrm{D} \\
& =1.4 \times 1.158 \\
& =1.6207 \mathrm{kN} \\
\mathrm{~F}_{\mathrm{t}, \mathrm{U}} & =1.2 F t, D+1.6 F t, D \\
& =(1.2 \times 1.158)+(1.6 \times 1.158) \\
& =2.3069 \mathrm{kN}
\end{aligned}
$$

selected $\mathrm{F}_{\mathrm{t} . \mathrm{U}}=2.3069 \mathrm{kN}$

AREA SAGROD BAR
Asr $=\frac{F t .10^{3}}{\varnothing F y}$
$=2.3069 \times 10^{3} / 0.9 \times 240$
$=10.6799 \mathrm{kN}$

2.7.2.3 Truss Load Plan

Load P1 :
Truss own weight $\quad=\frac{\alpha}{2} \times$ weight truss

$$
\begin{aligned}
& =2 / 2 \times 14 \\
& =14 \mathrm{kN}
\end{aligned}
$$

Gording Weight $\quad L \times$ gording weight per $m^{\prime}=$

$$
=4 \times 0.0855
$$

$$
=0.34 \mathrm{kN}
$$

Roof Weight

$$
\begin{aligned}
& =\frac{\frac{a}{2}+b}{\cos \alpha} \times L \times \text { roof weight } \\
& =2 / 2+\cos 35 \times 1.2 \times 1.1964 \\
& =3.5052 \mathrm{kN}
\end{aligned}
$$

$$
\text { LOAD P3 } \quad=32.67036348 \mathrm{kN}
$$

WIND LOAD
Load W1 $=\frac{\left(\frac{a}{2}+b\right)}{\cos a} \times C t i \times L \times Q w$
$=(2 / 2+1) / \cos 50 \times 0.4 \times 1.2 \times 0.25$
$=0.3734 \mathrm{kN}$
Load W2
$=\frac{a}{\cos a} \times C t i \times L \times Q w$
$=2 / \cos 50 \times 0.4 \times 1.2 \times 0.25$
$=0.3133 \mathrm{kN}$
Load W3 $=\frac{1}{2} \frac{a}{\cos } \times C t i \times L \times Q w$
$=1 / 2 \times 2 / \cos 50 \times 0.4 \times 1.2 \times 0.25$
$=0.1566 \mathrm{kN}$
Load W4 $\quad=\frac{1}{2} \frac{a}{\cos a} \times C i s \times L \times Q w$
$==1 / 2 \times 2 / \cos 50 \times(-0.6) \times 1.2 \times 0.25$
$=-0.2350 \mathrm{kN}$
Load W5 $=\frac{a}{\cos a} \times C i s \times L \times Q w$
$=2 / \cos 50 \times(-0.6) \times 1.2 \times 0.25$
$=-0.4699 \mathrm{kN}$
Load W6 $=\frac{\left(\frac{a}{2}+b\right)}{\cos a} \times C i s \times L \times Q w$
$=(2 / 2+1) / \cos 50 \times(-0.6) \times 1.2 \times 0.25$
$=-0.3831 \mathrm{kN}$

2.7.3 Educational Roof

- Specification
- Profil Kanal C

C $200 \times 75 \times 20$

- Thickness

2

- Area
11.11
- Unit Weight
8.72
- Ix
- Iy
- Zx (W3)
- Zy (W2)
- Bitumen Roof Weight

6760000	$\mathrm{~mm}^{4}$
800000	$\mathrm{~mm}^{4}$
67600	$\mathrm{~mm}^{3}$
15000	$\mathrm{~mm}^{3}$
0.13	kN / m

- L
- Purlin Spacing
- α
- Ø
- L

1200
1.8

40 degree
0.9
1.2
mm
m

- E

200000

WEIGHT TRUSS

H
$=3.6$
Tilt
$=7.2$
Overstek
$=1.8 \times \operatorname{COS} 40$
$=1.378879998$
$=7.2+1.378879998$
$=8.578879998$
$=1.378879998 \times 8.578879998$
$=74.80783358$

2.7.3.1 Gording Design Plan

Gording's weight $=0.0855 \quad \mathrm{knm}$
Roof's weight $\quad=\frac{\text { Purlin Spacing }}{\cos a} \times$ Bitumen Roof Weight
$=1.74 / \operatorname{COS} 40 \times 0.13$
$=0.3055 \mathrm{knm}$
Ceiling's weight $\quad=$ Purlin Spacing $x 0.2$

$$
=0.36 \mathrm{knm}
$$

Dead Load (D) plan gording q

$$
\begin{aligned}
& =\text { Weight of Gording }+ \text { Roof }+ \text { Ceiling } \\
& =0.0855+0.3055+0.36 \\
& =0.751 \mathrm{knm} \\
\text { Live Load }(\mathrm{P}) \quad & =1 \quad \mathrm{knm}
\end{aligned}
$$

GORDING MOMENT PLAN

$M_{3, D}$
$=\frac{1}{8} \times q \times \cos a \times L 2$
$=1 / 8 \times 0.751 \times \cos 40 \times 1.2^{2}$
$=0.1035 \mathrm{knm}$
$=\frac{1}{4} \times P \cos a \times L$
$=1 / 4 \times 1 \times \cos 40 \times 1.2$
$=0.230 \mathrm{knm}$
$\mathrm{M}_{3, \mathrm{~L}} \quad=\frac{1}{4} \times P \cos a \times L$
$\mathrm{M}_{2, \mathrm{D}} \quad=\frac{1}{8} \times q \times \sin a \times \frac{L^{2}}{3}$
$=1 / 8 \times 0.751 \times \sin 40 \times 1.2 / 3^{2}$
$=0.0097 \mathrm{knm}$
$M_{2, L}$
$=\frac{1}{4} \times P \times \sin a \times \frac{L}{3}$
$=1 / 4 \times 1 \times \sin 40 \times 1.2 / 3$
$=0.0643$
$\mathrm{M}_{3, \mathrm{U}} \quad=1.4 \mathrm{M} 3, \mathrm{D}$
$=1.4 \times 0.1035$
$=0.145 \mathrm{knm}$
$\mathrm{M}_{3, \mathrm{U}} \quad=1.2 \mathrm{M} 3, D+1.6 \mathrm{M} 3, L$
$=1.2 \times 0.1035+1.6 \times 0.230$
$=0.492 \mathrm{knm}$
Choose the big one that is 0.492 knm

$$
\begin{aligned}
\mathrm{M}_{2, \mathrm{U}} & =1.4 M 2, D \\
& =1.4 \times 0.0097 \\
& =0.014 \\
& =1.2 M 2, D+1.6 M 2, L \\
\mathrm{M}_{2, \mathrm{U}} & =1.2 \times 0.0097+1.6 \times 0.0643 \\
& =0.114
\end{aligned}
$$

Choose the big one that is 0.114 knm

STRESS
$f b=\frac{\mathrm{M} 3, \mathrm{U}}{\emptyset \mathrm{W} 3}+\frac{\mathrm{M} 2, \mathrm{U}}{\emptyset \mathrm{Ww}} \leq F y$ with value $\emptyset=0.9$
$=0.492 /(0.9 \times 67600)+0.114 /(0.9 \times 15000)$
$=0.0000165625 \times 1000000$
$=16.56250853$ (because $111.439 \leq 240 \mathrm{MPa}$, the C profile stress is safe)

GORDING DEFLECTION CHECK

$\delta 2=\frac{5}{384} \times \frac{q \cos \alpha L^{4}}{E I}+\frac{1}{48}+\frac{P \cos \alpha L^{3}}{E I}$
$\delta 2=5 / 384 \times\left(0.751 \times \cos 40^{\circ} \times 1200^{4} / 200000 \times 6760000\right)+$
$(1 / 48) \times\left(1 \times \cos 40^{\circ}\right) \times\left(1200^{3}\right) / 20000 \times 6760000$
$=0.0115$
$\delta 3=\frac{5}{384} \times \frac{q \sin \alpha}{E I}+\left(\frac{1}{3}\right)^{4}+\frac{1}{8} \frac{P \sin \alpha}{E I}+\left(\frac{L}{3}\right)^{3}$
$\delta 3=5 / 384 \times\left(0.751 \times \sin 40^{\circ}\right) /(200000 \times 800000) \times(1200 / 3)^{4}+(1 / 48 \times 1 \times \sin$ 40) / (200000 x 800000) $x(1200 / 3)^{3}$
$=0.0010$
$\delta=\sqrt{\delta 2^{2}+\delta} 3^{2} \leq \frac{1}{240} L$
$\delta=\sqrt{ } 0.0010^{2}+0,0115^{2}$
$=0.0116 \leq 5.000$ because the gording deflection is $2.0618 \leq 12.5$ then the gording deflection is safe.

2.7.3.2 Sagrod Design Plan

Number of gording (n) under nok $=4$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{t}, \mathrm{D}} & =\mathrm{n}\left(\frac{L}{3} \times q \times \sin \alpha\right) \\
& =4(1.2 / 3 \times 0.751 \times \sin 40) \\
& =0.772 \mathrm{kN} \\
\mathrm{~F}_{\mathrm{t}, \mathrm{~L}} & =\frac{n}{2} \times P \times \sin \alpha \\
& =4 / 2 \times 1 \times \sin 40 \\
& =1 \mathrm{kN}
\end{aligned}
$$

LOADING COMBINATION

$$
\begin{aligned}
\mathrm{F}_{\mathrm{t}, \mathrm{U}} & =1.4 \mathrm{Ft}, D \\
& =1.4 \times 0.772 \\
& =1.0813 \mathrm{kN} \\
\mathrm{~F}_{\mathrm{t}, \mathrm{U}} & =1.2 F t, D+1.6 \mathrm{Ft}, D \\
& =(1.2 \times 0.772)+(1.6 \times 1) \\
& =2.9837 \mathrm{kN}
\end{aligned}
$$

selected $\mathrm{F}_{\mathrm{t} . \mathrm{U}}=2.9837 \mathrm{kN}$

AREA SAGROD BAR

$$
\begin{aligned}
\text { Asr } & =\frac{F t .10^{3}}{\emptyset F y} \\
& =2.9837 \times 10^{3} / 0.9 \times 240 \\
& =138135 \mathrm{kN}
\end{aligned}
$$

2.7.3.3 Truss Load Plan

Load P1 :
Truss own weight $\quad=\frac{\alpha}{2} \times$ weight truss

$$
\begin{aligned}
& =2 / 2 \times 0.5 \\
& =0.5 \mathrm{kN}
\end{aligned}
$$

Gording Weight $\quad L \times$ gording weight per m^{\prime}

$$
\begin{aligned}
& =4 \times 0.0855 \\
& =0.34 \mathrm{kN}
\end{aligned}
$$

Roof Weight $\quad=\frac{\frac{a}{2}+b}{\cos \alpha} \times L \times$ roof weight

$$
=2 / 2+1.37888 \times \cos 40 \times 1.2 \times 0.3055
$$

$$
=1.1383 \mathrm{kN}
$$

Ceiling Weight

$$
\begin{aligned}
& =\left(\frac{a}{b}+b\right) \times L \times \text { ceiling weight } \\
& =(2 / 2+1.37888) \times 1.2 \times 0.36 \\
& =1.027676159 \mathrm{kN}
\end{aligned}
$$

$$
\text { LOAD P1 } \quad=3.007989183 \mathrm{Kn}
$$

Load P2
Truss own weight $\quad=a \times$ truss weight
$=2 \times 0.5$

WIND LOAD

$$
\begin{aligned}
\text { Load W1 } & =\frac{\left(\frac{a}{2}+b\right)}{\cos a} \times C t i \times L \times Q w \\
& =(2 / 2+1) / \cos 40 \times 0.4 \times 1.2 \times 0.25 \\
& =0.3133 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Load W2 }=\frac{a}{\cos a} \times C t i \times L \times Q w \\
&=2 / \cos 40 \times 0.4 \times 1.2 \times 0.25 \\
&=0.3133 \mathrm{kN} \\
&=\frac{1}{2} \frac{a}{\cos } \times C t i \times L \times Q w \\
&=1 / 2 \times 2 / \cos 50 \times 0.4 \times 1.2 \times 0.25 \\
&=0.1566 \mathrm{kN} \\
& \text { Load W3 } \\
& \text { Load W4 } \frac{1}{2} \frac{a}{\cos a} \times C i s \times L \times Q w \\
&==1 / 2 \times 2 / \cos 40 \times(-0.6) \times 1.2 \times 0.25 \\
&=-0.2350 \mathrm{kN} \\
& \text { Load W5 }=\frac{a}{\cos a} \times C i s \times L \times Q w \\
&=2 / \cos 40 \times(-0.6) \times 1.2 \times 0.25 \\
&=-0.4699 \mathrm{kN} \\
& \text { Load W6 }=\frac{\left(\frac{a}{2}+b\right)}{\cos a} \times C i s \times L \times Q w \\
&=(2 / 2+1) / \cos 40 \times(-0.6) \times 1.2 \times 0.25 \\
&=-0.3831 \mathrm{kN}
\end{aligned}
$$

2.7.4 Truss Element Design Planning

In planning the truss design element, it needs to do modelling work on SAP2000 Software to obtain some data that needed in calculations. Designing the truss elements for dormitory building and educational building in SAP2000 Software, is using 2L profiles with dimensions $60 \times 60 \times 6$ (See figure 2.40). Another needed data in the calculation is obtained from the profile table, where it can be seen in figure 2.40. Calculation of truss element design planning includes compression bar and tension bar.

Sectional Area, Unit Weight and Sectional Charneteristic

Table 2.27 Profile L

2.7.4.1. Educational Roof

1. Exterior Compression Bar
a. Bending Check

Calculation of bending checks can use the formula below:
$\lambda=\frac{\mathrm{b}}{\mathrm{t}}$
$\lambda r=0.45 \sqrt{\frac{\mathrm{E}}{\mathrm{Fy}}}$
If $\lambda<\lambda r$ so the cross section is non slender. But if on the contrary, it is categorized as a slim cross section.

The result of the calculation formulas (2.3) and (2.4) are as follows:

Known:
Compression bar $=2 \mathrm{kN}$
Tension bar $\quad=46.032 \mathrm{kN}$
$\lambda=\frac{60}{6}$
$=10$
$\lambda \mathrm{r}=0.45 \sqrt{\frac{200.000}{240}}$
$=12.9904$
So, it can be concluded that it is included in the non-slim cross-section.
b. Bending check ($\mathrm{X}-\mathrm{X}$ axis)

Calculation of bending checks about the $\mathrm{x}-\mathrm{x}$ axis using the formula :
$\frac{\mathrm{KL}}{\mathrm{rx}}$
$\mathrm{Fe}=\frac{\pi^{2} \mathrm{E}}{\left(\frac{\mathrm{KL}}{\mathrm{r}}\right)^{2}}$
$4,71 \sqrt{\frac{\mathrm{E}}{\mathrm{Fy}}}$
Calculation result from formulas 2.51, 2.52, 2.53 that are :
$\frac{\mathrm{KL}}{\mathrm{rx}}=\frac{2 \times 1031.7}{18.2}=113.374$
$\mathrm{Fe}=\frac{\pi^{2} \times 200.000}{134,1428^{2}}=153.57 \mathrm{MPa}$
$4,71 \sqrt{\frac{200.000}{240}}=135.97$
It can be seen that $\frac{\mathrm{KL}}{\mathrm{rx}}>4,71 \sqrt{\frac{\mathrm{E}}{\mathrm{Fy}}}$ so, F_{cr} is taken from the equation:
$\mathrm{F}_{\mathrm{cr}}=0,877 \mathrm{Fe}$
$=0,877 \times 153.57$
$=134.68 \mathrm{Mpa}$
c. Torsion bending check

Compressed structural components are connected using bolts so it is necessary to know the a / r value using the formula:
$\frac{\mathrm{a}}{\mathrm{r}}$.
$\frac{\mathrm{a}}{\mathrm{r}}=\frac{1031.7}{18.2}=56.6868$ because of $\mathrm{a} / \mathrm{r}<40$ then use the equation:
$\left(\frac{\mathrm{KL}}{\mathrm{r}}\right)_{\mathrm{m}}=\sqrt{\left(\frac{\mathrm{KL}}{\mathrm{r}}\right)^{2}+\left(\frac{\mathrm{K}_{\mathrm{i}} \mathrm{a}}{\mathrm{r}_{\mathrm{i}}}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{(113.374)^{2}+(0,5 \times 56.6868)^{2}} \\
& =116.863
\end{aligned}
$$

The result of $\left(\frac{\mathrm{KL}}{\mathrm{r}}\right)_{\mathrm{m}}>4.71 \sqrt{\frac{\mathrm{E}}{\mathrm{Fy}}}$ so, $\mathrm{F}_{\text {cry }}$ can use equation (2.8) while to find out the value of Fe then using formula (2.9) with result 144.536 Mpa . Thus Fcry obatained result is 126.758 Mpa. Fcrz value can use the formula :
$\mathrm{F}_{\mathrm{crz}}=\left(\frac{\mathrm{GJ}}{\mathrm{A} \times \mathrm{r} 0}\right)$

$$
\begin{align*}
& \mathrm{F}_{\mathrm{crz}}=\left(\frac{77.200 \times 2673}{1382 \times 1085.02}\right) \tag{2.11}\\
& =137.617 \mathrm{MPa}
\end{align*}
$$

F_{cr} for doubled angled structural components using formula below :

$$
\begin{equation*}
\mathrm{F}_{\mathrm{cr}}=\left(\frac{F c r y+F c r z}{2 H}\right)\left[1-\sqrt{1-\frac{4 \cdot F_{c r y \cdot F r c z \cdot H}}{\left(F_{c r y}+F_{c r z}\right)^{2}}}\right] . \tag{2.12}
\end{equation*}
$$

$=\left(\frac{126.758+136.617}{2 \times 0,8102}\right)\left[1-\sqrt{1-\frac{4 \times 126.758 \times 136.617 \times 0.8102}{(126.758+136.617)^{2}}}\right]$
$=91.8198 \mathrm{MPa}$
d. Compressive Strength Design

It is known that Fcr on bending check is 134.68 Mpa and Fcr on torsion bending check is 91.8198 Mpa , so Fcr is chosen which has a smaller value of 91.8198 MPa . Thus the design compressive strength value can be calculated using the formula:

$$
\begin{align*}
& \emptyset_{\mathrm{c}} \mathrm{P}_{\mathrm{n}}=0,9 \times \mathrm{F}_{\mathrm{cr}} \times \mathrm{A}_{\mathrm{g}} \ldots . \tag{2.13}\\
& =0,9 \times 91.8198 \times 1382 \\
& =114.206 \mathrm{kN}
\end{align*}
$$

The result show that $\emptyset_{\mathrm{c}} \mathrm{P}_{\mathrm{n}}>$ Maximum compressive force (2 kN) so the design compressive strength is safe.
2. Interior Compression Bar

The interior compression rod calculations are generally the same as the exterior compression bar calculations. However, because this calculation is carried out on the interior, there will be some differences in the data which will affect the results.

a. Bending check

It is known that the value of the compression bar is 16.8 kN and the tension bar is 17.092 kN . Therefore, the calculation of bending checks can use formula (2.3) with a result of 10 and formula (2.4) with 12.99. It can be seen that $\lambda<\lambda$ r, it can be concluded that the section is included in the category of non-slim section.
b. Bending check ($\mathrm{X}-\mathrm{X}$ axis)

This calculation follows formula (2.5) with result 279.692, formula (2.6) with result 25.233 Mpa , and formula (2.7) with result 135.966 . It can be seen that $\frac{\mathrm{KL}}{\mathrm{rx}}>4,71 \sqrt{\frac{\mathrm{E}}{\mathrm{Fy}}}$ so, F_{cr} is taken from equation (2.8) With result 22.1293 MPa .
c. Torsion bending check

Compressed structural components are connected using bolts so it is necessary to know the a / r value using the formula (2.9) with result 139.846 where $\mathrm{a} / \mathrm{r}>40$ so using equation (2.10) with result 288.3. Result known $\left(\frac{\mathrm{KL}}{\mathrm{r}}\right)_{\mathrm{m}}>4,71 \sqrt{\frac{\mathrm{E}}{\mathrm{Fy}}}$ so, $\mathrm{F}_{\text {cry }}$ using equation (2.8) while to find out the value of Fe then using formula with result 23.7487 Mpa . Thus, Fcry obtained result is 20.8276 Mpa . Fcrz value can use the formula (2.11) with result 137.617 MPa .
$\mathrm{F}_{\text {cr }}$ for doubled angled structural components using formula (2.12) with result 20.1702 MPa.

d. Design Compressive Strength

It is known that Fcr on bending check is 22.1293 Mpa and Fcr on torsion bending check is 20.1702 Mpa , so Fcr is chosen which has a smaller value of 20.1702 MPa . Thus, the design compressive strength value can be calculated using the formula (2.13) with result 25087.7 kN . From the result, it can be seen that $\emptyset_{\mathrm{c}} \mathrm{P}_{\mathrm{n}}>$ Maximum compressive force $(16.8 \mathrm{kN})$ so the design compressive strength is safe.

3. Exterior Tension Bar

a. Tension Bar Slenderness
$\lambda=\frac{\mathrm{L}}{\mathrm{r}}$.
$=\frac{1679.9}{18.2}$
$=92.3022<300$ so it's safe.

b. Tensile Melting Conditions

The nominal tensile strength due to tensile yielding is obtained through the equation:

$$
\begin{align*}
& P_{n}=F_{y} A_{g} \ldots \tag{2.15}\\
& =240 \times 1382 \\
& =331680 \mathrm{~N}
\end{align*}
$$

$=0,9 \times 240 \times 1382$
$=298512 \mathrm{~N}=298,512 \mathrm{kN}$

It is known that $\emptyset \mathrm{Pn}>\mathrm{Pu}(46.032 \mathrm{kN})$ then it is safe.

4. Interior Tension Bar

In general, the calculation of the interior tensile rod is the same as the exterior tensile rod, only the data differs, which affects the final result.

a. Tension Bar Slenderness

This calculation uses the formula (2.14) with a result of 133.418 which is smaller than 300 , so it is safe.
b. Tensile Melting Conditions

The nominal tensile strength due to yielding in tension is obtained through formula (2.15) with result 331680 kN . Yield in tension check ($\varnothing \mathrm{Pn}$) uses formula (2.16) with result 298.512 kN . It is known that $\emptyset \mathrm{Pn}>\mathrm{Pu}(17.092 \mathrm{kN})$ then it is safe.

2.7.4.2. Dormitory Building Roof

The calculation of the truss element design plan uses the same formula as on the roof of a educational building, but some data will be different so that the final result between the two roofs is also different.

1. Exterior Compression Bar

a. Bending Check

Calculation of bending check can use formulas (2.3) and (2.4)
If $\lambda<\lambda r$ then the cross section is non slender. But if on the contrary, it is categorized as a slim cross section.

The results of the calculation formulas (2.3) and (2.4) are as follows:
Compression bar $=67.829 \mathrm{kN}$
Tension bar $\quad=33.975 \mathrm{kN}$
$\lambda=\frac{60}{6}$
$=10$
$\lambda \mathrm{r}=0,45 \sqrt{\frac{200.000}{240}}$
$=12,99$
So it can be concluded that it is included in the non-slim cross-section.
b. Bending check ($\mathrm{X}-\mathrm{X}$ axis)

The calculation of bending checks about the $\mathrm{x}-\mathrm{x}$ axis uses formula (2.4) with a result of 431.319 MPa , formula (2.5) with result 10.6104 MPa , and formula (2.6) with result 135.966 MPa. It can be seen that $\frac{\mathrm{KL}}{\mathrm{rx}}>4,71 \sqrt{\frac{\mathrm{E}}{\mathrm{Fy}}}$ then Fcr is taken from (2.7) with result 9.3053 MPa.
c. Torsion bending check

Compressed structural components are connected using bolts so it's necessary to know the a / r value using formula (2.10)
$\frac{a}{r}=\frac{3925}{18,2}=215.659$, because $a / r>40$ then use equation (2.10) with result 444.593 it can seen the result $\left(\frac{\mathrm{KL}}{\mathrm{r}}\right)_{\mathrm{m}}>4,71 \sqrt{\frac{\mathrm{E}}{\mathrm{Fy}}}$ then, Fcry can use equation (2.10) while to find out the value of Fe then using formula (2.11) with result 9.9863 Mpa . Thus Fcry obtained results of 8.7579 Mpa . The Fcrz value can use the formula (2.11) with a result of 137.617 MPa. Fcr for double angled structural members uses the formula (2.12) with a yield of 8.6479 MPa .

d. Design Compressive Strength

It is known that Fcr on bending check is 9.3053 Mpa and Fcr on torsion bending check is 8.6479 Mpa , so Fcr is chosen which has a smaller value of 8.6479 MPa . Thus the value of the design compressive strength can be calculated using the formula (2.13) with a result of 10756.3 kN . The result show that $\emptyset_{\mathrm{c}} \mathrm{P}_{\mathrm{n}}>$ Maximum compressive force $(67.829 \mathrm{kN})$ so the design compressive strength is safe.
2. Interior Compression bar

The interior compression rod calculations are generally the same as the exterior compression bar calculations. However, because this calculation is carried out on the interior, there will be some differences in the data which will affect the results.
a. Bending check

It is known that the value of the compression bar is 24.413 kN and the tension bar is 16.938 kN . Therefore, the calculation of bending checks can use formula (2.3) with a result of 10 and formula (2.4) with 12.99 . It can be seen that $\lambda<\lambda \mathrm{r}$, it can be concluded that the section is included in the category of non-slim section.
b. Bending check (X-X axis)

This calculation follows formula (2.5) with result 299.066 Mpa , formula (2.6) with result 22.0697 Mpa , and formula (2.7)with result 135.966 Mpa . It can be seen that $\frac{\mathrm{KL}}{\mathrm{rx}}>$ $4,71 \sqrt{\frac{\mathrm{E}}{\mathrm{Fy}}}$ so, F_{cr} is taken from equation (2.8) With result 19.3551 Mpa .
c. Torsion bending check

Compressed structural components are connected using bolts so it is necessary to know the a / r value using the formula (2.9) with result 149.533 where $\mathrm{a} / \mathrm{r}>40$ so using equation (2.10) with result 308.27 Mpa . Result known $\left(\frac{\mathrm{KL}}{\mathrm{r}}\right)_{\mathrm{m}}>4,71 \sqrt{\frac{\mathrm{E}}{\mathrm{Fy}}}$ so, $\mathrm{F}_{\text {cry }}$ using equation (2.11) while to find out the value of Fe then using formula (2.12) with result
20.7715 Mpa. Thus Fcry obtained result is 18.2166 Mpa . Fcrz value can use the formula (2.11) with result 137.617 MPa .
F_{cr} for doubled angled structural components using formula (2.12) with result 17.7196 MPa.
d. Design Compressive Strength

It is known that Fcr on bending check is 19.3551 Mpa and Fcr on torsion bending check is 17.7196 Mpa , so Fcr is chosen which has a smaller value of 17.7196 Mpa . Thus the design compressive strength value can be calculated using the formula (2.13) with result 22039.6 kN . From the result, it can be seen that $\emptyset_{\mathrm{c}} \mathrm{P}_{\mathrm{n}}>$ Maximum compressive force (24.413 kN) so the design compressive strength is safe.

3. Exterior Tension Bar

a. Tension Bar Slenderness

The continuity of the tension bar uses the (2.14) formula with a result of 83.7363 which is smaller than 300 , so it is safe.
b. Tensile Melting Conditions

The nominal tensile strength due to yielding in tension is obtained through equation (2.15) with a result of 331680 kN . Checking the tensile yield ($\varnothing \mathrm{Pn}$) using formula (2.16) with a result of 298512 kN . It is known that $\emptyset \mathrm{Pn}>\mathrm{Pu}(33.975 \mathrm{kN})$ then it is safe.

4. Interior Tension Bar

In general, the calculation of the interior tensile rod is the same as the exterior tensile rod, only the data differs, which affects the final result.
a. Tension Bar Slenderness

This calculation uses the formula (2.17) with a result of 143.412 which is smaller than 300 , so it is safe.
b. Tensile Melting Conditions

The nominal tensile strength due to yielding in tension is obtained through formula (2.15) with result 331680 kN . Yield in tension check ($\varnothing \mathrm{Pn}$) uses formula (2.16) with result 298512 kN . It is known that $\emptyset \mathrm{Pn}>\mathrm{Pu}(16.938 \mathrm{kN})$ then it is safe.

2.7.5 Truss Connection Design

In Steel construction, each part of the elements of the structure is connected to each other by fastener or connectors. In frame structures, both roofs and steel bridges, portal structures where the rods gather are called gusset points. This connecting plate is called a gusset plate, where the rods were fastened using a fastener on the gusset plate. There are several types of fasteners that are often used, namely rivets, bolts, and welded. In planning the truss connection on the two joglo roofs of the public library using bolt connections.

2.7.4.1 Dormitory

It is known that bolt A325-X with M-20 diameter bolt is used, the gusset plates are connected from ASTM A36 steel (Fy 240 Mpa ; fu 370 MPa). The tensile strength of the dormitory building roof on the exterior profile is 46.032 kN and on the interior profile is 17.092 kN . Planning bolt connections for the truss as follows:

1. Melt Tensile Check on Gross Section

The plate size used is $6 \times 250 \mathrm{~mm}$, so the gross cross-section is 1500 mm 2 .
The tensile yield is calculated using the formula:
$\emptyset \mathrm{Pn}=0.9 \times \mathrm{Fy} \times \mathrm{Ag}$
$=0.9 \times 240 \times 1500$
$=324000 \mathrm{~N}$
$=324 \mathrm{kN}>46.032 \mathrm{kN}$ (exterior profile)
$=324 \mathrm{kN}>17.092 \mathrm{kN}$ (interior profile)

It is known that the tensile yield that occurs at the gross cross-section is greater than the strength of the roof tensile rod, so it can be concluded that it is safe.

2. Tensile Collapse Check on Net Section

Tensile collapse check can be calculated using the formula:
$\mathrm{An} \quad=(250-2 \times(22+2)) \times 6=1212 \mathrm{~mm}^{2}$
$\operatorname{Max} \mathrm{An} \quad=0.85 \mathrm{Ag}$

$$
\begin{align*}
& =0.85 \times 1500 \\
& =1275 \mathrm{~mm}^{2} \\
\mathrm{Ae}=\mathrm{An} & =1212 \mathrm{~mm}^{2} \\
\emptyset \mathrm{Pn} & =0.75 \times \mathrm{Fu} \times \mathrm{Ae} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \tag{2.19}\\
& =0.75 \times 370 \times 1212 \\
& =336330 \mathrm{~N} \\
& =336.33 \mathrm{kN}>46.032 \mathrm{kN} \text { (eksterior profile) } \\
& =336.33 \mathrm{kN}>17.092 \mathrm{kN} \text { (interior profile) }
\end{align*}
$$

It is known that the net cross-sectional tensile failure is greater than that of the roof tension rod, so it can be concluded that it is safe.

3. Bolt Support Strength

Calculation of bolt bearing strength can use the formula:

$$
\begin{align*}
\mathrm{Rn} & =2.4 \mathrm{dtFu} \ldots \ldots \ldots \ldots \tag{2.20}\\
& =2.4 \times 20 \times 6 \times 370 \\
& =106560 \mathrm{~N} \\
& =106.56 \mathrm{kN} \\
\emptyset \mathrm{Rn} & =\emptyset \times \mathrm{Rn} \ldots \ldots \ldots \ldots . . \tag{2.21}
\end{align*}
$$

With :

$$
\begin{aligned}
\varnothing & =0.75 \\
& =0.75 \times 106,56 \\
& =79.92 \mathrm{kN}
\end{aligned}
$$

4. Bolt Shear Strength

Calculation of bolt shear strength using the formula:
Rn = FnvAb
With :

$$
\begin{aligned}
\mathrm{Fn} & =\text { shear stress } \\
\mathrm{Ab} & =\text { cross }- \text { sectional area } \\
\mathrm{Rn} & =\text { FnvAb } \\
& =457 \times\left(1 / 4 \times \pi \times 20^{2}\right) \times 2 \\
& =287141.5 \mathrm{~N}
\end{aligned}
$$

Calculation of $\emptyset \mathrm{Rn}$ using the formula with a result of 215.3561 kN . Thus, the smallest value between the bearing strength of the bolt and the shear strength of the bolt is chosen, namely 79.92 kN .

5. Number of Bolts Calculation

$$
\begin{align*}
\text { Bolt Amount } & =\frac{\text { plate }}{\mathrm{Rn}} \ldots \ldots \ldots \ldots \tag{2.23}\\
& =\frac{250}{79.92} \\
& =3.1281 \text { Pieces }
\end{align*}
$$

From the calculation, it's rounded up into 3 pieces of bolts.

2.7.4.2 Educational Building

It is known that bolt A325-X with M-20 diameter bolt is used, the gusset plates are connected from ASTM A36 steel (Fy 240 Mpa ; fu 370 MPa). The tensile strength of the educational building roof on the exterior profile is 33.975 kN and on the interior profile is 16.938 kN . Planning bolt connections for the truss as follows:

1. Melt Tensile Inspection on Gross Section

The size of the plate used is $6 \times 250 \mathrm{~mm}$ so that the gross cross section is 1500 mm 2 . Yield tensile is calculated using formula 2.17 with the result of 324 kN which is greater than the strength of the tensile rods on the exterior and interior of the roof so it is safe.

2. Examination of Tensile Collapse at Net Section

It is known that $\mathrm{An} / \mathrm{Ae}$ is 1212 mm 2 . The tensile failure check can be calculated using the formula 2.18 with a yield of 1275 mm 2 and 2.19 with a yield of 336.33 kN . It is known that the net cross-sectional tensile failure is greater than that of the exterior and interior roof tension rods, so it can be concluded that it is safe.

3. Bolt bearing strength

Calculation of bolt bearing strength using formula 2.20 with a result of 106.56 kN and formula 2.21 with a result of 79.92 kN

4. Bolt Shear Strength

Calculation of bolt shear strength using formula 2.22 with a result of 287141.5 N . Calculation of $\emptyset \mathrm{Rn}$ using the formula 2.22 with a result of 215.3561 kN . Thus, the
smallest value between the bearing strength of the bolt and the shear strength of the bolt is chosen, namely 79.92 kN .

5. Calculation of the Number of Bolts

The number of bolts is calculated using the formula 2.23 with a result of 3.1281 rounded up to 3 bolts.

2.8 Beam Design

Based on Table 21.2.2 SNI 2847:2019 planning reinforced concrete beams, it is necessary to determine the strength reduction factor of the structure experiencing bending and axial force can be seen in Figure 2.39.

Tabel 21.2.2 - Faktor reduksi kekuatan (ϕ) untuk momen, gaya aksial, atau kombinasi momen dan gaya aksial

Regangan tarik netto $\left(\varepsilon_{t}\right)$	Klasifikasi	ϕ			
		Jenis tulangan transversal			
		Spiral sesuai 25.7.3		Tulangan lainnya	
$\varepsilon_{i} \leq \varepsilon_{0}$	Tekanan terkontrol	0,75	a)	0,65	b)
$\varepsilon_{t y}<\varepsilon_{t}<0,005$	Transisi ${ }^{[1]}$	$0,75+0,15 \frac{\left(\varepsilon_{r}-\varepsilon_{t y}\right)}{\left(0,005-\varepsilon_{t y}\right)}$	c)	$0,65+0,25 \frac{\left(\varepsilon_{t}-\varepsilon_{t y}\right)}{\left(0,005-\varepsilon_{t y}\right)}$	d)
$\varepsilon_{r r} \geq 0,005$	Tegangan terkontrol	0,90	e)	0,90	f)

${ }^{[1]}$ Untuk penampang transisi, diperbolehkan memakai nilai faktor kekuatan sama dengan penampang terkontrol tekan
Table 2.28 strength reduction factor for moments, axial forces, or a combination of moments and axial forces

Main beam and support beam, using the same formulas to do the designing. There's some different data that affect the results. The calculation using the formula below, as follows:

2.8.1 Beam Calculation (Ex. Main Beam 1)

- Structure Material
- Concrete compressive strength (fc') $=25 \mathrm{MPa}$
- Steel yield stress (deform) for flexural reinforcement (fy) $=400 \mathrm{MPa}$
- The yield stress of (plain) steel for shear reinforcement (fy) $=240 \mathrm{MPa}$
- Beam Dimensions
- Beam width (b) = 200 mm
- Beam height $(\mathrm{h})=400 \mathrm{~mm}$
- The diameter of the reinforcement (deform) used $(\mathrm{D})=12 \mathrm{~mm}$
- The diameter of the stirrups (plain) used $(\mathrm{P})=10 \mathrm{~mm}$
- The net thickness of the concrete cover $(\mathrm{ts})=20 \mathrm{~mm}$
- Shear Force and Moment Plan

The data source is come from ETABS application output.

- Positive design moment due to factored load $(\mathrm{Mu}+)=20.240 \mathrm{kNm}$
- Negative design moment due to factored load (Mu-) =-30.155 kNm
- Design shear due to factored load $(\mathrm{Vu})=30.302 \mathrm{kN}$

2.8.1.1 Reinforcement Calculation

Concrete Stress Distribution Factor

For : $\mathrm{fc}{ }^{\prime} \leq 30 \mathrm{MPa}, \beta_{1}=0.85$

For : $\mathrm{fc}^{\prime}>30 \mathrm{MPa}, \beta 1=0.85-0.05 \times \frac{f^{\prime} \mathrm{c}-30}{7}$
Form factor of concrete stress distribution,
$\beta_{1} \quad=0.85$
Reinforcement ratio in balance condition,
$\rho_{\mathrm{b}} \quad=\beta 1 \times 0.85 \times \frac{\mathrm{f}^{\prime} \mathrm{c}}{f y} \times \frac{600}{(600+f y)}$
$=\beta 1 \times 0.85 \times \frac{25}{400} \times \frac{600}{(600+400)}$

$$
=0.0217
$$

Maximum moment resistance factor,

$$
\begin{aligned}
\operatorname{Rmax} & =0.75 \times \rho \mathrm{b} \times \mathrm{fy} \times\left[1-\frac{1}{2} \times 0.75 \times \rho \mathrm{b} \times \frac{\mathrm{fy}}{(0.85 \times \mathrm{fc})}\right] \\
& =0.75 \times 0.0217 \times 400 \times\left[1-\frac{1}{2} \times 0.75 \times 0.0217 \times \frac{400}{(0.85 \times 25)}\right] \\
& =6.5736
\end{aligned}
$$

Flexural strength reduction factor,
$\phi \quad=0.80$

Distance of reinforcement to the outside of the concrete,
$\mathrm{d}_{\mathrm{s}} \quad=\mathrm{ts}+\varnothing+\frac{\mathrm{D}}{2}$

$$
\begin{aligned}
& =20+10+\frac{12}{2} \\
& =36.00 \mathrm{~mm}
\end{aligned}
$$

Amount of reinforcement in one row,
$\mathrm{n}_{\mathrm{s}} \quad=\frac{(\mathrm{b}-2 \times \mathrm{ds})}{(25+\mathrm{D})}$

$$
\begin{aligned}
& =\frac{(200-2 \times 36.00)}{(25+12)} \\
& =3.46 \approx 3
\end{aligned}
$$

So, the amount of reinforcement in one row is 3 pcs.
Center to center horizontal distance between bars,
$\mathrm{X}=\frac{\mathrm{b}-(\mathrm{ns} \times \mathrm{D})-(2 \times \mathrm{ds})}{(\mathrm{ns}-1)}$

$$
=\frac{200-(3 \times 12)-(2 \times 36.00)}{(3-1)}
$$

$$
=46.00 \mathrm{~mm}
$$

Center to center vertical distance between bars,
$\mathrm{Y} \quad=D+25=12+25=37 \mathrm{~mm}$

1. Positive Moment Reinforcement

Design nominal positive moment,
$\mathrm{M}_{\mathrm{n}} \quad=\mathrm{Mu} \times \phi=20.240 \times 0.80=25.300 \mathrm{kNm}$
Estimated distance of the center of the flexural reinforcement to the concrete side,
$\mathrm{d}^{\prime} \quad=40 \mathrm{~mm}$

Effective beam height,
d $\quad=h-d^{\prime}$

$$
=400 \mathrm{~mm}-40 \mathrm{~mm}=360.00 \mathrm{~mm}
$$

Moment resistance factor,

$$
\begin{aligned}
\mathrm{R}_{\mathrm{n}} \quad & =\frac{\mathrm{Mn} \times 10^{6}}{\left(\mathrm{~b} \times \mathrm{d}^{2}\right)} \\
& =\frac{25.3 \times 10^{6}}{\left(200 \times 360^{2}\right)} \\
& =0.9761
\end{aligned}
$$

$\mathrm{R}_{\mathrm{n}}<\mathrm{R}_{\text {max }}(\mathrm{OK})$
Required reinforcement ratio:
$\rho \quad=0.85 \times \frac{f c}{f y} \times\left[1-\sqrt{ }\left[1-\frac{2 \times \mathrm{Rn}}{(0.85 \times f \mathrm{f} \mathrm{c})}\right]\right.$

$$
\begin{aligned}
& =0.85 \times \frac{25}{400} \times\left[1-\sqrt{ }\left[1-\frac{2 \times 0.9761}{(0.85 \times 25)}\right]\right. \\
& =0.00250
\end{aligned}
$$

Minimum reinforcement ratio,

$$
\begin{aligned}
\rho \min & =\frac{\sqrt{f^{\prime} c}}{(4 \times \mathrm{fy})} \\
& =\frac{\sqrt{25}}{(4 \times 400)} \\
& =0.00313 \\
\rho \min & =\frac{1.4}{f y} \\
& =\frac{1.4}{400} \\
& =0.00350
\end{aligned}
$$

The ratio of reinforcement used,
$\rho \quad=0.00350$

Required reinforcement area,

As $\quad=\rho \times b \times d$

$$
\begin{aligned}
& =0.00350 \times 200 \times 560 \\
& =252 \mathrm{~mm} 2
\end{aligned}
$$

The amount of reinforcement required,
$\mathrm{n} \quad=\frac{\mathrm{As}}{\left(\frac{\pi}{4} \times \mathrm{D}^{2}\right)}$

$$
\begin{aligned}
& =\frac{252}{\left(\frac{\pi}{4} \times 12^{2}\right)} \\
& =2.228
\end{aligned}
$$

Used reinforcement, 3 D 12

Area of used reinforcement,
As $\quad=\mathrm{n} \times \frac{\pi}{4} \times \mathrm{D}^{2}$
$=2.228 \times \frac{\pi}{4} \times 12^{2}$
$=339 \mathrm{~mm}^{2}$
Number of rows of reinforcement,
$\mathrm{nb} \quad=\frac{n}{n s}=\frac{2.228}{3}=1.00$
$\mathrm{nb}<3$ (OK)

Table 2. 29 n distance

Line To	Amount n_{i}	Distance y_{i}	Amount x Distance $n_{i \times} \mathrm{y}_{\mathrm{i}}$
1	3	36	108
2	0	0	0
3	0	0	0
$\mathrm{n}=$	3	$\Sigma\left[\mathrm{n}_{\mathrm{i}}{ }^{*} \mathrm{y}_{\mathrm{i}}\right]=$	108

Location of center of gravity of reinforcement,
$\mathrm{d}^{\prime} \quad=\frac{\Sigma[\mathrm{ni} \times \mathrm{yi}]}{n}$
$=\frac{108}{3}$
$=36.00 \mathrm{~mm}$
$36.00<40$ estimated d' (OK)
Effective beam height
$\mathrm{d} \quad=\mathrm{h}-\mathrm{d}^{\prime}=400-36=364.00 \mathrm{~mm}$
a

$$
\begin{aligned}
& =\frac{\mathrm{As} \times \mathrm{fy}}{(0.85 \times \mathrm{f}, \mathrm{c} \times \mathrm{b})} \\
& =\frac{339 \times 400}{(0.85 \times 25 \times 200)} \\
& =31.933 \mathrm{~mm}
\end{aligned}
$$

Nominal moment,
$\mathrm{Mn}=\mathrm{As} \times \mathrm{fy} \times\left(\mathrm{d}-\frac{a}{2}\right) \times 10^{-6}$

$$
=339 \times 400 \times\left(364-\frac{31.933}{2}\right) \times 10^{-6}
$$

$$
=47.234 \mathrm{kNm}
$$

The beam moment resistance,
$\phi \mathrm{Mn}=0.80 \mathrm{x} 47.234=37.787 \mathrm{kNm}$

Terms:
$\phi \mathrm{Mn} \geq M u^{+}$
37.787 > 20.240 SAFE (OK)

Positive Moment Reinforcement Result Recap

Beam Type	$\phi \mathbf{M n}$	Mu ${ }^{+}$	$\phi \mathrm{Mn}>$	
Dormitory Building				
Main Beam 1	37,787	20.240	37,787 > 20.240	SAFE
Main Beam 2	32,359	23.222	32,359 > 23.222	SAFE
Main Beam 3	18,338	15.262	$18,338>15.262$	SAFE
Main Beam 4	14,719	7.924	$14,719>7.924$	SAFE
Main Beam 5	20,660	18.285	$20,660>18.285$	SAFE
Support Beam 1	14,719	1.018	$14,719>1.018$	SAFE
Support Beam 2	21,958	17.054	$21,958>17.054$	SAFE
Support Beam 3	14.719	0.383	$14.719>0.383$	SAFE
Educational Building				
Main Beam 1	38,134	24,265	$38,134>24,265$	SAFE
Main Beam 2	21,958	17,554	$21,958>17,554$	SAFE
Main Beam 3	21,958	14,864	$21,958>14,864$	SAFE
Main Beam 4	14,719	9,486	$14,719>9,486$	SAFE
Main Beam 5	11,100	6,093	$11,100>6,093$	SAFE
Main Beam 6	18,338	10,195	$18,338>10,195$	SAFE
Main Beam 7	14,719	5,666	14,719 > 5,666	SAFE
Main Beam 8	14,719	4,044	14,719 > 4,044	SAFE
Main Beam 9	5,743	0,740	$5,743>0,740$	SAFE
Support Beam 1	14,719	3,952	14,719 > 3,952	SAFE
Support Beam 2	21,958	10,919	21,958>10,919	SAFE
Support Beam 3	21,958	13,319	$21,958>13,319$	SAFE
Support Beam 4	38,134	18,553	38,134 > 18,553	SAFE

Table 2. 30 Positive Moment Reinforcement Result Recap

2. Negative Moment Reinforcement

Design nominal negative moment,
$\mathrm{Mn}=\frac{\mathrm{Mu}-}{\phi}$

$$
\begin{aligned}
& =\frac{30.155}{0.80} \\
& =-37.694 \mathrm{kNm}
\end{aligned}
$$

Estimated distance of the center of the flexural reinforcement to the concrete side, d^{\prime}

$$
=40 \mathrm{~mm}
$$

Effective beam height,
d $\quad=\mathrm{h}-\mathrm{d}^{\prime}$

$$
\begin{aligned}
& =400-40 \\
& =360.00 \mathrm{~mm}
\end{aligned}
$$

Moment resistance factor,

$$
\begin{aligned}
\operatorname{Rn} \quad & =\operatorname{Mn} \times \frac{106}{\left(b \times d^{2}\right)} \\
& =-37.694 \times \frac{106}{200 \times 360^{2}} \\
& =-1.4542
\end{aligned}
$$

$\mathrm{Rn}<\mathrm{Rmax}(\mathrm{OK})$
Required reinforcement ratio:

$$
\begin{aligned}
\rho & =0.85 \times \frac{\mathrm{f} / \mathrm{c}}{\mathrm{fy} \times[1-\sqrt{ }[1-2 \times \mathrm{Rn} /(0.85 \times \mathrm{f} / \mathrm{c})]} \\
& =0.85 \times \frac{25}{400 \times[1-\sqrt{ }[1-2 \times(-1.4542) /(0.85 \times 25)} \\
& =0.00352
\end{aligned}
$$

Minimum reinforcement ratio,

$$
\rho \min =\frac{\sqrt{f f^{\prime}}}{(4 \times f y)}
$$

$$
\begin{aligned}
& =\frac{25}{(4 \times 400)} \\
& =0.00280
\end{aligned}
$$

Minimum reinforcement ratio,
$\rho \min =\frac{1.4}{f y}$

$$
\begin{aligned}
& =\frac{1.4}{400} \\
& =0.00313
\end{aligned}
$$

The ratio of reinforcement used,
$\rho \quad=0.00350$
Required reinforcement area,

As $\quad=\rho \times b \times d$

$$
=0.00350 \times 200 \times 360
$$

$$
=252 \mathrm{~mm}^{2}
$$

The amount of reinforcement required,
$\mathrm{n} \quad=\frac{A s}{\left(\frac{P}{4} \times D^{2}\right)}$

$$
=\frac{252}{\left(\frac{0.0350}{4} \times 12^{2}\right)}
$$

$$
=2.228
$$

Used reinforcement, 3 D 16
Area of used reinforcement,
As $=\frac{\mathrm{n} \times \pi}{4 \times D^{2}}$

$$
=\frac{2.228 \times 3.14}{4 \times 12^{2}}
$$

$339 \mathrm{~mm}^{2}$
Number of rows of reinforcement,
$\mathrm{nb} \quad=\frac{\mathrm{n}}{n s}=\frac{3}{3}=1$
nb < 3 (OK)

Table 2. 31 n distance

Line To	Amount n_{i}	Distance y_{i}	Amount x Distance $n_{i \times} y_{i}$
1	3	36	108
2	0	0	0
3	0	0	0
$\mathrm{n}=$	3	$\Sigma\left[\mathrm{n}_{\mathrm{i}}{ }^{*} \mathrm{y}_{\mathrm{i}}\right]=$	108

Location of center of gravity of reinforcement,
$\mathrm{d}^{\prime} \quad=\frac{[\mathrm{ni} \times \mathrm{yi}]}{n}$
$=\frac{108}{3}$

$$
=36.00 \mathrm{~mm}
$$

$36.00<40$ estimate d' (OK)
Effective beam height,
d $\quad=\mathrm{h}-\mathrm{d}^{\prime}$

$$
=400-36.00
$$

$$
=364.0 \mathrm{~mm}
$$

a $=$ As $\times \frac{\mathrm{fy}}{0.85 \times \mathrm{f}^{\prime} \mathrm{c} \times \mathrm{b}}$

$$
\begin{aligned}
& =339 \times \frac{400}{0.85 \times 200} \\
& =31.933 \mathrm{~mm}
\end{aligned}
$$

Nominal moment,
$\mathrm{Mn}=$ As \times fy $\times\left(\mathrm{d}-\frac{\mathrm{a}}{2}\right) \times 10-6$

$$
\begin{aligned}
& =339 \times 400 \times\left(364-\frac{31.933}{2}\right) \times 10-6 \\
& =47.234 \mathrm{kNm}
\end{aligned}
$$

The beam moment resistance,
$\phi \times \mathrm{Mn}$
$=0.80 \times 47.234$
$=37.787 \mathrm{kNm}$

Terms : $\phi \times \mathrm{Mn} \geq \mathrm{Mu}-$
37.787>-30.155 SAFE (OK)

> Negative Moment Reinforcement Recap

Beam Type	$\phi \mathbf{M n}$	$\mathbf{M u}{ }^{-}$	$\phi \mathrm{Mn}>$	
		rmitory B		
Main Beam 1	37,787	-30,155	37,787>-30,155	SAFE
Main Beam 2	21.958	-35,591	32,359 > -35,591	SAFE
Main Beam 3	18,338	-7,822	18,338>-7,822	SAFE
Main Beam 4	14,719	-16,230	14,719>-16,230	SAFE
Main Beam 5	20,660	-96,015	20,660 > -96,015	SAFE
Support Beam 1	14,719	-0,692	14,719 > -0,692	SAFE
Support Beam 2	21,958	-26,049	21,958 > -26,049	SAFE
Support Beam 3	14.719	-1.183	$14.719>-1.183$	SAFE
Educational Building				
Main Beam 1	38,134	-34,422	38,134 > -34,422	SAFE
Main Beam 2	21,958	-25,856	21,958 > -25,856	SAFE
Main Beam 3	21,958	-21,095	21,958 > -21,095	SAFE
Main Beam 4	14,719	-15,814	14,719 > -15,814	SAFE
Main Beam 5	11,100	-9,099	11,100 > -9,099	SAFE
Main Beam 6	18,338	-14,354	18,338 > -14,354	SAFE
Main Beam 7	14,719	-2,183	14,719 > -2,183	SAFE

Main Beam 8	14,719	$-5,025$	$14,719>-5,025$	SAFE
Main Beam 9	5,743	0,166	$5,743>0,166$	SAFE
Support Beam 1	14,719	$-0,231$	$14,719>-0,231$	SAFE
Support Beam 2	21,958	$-17,946$	$21,958>-17,946$	SAFE
Support Beam 3	21,958	$-21,920$	$21,958>-21,920$	SAFE
Support Beam 4	38,134	$-25,712$	$38,134>-25,712$	SAFE

3. Shear Reinforcement

The design ultimate shear force,
$\mathrm{Vu}=30.302 \mathrm{kN}$

Shear strength reduction factor,
$\phi \quad=0.60$
Yield stress of shear reinforcement,
fy $=240 \mathrm{MPa}$
Concrete shear strength,

$$
\begin{aligned}
\mathrm{Vc} & =\frac{(\sqrt{\mathrm{f} / \mathrm{c})}}{f c \times \mathrm{b} \times \mathrm{d} \times 10^{-3}} \\
& =\frac{(\sqrt{ } 1)}{25 \times 200 \times 360 \times 0.001} \\
& =60.00 \mathrm{kN}
\end{aligned}
$$

Shear resistance of concrete,
$\phi \times \mathrm{Vc}$
$=0.60 \times 60$
$=36.000 \mathrm{Kn}$
Requires shear reinforcement
Stirrup shear resistance,
$\phi \times \mathrm{Vs}=\mathrm{Vu}-\phi \times \mathrm{Vc}$

$$
=-\mathrm{kN}
$$

The shear strength of stirrups,

Vs $\quad=30.302 \mathrm{kN}$

Stirrups with cross-section are used: 2 P 10

Area of stirrup shear reinforcement,
$\mathrm{Av} \quad=\mathrm{ns} \times \frac{\pi}{4 \times \mathrm{P}^{2}}$

$$
\begin{aligned}
& =2 \times \frac{\pi}{4 \times 10^{2}} \\
& =157.08 \mathrm{~mm}^{2}
\end{aligned}
$$

Required stirrup distance:

S

$$
\begin{aligned}
& =\frac{A v \times f y \times d}{\left(V s \times 10^{3}\right)} \\
& =\frac{157.08 \times 240 \times 360}{30.302 \times 1000} \\
& =447.88 \mathrm{~mm}
\end{aligned}
$$

Maximum stirrup spacing,

$$
\begin{aligned}
\operatorname{smax} & =\frac{\mathrm{d}}{2} \\
& =\frac{364}{2} \\
& =182.00 \mathrm{~mm}
\end{aligned}
$$

Maximum stirrup distance,
Smax $=250.00 \mathrm{~mm}$

The spacing of stirrups that must be used,
$\mathrm{s} \quad=182.00 \mathrm{~mm}$
Take the stirrup distance:
s $\quad=180 \mathrm{~mm}$
Used stirrups, 2 P 10180

2.9 Column Design

The design of a column is carried out by taking into account the applicable conditions. The cross-sectional dimensions are used by taking into account the smallest cross-sectional dimensions measured in a straight line through the geometric center and not less than 300 mm . The ratio of the smallest cross-sectional dimension to the perpendicular dimension is not less than 0.4

In the design of the column must pay attention to the bending strength of the column which must meet $\sum \mathrm{M}_{\mathrm{nc}} \geq 1,2 \sum \mathrm{M}_{\mathrm{nb}}$ where $\sum \mathrm{M}_{\mathrm{nc}}$ is the sum of the strength nominal bending of columns framing into the joint, which is evaluated at the faces of the joint. $\sum \mathrm{M}_{\mathrm{nb}}$ which is the sum of the nominal flexural strength of the beam framing into the joint, which is evaluated at the faces of the joint. This calculation must get a result where the strong column - weak beam calculation is done using the equation $(M n c a+M n c b) \geq 1,2(M n b k i+M n b k a)$

To calculate the reinforcement must pay attention to several conditions. The area of the longitudinal reinforcement Ast shall not be less than 0.01 Ag and not exceed 0.006 Ag . Where lap splices are permitted only within the center of the existing column depth, these must also be designed as tension lap splices and must be enclosed by transverse reinforcement.

In terms of transverse reinforcement, the plastic hinge area of the column (the area 10 from the face of the beam-column connection, at both ends) shall provide an enclosing transverse reinforcement.
a) The transverse reinforcement shall consist of a single spiral or overlapping spirals or what is commonly referred to as overlapping, where the stirrups are round or square ties with or without cross ties.
b) Each end bend of square restraints and crossties shall engage the outermost longitudinal bar.
c) 25.7 .2 .2 is the allowable limit for reinforcing stirrups where cross ties are of the same bar size or larger than the diameter of the stirrup. Successive crossties shall be alternated ends along the longitudinal reinforcement and around the perimeter of the section.
d) The use of square stirrups or cross tie transverse reinforcement must function as a lateral support for longitudinal reinforcement must be appropriate.
e) Reinforcement shall be arranged so that the spacing hx between longitudinal reinforcement along the perimeter of a column section supported laterally by the cross-tie angles or the legs of the stirrup shall not exceed 350 mm .
f) The value of hx should not exceed 200 mm , this is because when Pu > $0.3 \mathrm{Agf}^{\prime} \mathrm{c}$ or $\mathrm{f}^{\prime} \mathrm{c}>70 \mathrm{MPa}$ in a column with a stirrup around the core of the column must have lateral support provided by the angle of the stirrup or seismic hook.

The requirement for transverse reinforcement must be spaced in all directions along which lo does not exceed the smallest value of

1. $1 / 4$ smallest dimension of structural member
2. 6 times the diameter of the longitudinal reinforcement
3. $100 \mathrm{~mm} \leq \mathrm{S}_{0}=100+\left(\frac{350-\mathrm{h}_{\mathrm{x}}}{3}\right) \leq 150 \mathrm{~mm}$

The spacing of transverse reinforcement in the area outside 10 is given stirrups with spacing s not exceeding 6 db and 150 mm .

The requirements for the shear strength of the SRPMK column must have a design shear force (Ve) which is determined by taking into account the maximum forces that can occur at the face of the beam-column connection in each structural member. The force on the beam-column connection shall be determined by using the maximum probable moment strength at each end of the member corresponding to the range of factored axial load Pu acting on the member. The design shear force (Ve) shall not be less than the factored shear obtained from the structural analysis results. Then the transverse reinforcement along lo must be designed to withstand shear assuming $\mathrm{Vc}=0$ this can occur if the earthquake shear force is at least 50% of the necessary shear strength is maximum along 10 and the factored axial compressive force Pu including the earthquake effect is less than Agf'c /20. The shear strength of the SRPMK column design can be calculated using the equation below.
$V_{e}=\frac{M_{\text {pre a }}+M_{\text {prc b }}}{I_{c}}$ \qquad

2.9.1 $1^{\text {st }}$ Floor Main Beam 1

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:

Pu max	$=-102.8959 \mathrm{kN}$
Mx	$=99.9246 \mathrm{kNm}$
My	$=100.1611 \mathrm{kNm}$
$\mathrm{Pu} \min$	$=-537.0741 \mathrm{kN}$
Mx	$=-100.6356 \mathrm{kNm}$
My	$=-90.2057 \mathrm{kNm}$
Vu	$=-26.3396 \mathrm{kN}$

Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement fy $=420 \mathrm{MPa}$; fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\emptyset \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.28

Figure 2. 28 1st Floor Main Beam 1 SPColumn Output
Mnc a

$$
=297.289 \mathrm{kNm}
$$

Mnc b

$$
=315.690 \mathrm{kNm}
$$

MPR BI 1

Mprb, ki (-) $=50.5112 \mathrm{kNm}$
Mprb, $\mathrm{ka}(+) \quad=50.5112 \mathrm{kNm}$
$($ Mnc $\mathrm{a}+\mathrm{Mnc} \mathrm{b}) \geq 1,2($ Mprb ki + Mprb ka $)$
$(297.289+315.690) \geq 1,2(50.5112+50.5112)$
$612.971 \mathrm{kNm} \geq 121.226 \mathrm{kNm}$

Because Mnc > 1.2 Mprb, the column meets the requirements (Strong Column Weak Beam)

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis, $\mathrm{Vu}=-26.3396 \mathrm{kNm}$
b. Based on Mpr beam left and right column:

Mprb, ki (-)
$=50.511 \mathrm{kNm}$
Mprb, $\mathrm{ki}(+) \quad=50.511 \mathrm{kNm}$
Mprb, ka $(-) \quad=50.511 \mathrm{kNm}$
Mprb, ka (+) $=50.511 \mathrm{kNm}$
Mprk of block $\quad=0.5 x(50.511+50.511)$
Mprk
$=50.511 \mathrm{kNm}$
Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{181,4839+181,4839}{(5-0,6)}=28.061 \mathrm{kN}$
Value of $\mathrm{Ve} \quad=28.061 \mathrm{kN}$
$28.061 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=26.3396 \mathrm{kN}$
Then use $\mathrm{Vu} \quad=\mathrm{Ve}=28.061 \mathrm{kN}$
Diameter of stirrups $\quad=12 \mathrm{~mm}$
Concrete cover $\quad=40 \mathrm{~mm}$
$\begin{aligned} \mathrm{D} & =500-40-12 / 2 \\ & =454 \mathrm{~mm}\end{aligned}$
The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\emptyset}-0=\frac{82,4926 \times 1000}{0,75} & =37415.7037 \mathrm{~N} \\
\frac{\mathrm{~A}_{\mathrm{v}}}{\mathrm{~s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}} \mathrm{~d}}=\frac{109990,2424}{280 \times 453,5} & =0.2943 \mathrm{~mm}^{2} / \mathrm{mm} \tag{A}
\end{array}
$$

Calculations for restraint reinforcement by:

$$
\begin{align*}
& \text { For } \mathrm{Pu} \quad=-102895.9 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c} \\
& \text { Ag } \quad=0.3 \times 25 \times 500 \times 500 \\
& =1875000 \mathrm{~N} \\
& \mathrm{fc}^{\prime} \quad=25 \mathrm{Mpa}<70 \mathrm{Mpa} \text {, use the equations: } \\
& \frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}}=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& \frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}}=0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& \text { Bc = column width }- \text { concrete cover } \\
& =500-2 \times 40=420 \mathrm{~mm} \\
& \mathrm{Ag}=500 \times 500 \\
& =250000 \mathrm{~mm} 2 \\
& \text { Ach } \quad=(b-2 \text { cover }) \times(h-2 \text { cover }) \\
& =(500-2 \times 40) \times(500-2 \times 40) \\
& =176400 \mathrm{~mm} 2 \\
& \frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}}=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0,3\left(\frac{250000}{176400}-1\right) \frac{25}{280}=0,0111758 \\
& \frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{~S}} \quad=0,0111758 \times 420=4,69387 \mathrm{~mm}^{2} / \mathrm{mm} . \tag{B}\\
& \frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}
\end{align*}
$$

$$
\begin{align*}
& =0,09 \frac{25}{280}=0,0070714 \\
\frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{~S}} & =0,0070714 \times 420=2,97 \mathrm{~mm}^{2} / \mathrm{mm} \tag{C}
\end{align*}
$$

From (A), (B), and (C) which determine (B)
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{S}} \quad=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $S=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
13 mm diameter, 1 ft wide
$\mathrm{Av}=1 / 4 \times \pi \times 132=132.73 \mathrm{~mm} 2$
Number of legs of transverse reinforcement $=$ \qquad $/ 132.73=$ \qquad $>$ use $\mathrm{n}=5$

Transverse reinforcement 5D12-100
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $\mathrm{Hx}=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175.111 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements
Calculation of transverse reinforcement outside the area 1_{0} by:
$\mathrm{Ve}=28.0617 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0,17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0,17 \times \sqrt{25} \times 500 \times 453,5=192,7375 \mathrm{kN}$
$\mathrm{Vc}=192,7375 \mathrm{kN}>\mathrm{Ve}=28.0617 \mathrm{kN}$
The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$
Then use 5D12-100.

2.9.2 $1{ }^{\text {st }}$ Floor Main Beam 2

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:

Pu max	$=-109.6624 \mathrm{kN}$
Mx	$=104.1577 \mathrm{kNm}$
My	$=99.3028 \mathrm{kNm}$

Pu min	$=-523.5856 \mathrm{kN}$
Mx	$=-102.8991 \mathrm{kNm}$
My	$=-90.4949 \mathrm{kNm}$
Vu	$=28.4109 \mathrm{kN}$

Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement $\mathrm{fy}=420$ MPa; fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColoumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\emptyset \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.29

Figure 2. 29 1st Floor Main Beam 2 SPColumn Output

Mnc a $\quad=289.1333 \mathrm{kNm}$

Mnc b

$$
=311.3397 \mathrm{kNm}
$$

MPR BI 1

Mprb, ki (-) $=50.5112 \mathrm{kNm}$
Mprb, $\mathrm{ka}(+) \quad=50.5112 \mathrm{kNm}$
$($ Mnc $\mathrm{a}+\mathrm{Mnc} \mathrm{b}) \geq 1,2($ Mprb ki + Mprb ka $)$
$(289.1333+311.3397) \geq 1,2(50.5112+50.5112)$
$600,473 \mathrm{kNm} \geq 121,226 \mathrm{kNm}$

Because Mnc > 1.2 Mprb, the column meets the requirements (Strong

Column Weak Beam)

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis $\mathrm{Vu}=26.4109 \mathrm{kNm}$
b. Based on Mpr beam left and right column:

Mprb, ki $(-)$	$=50.5112 \mathrm{kNm}$
Mprb, ki $(+)$	$=50.5112 \mathrm{kNm}$
Mprb, ka $(-)$	$=50.5112 \mathrm{kNm}$
Mprb, ka $(+)$	$=50.5112 \mathrm{kNm}$
Mprk of block	$=0.5 \times(50.5112+50.5112)$
Mprk	$=50.5112 \mathrm{kNm}$

Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{50.5112+50.5112}{(4-0,35)}=27.6773 \mathrm{kN}$
Value of $\mathrm{Ve} \quad=27.6773 \mathrm{kN}$
$27.6773 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=26.4109 \mathrm{kN}$
Then use $\mathrm{Vu} \quad=\mathrm{Ve}=26.4109 \mathrm{kN}$
Diameter of stirrup $\quad=12 \mathrm{~mm}$
Concrete cover
$=40 \mathrm{~mm}$

D $=500-40-12 / 2=454 \mathrm{~mm}$
The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\emptyset}-0=\frac{26,4109 \times 1000}{0,75}=36903.15982 \mathrm{~N}$
$\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}}}=\frac{36903.15982}{280 \times 454} \quad=0,2903 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculations for restraint reinforcement by:
For $\mathrm{Pu}=-109662,4 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c}$
Ag $\quad=0.3 \times 25 \times 500 \times 500$
$=1875000 \mathrm{~N}$
$\mathrm{fc} \quad=25 \mathrm{Mpa}<70 \mathrm{Mpa}$, use the equations:

$$
\begin{align*}
& \frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& \frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}}=0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& \text { Bc = column width }- \text { concrete cover } \\
& =500-2 \times 40 \\
& =420 \mathrm{~mm} \\
& \text { Ag } \quad=500 \times 500 \\
& =250000 \mathrm{~mm} 2 \\
& \text { Ach } \quad=(b-2 \text { cover }) \times(h-2 \text { cover }) \\
& =(500-2 \times 40) \times(500-2 \times 40) \\
& =176400 \mathrm{~mm} 2 \\
& \frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}}=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0,3\left(\frac{250000}{176400}-1\right) \frac{25}{280}=0,0111758 \\
& \frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{~S}} \quad=0,0111758 \times 420=4,69387 \mathrm{~mm}^{2} / \mathrm{mm} \tag{B}\\
& \frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}=0,09 \frac{25}{280}=0,0070714 \\
& \frac{\mathrm{~A}_{\text {sh }}}{\mathrm{S}} \quad=0,0070714 \times 420=2,97 \mathrm{~mm}^{2} / \mathrm{mm} \tag{C}
\end{align*}
$$

From (A), (B), and (C) which determine (B)
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{S}} \quad=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $S=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
12 mm diameter, 1 ft wide
$A v=1 / 4 \times \pi \times 12^{2}=113.10 \mathrm{~mm} 2$
Number of legs of transverse reinforce $=469.39 / 113.10=175,11>$ use $n=5$
Transverse reinforcement 5D12-100.
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $\mathrm{Hx}=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175.333 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements.
Calculation of transverse reinforcement outside the area 1_{0} by:
$\mathrm{Ve}=82,49268 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0,17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0,17 \times \sqrt{25} \times 500 \times 453,5=192,7375 \mathrm{kN}$
$\mathrm{Vc}=192,7375 \mathrm{kN}>\mathrm{Ve}=82,49268 \mathrm{kN}$
The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$
Then use 5D12-100.

2.9.3 $1^{\text {st }}$ Floor Main Beam 3

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:

Pu max $=-128.8505 \mathrm{kN}$
Mx
$\begin{array}{ll}\text { My } & =109.8649 \mathrm{kNm} \\ \text { Pu min } & =-440.3568 \mathrm{kN}\end{array}$
$\mathrm{Mx} \quad=-104.0993 \mathrm{kNm}$
My $\quad=-79.085 \mathrm{kNm}$
$\mathrm{Vu} \quad=-29.6004 \mathrm{kN}$
Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement $\mathrm{fy}=420$ MPa; fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColoumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\emptyset \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.30

Figure 2. 30 1st Floor Main Beam 3 SPColumn Output
Mnc a

$$
=321.7777 \mathrm{kNm}
$$

Mnc b

$$
=279,4302 \mathrm{kNm}
$$

MPR BI 1

Mprb, ki (-)
$=24,2117 \mathrm{kNm}$
Mprb, $\mathrm{ka}(+) \quad=24,2117 \mathrm{kNm}$
$($ Mnc a + Mnc b $) \geq 1,2($ Mprb ki + Mprb ka $)$
$(321.7777+279,4302) \geq 1,2(24,2117+24,2117)$
$601.2080 \mathrm{kNm} \geq 58.1080 \mathrm{kNm}$
Because Mnc > 1.2 Mprb, the column meets the requirements (Strong

Column Weak Beam)

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis, $\mathrm{Vu}=-29.6004 \mathrm{kNm}$
b. Based on Mpr beam left and right column:

Mprb, ki $(-)$	$=24.2117 \mathrm{kNm}$
Mprb, ki $(+)$	$=24.2117 \mathrm{kNm}$
Mprb, ka $(-)$	$=24.2117 \mathrm{kNm}$
Mprb, ka $(+)$	$=24.2117 \mathrm{kNm}$
Mprk of block	$=0.5 \times(24.2117+24.2117)$
Mprk	$=24.2117 \mathrm{kNm}$

Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{24.2117+24.2117}{(4-0,3)}=13.0874 \mathrm{kN}$
Value of $\mathrm{Ve} \quad=13,0874 \mathrm{kN}$
$13,0874 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=-29.6004 \mathrm{kN}$
Then use $\mathrm{Vu} \quad=\mathrm{Ve}=13.0874 \mathrm{kN}$
Diameter of stirrup $\quad=12 \mathrm{~mm}$
Concrete cover $\quad=40 \mathrm{~mm}$
$\mathrm{D} \quad=500-40-12 / 2$
$=454 \mathrm{~mm}$

The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\emptyset}-0=\frac{13.0874 \times 1000}{0.75}=17449.87387 \mathrm{~N}$
$\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}}}=\frac{-}{280 \times 454} \quad=0.137270877 \mathrm{~mm}^{2} / \mathrm{mm}$.
Calculations for restraint reinforcement by:
For $\mathrm{Pu}=-128850,5 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c}$
Ag $\quad=0.3 \times 25 \times 500 \times 500=1875000 \mathrm{~N}$
fc' $\quad=25 \mathrm{Mpa}<70 \mathrm{Mpa}$, use the equations:
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$\mathrm{Bc} \quad=$ column width - concrete cover

$$
\begin{aligned}
& =500-2 \times 40 \\
& =420 \mathrm{~mm} \\
\mathrm{Ag} \quad & =500 \times 500
\end{aligned}
$$

$$
\begin{align*}
&=250000 \mathrm{~mm} 2 \\
&=(\mathrm{b}-2 \text { cover }) \times(\mathrm{h}-2 \text { cover }) \\
&=(500-2 \times 40) \times(500-2 \times 40) \\
&=176400 \mathrm{~mm} 2 \\
&=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& \frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \tag{B}\\
&=0,3\left(\frac{250000}{176400}-1\right) \frac{25}{280}=0,0111758 \\
& \frac{\mathrm{~A}_{\text {sh }}}{\mathrm{S}} 0,0111758 \times 420=4,69387 \mathrm{~mm}^{2} / \mathrm{mm} . \\
& \frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}}=0,09 \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{yt}}} \tag{C}\\
&=0,09 \frac{25}{280}=0,0070714 \\
& \frac{\mathrm{~A}_{\text {sh }}}{\mathrm{S}}
\end{align*}
$$

From (A), (B), and (C) which determine (B)
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{S}} \quad=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $S=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
12 mm diameter, 1 ft wide
$A v=1 / 4 \times \pi \times 12^{2}=113.10 \mathrm{~mm} 2$
Number of legs of transverse reinforce $=469.39 / 113.10=175,11>$ use $n=5$
Transverse reinforcement 5D12-100.
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $\mathrm{Hx}=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175,333 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements.

Calculation of transverse reinforcement outside the area 1_{0} by:
$\mathrm{Ve}=13.0874 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0,17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0,17 \times \sqrt{25} \times 500 \times 453,5=192,7375 \mathrm{kN}$
$\mathrm{Vc}=192,7375 \mathrm{kN}>\mathrm{Ve}=13.0874 \mathrm{kN}$
The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$
Then use 5D12-100.

2.9.4 $1^{\text {st }}$ Floor Main Beam 4

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:

Pu max	$=44.4976 \mathrm{kN}$
Mx	$=99.0581 \mathrm{kNm}$
My	$=95.9858 \mathrm{kNm}$
$\mathrm{Pu} \min$	$=-315.4937 \mathrm{kN}$
Mx	$=-102.178 \mathrm{kNm}$
My	$=-93.2218 \mathrm{kNm}$
Vu	$=-27.4684 \mathrm{kN}$

Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement $\mathrm{fy}=420$ MPa; fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColoumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\varnothing \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.31

Figure 2. 31 1st Floor Main Beam 4 SPColumn Output
Mnc a $=276.5555 \mathrm{kNm}$

Mnc b

$$
=300.7248 \mathrm{kNm}
$$

MPR BI 1

Mprb, ki $(-)$	$=24.2117 \mathrm{kNm}$
Mprb, ka $(+)$	$=24.2117 \mathrm{kNm}$
$($ Mnc a + Mnc b $) \geq 1,2(\mathrm{Mprb} \mathrm{ki}+\mathrm{Mprb} \mathrm{ka})$	
$(276.5555+300.7248) \geq$	$1,2(24.2117+24.2117)$

$577.2803 \mathrm{kNm} \geq 58.1080 \mathrm{kNm}$
Because Mnc > 1.2 Mprb , the column meets the requirements (Strong Column Weak Beam)

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis $\mathrm{Vu}=-27,4684 \mathrm{kNm}$
b. Based on Mpr beam left and right column:

Mprb, ki $(-)$	$=24.2117 \mathrm{kNm}$
Mprb, ki $(+)$	$=24.2117 \mathrm{kNm}$
Mprb, $\mathrm{ka}(-)$	$=24.2117 \mathrm{kNm}$
Mprb, $\mathrm{ka}(+)$	$=24.2117 \mathrm{kNm}$
Mprk of block	$=0.5 \times(24.2117+24.2117)$
Mprk	$=24.2117 \mathrm{kNm}$

Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{24.2117+24.2117}{(4-0,3)}=12.9129 \mathrm{kN}$
Value of $\mathrm{Ve} \quad=12.9129 \mathrm{kN}$
$12.9129 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=-27,4684 \mathrm{kN}$
Then use $\mathrm{Vu} \quad=\mathrm{Ve}=12.9129 \mathrm{kN}$
Diameter of stirrup $\quad=12 \mathrm{~mm}$

Concrete cover $\quad=40 \mathrm{~mm}$

$$
\begin{array}{ll}
\mathrm{D} & =500-40-12 / 2 \\
& =454 \mathrm{~mm}
\end{array}
$$

The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\emptyset}-0=\frac{12.9129 \times 1000}{0,75}=17217.20889 \mathrm{~N}$
$\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}}}=\frac{17217.20889}{280 \times 454} \quad=0.135440599 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculations for restraint reinforcement by:
For $\mathrm{Pu}=44497,6 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c}$
$\mathrm{Ag} \quad=0.3 \times 25 \times 500 \times 500$
$=1875000 \mathrm{~N}$
fc $\quad=25 \mathrm{Mpa}<70 \mathrm{Mpa}$, use the equations:
$\frac{\mathrm{A}_{\text {sh }}}{S b_{c}} \quad=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{yt}}}$
$\begin{array}{ll}\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} & =0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\ \mathrm{Bc} & =\text { column width }- \text { concrete cover }\end{array}$
$=500-2 \times 40=420 \mathrm{~mm}$
$\mathrm{Ag} \quad=500 \times 500$
$=250000 \mathrm{~mm} 2$

Ach $\quad=(\mathrm{b}-2$ cover $) \times(\mathrm{h}-2$ cover $)$
$=(500-2 \times 40) \times(500-2 \times 40)$
$=176400 \mathrm{~mm} 2$
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$

$$
\begin{align*}
& =0,3\left(\frac{250000}{176400}-1\right) \frac{25}{280}=0,0111758 \\
\frac{\mathrm{~A}_{\text {sh }}}{\mathrm{S}} & =0,0111758 \times 420=4,69387 \mathrm{~mm}^{2} / \mathrm{mm} . \tag{B}\\
\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} & =0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0,09 \frac{25}{280}=0,0070714 \\
\frac{\mathrm{~A}_{\text {sh }}}{\mathrm{S}} & =0,0070714 \times 420=2,97 \mathrm{~mm}^{2} / \mathrm{mm} \ldots \ldots . . \tag{C}
\end{align*}
$$

From (A), (B), and (C) which determine (B)
$\frac{A_{\text {sh }}}{\mathrm{S}} \quad=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $S=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
12 mm diameter, 1 ft wide
$A v=1 / 4 \times \pi \times 12^{2}=113.10 \mathrm{~mm} 2$
Number of legs of transverse reinforce $=469.39 / 113.10=175,11>$ use $n=5$
Transverse reinforcement 5D12-100.
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $\mathrm{Hx}=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175,333 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements
Calculation of transverse reinforcement outside the area 1_{0} by:
$\mathrm{Ve}=12.9129 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0,17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0,17 \times \sqrt{25} \times 500 \times 453,5=192,7375 \mathrm{kN}$
$\mathrm{Vc}=192,7375 \mathrm{kN}>\mathrm{Ve}=12.9129 \mathrm{kN}$
The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$
Then use 5D12-100.

2.9.5 $1^{\text {st }}$ Floor Main Beam 5

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:

Pu max $=-172,1264 \mathrm{kN}$
$\mathrm{Mx} \quad=82,1241 \mathrm{kNm}$
My $\quad=99,3636 \mathrm{kNm}$
Pu min $\quad=-514,4654 \mathrm{kN}$
$\mathrm{Mx} \quad=-119,4241 \mathrm{kNm}$
My $\quad=-85,3571 \mathrm{kNm}$
$\mathrm{Vu} \quad=-42,1734 \mathrm{kN}$
Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement $\mathrm{fy}=420$ MPa ; fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColoumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\emptyset \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.32

Figure 2. 32 1st Floor Main Beam 5 SPColumn Output
Mnc a

$$
=284.5888 \mathrm{kNm}
$$

Mnc b $\quad=241.3318 \mathrm{kNm}$

MPR BI 1

Mprb, ki (-) $=24.2117 \mathrm{kNm}$
Mprb, $\mathrm{ka}(+) \quad=24.2117 \mathrm{kNm}$
$($ Mnc $a+M n c b) \geq 1,2($ Mprb ki + Mprb ka $)$
$(284.5888+241.3318) \geq 1.2(24.2117+24.2117)$
$525.9206 \mathrm{kNm} \geq 58.1080 \mathrm{kNm}$
Because Mnc > 1.2 Mprb, the column meets the requirements (Strong

Column Weak Beam)

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis $\mathrm{Vu}=-42.1734 \mathrm{kNm}$
b. Based on Mpr beam left and right column:

Mprb, ki $(-)$	$=24.2117 \mathrm{kNm}$
Mprb, ki $(+)$	$=24.2117 \mathrm{kNm}$
Mprb, ka $(-)$	$=24.2117 \mathrm{kNm}$
Mprb, ka $(+)$	$=24.2117 \mathrm{kNm}$
Mprk of block	$=0.5 \times(24.2117+24.2117)$
Mprk	$=24.2117 \mathrm{kNm}$

Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{24.2117+24.2117}{(4-0,2)}=12.743 \mathrm{kN}$
Value of $\mathrm{Ve} \quad=12.743 \mathrm{kN}$
$12.743 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=-42.1734 \mathrm{kN}$
Then use Vu $\quad=\mathrm{Ve}=12.743 \mathrm{kN}$

Diameter of stirrup $\quad=12 \mathrm{~mm}$
Concrete cover $=40 \mathrm{~mm}$
D

$$
=500-40-12 / 2
$$

$=454 \mathrm{~mm}$

The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\emptyset}-0=\frac{12.743 \times 1000}{0,75}=16990.66667 \mathrm{~N}$

$$
\begin{equation*}
\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{~s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}} \mathrm{~d}}=\frac{16990.66667}{280 \times 454} \quad=0.133658485 \mathrm{~mm}^{2} / \mathrm{mm} \tag{A}
\end{equation*}
$$

Calculations for restraint reinforcement by:

$$
\begin{aligned}
& \text { For } \mathrm{Pu}=-172126.4 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c} \\
& \mathrm{Ag}=0.3 \times 25 \times 500 \times 500=1875000 \mathrm{~N} \\
& \mathrm{fc}^{\prime}=25 \mathrm{Mpa}<70 \mathrm{Mpa}, \text { use the equations: } \\
& \frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}}=0.3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& \begin{array}{ll}
\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} & =0.09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
\mathrm{Bc} \\
& =\text { column width }- \text { concrete cover } \\
& =500-2 \times 40 \\
& =420 \mathrm{~mm} \\
\mathrm{Ag} \quad & 500 \times 500 \\
& =250000 \mathrm{~mm} 2
\end{array} \\
&
\end{aligned}
$$

Ach $\quad=(\mathrm{b}-2$ cover $) \times(\mathrm{h}-2$ cover $)$

$$
=(500-2 \times 40) \times(500-2 \times 40)=176400 \mathrm{~mm} 2
$$

$$
\begin{array}{ll}
\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} & =0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0,3\left(\frac{250000}{176400}-1\right) \frac{25}{280}=0,0111758 \\
\frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{~S}} & =0,0111758 \times 420=4,69387 \mathrm{~mm}^{2} / \mathrm{mm} . \tag{B}
\end{array}
$$

$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,09 \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{yt}}}$
$=0,09 \frac{25}{280}=0,0070714$
$\frac{A_{\text {sh }}}{\mathrm{S}} \quad=0,0070714 \times 420=2,97 \mathrm{~mm}^{2} / \mathrm{mm}$

From (A), (B), and (C) which determine (B)
$\frac{A_{\text {sh }}}{\mathrm{S}} \quad=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $S=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
12 mm diameter, 1 ft wide
$\mathrm{Av}=1 / 4 \times \pi \times 12^{2}=113.10 \mathrm{~mm} 2$
Number of legs of transverse reinforce $=469.39 / 113.10=175,11>$ use $\mathrm{n}=5$
Transverse reinforcement 5D12-100.
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $H x=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175,333 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements.
Calculation of transverse reinforcement outside the area 1_{0} by:
$\mathrm{Ve}=12.743 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0,17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0,17 \times \sqrt{25} \times 500 \times 453,5=192,7375 \mathrm{kN}$
$\mathrm{Vc}=192,7375 \mathrm{kN}>\mathrm{Ve}=12.743 \mathrm{kN}$
The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$
Then use 5D12-100.

2.9.6 $2^{\text {nd }}$ Floor Main Beam 1

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:

Pu max	$=-65.4271 \mathrm{kN}$
Mx	$=44.96 \mathrm{kNm}$
My	$=59.9926 \mathrm{kNm}$
Pu min	$=-356.9387 \mathrm{kN}$
Mx	$=-47.6435 \mathrm{kNm}$
My	$=-42.5789 \mathrm{kNm}$

$$
=-21.6853 \mathrm{kN}
$$

Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement $\mathrm{fy}=420$ MPa; fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColoumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\emptyset \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.33

Na	Pu	Men Hen	$\mathrm{Mu} \mathrm{\%}$Nam	4Vins	\$NAry	4 Minime	sa Depth	it Doyth at of	
	*N			Wem			-mm	min	
\pm	65	38	4	-1937	$-272,34$	3 mm	27	65 00	5) 0,3
7	158	43	47	3 m 2 MT	29687	178	78	and an	510.87
				$\phi \mathrm{M}_{\mathrm{nx}}$		$\phi \mathrm{M}_{\mathrm{ny}}$	中	\$ $\mathrm{M}_{1 \times \mathrm{x}}$	\$ M_{n}
				kNm		kNm		kNm	kNr
Pu max				-299,21		-223,14	0,9	-332,4555556	-247,933333
Pu min				262,97		294,27	0,8730	301,2256586	337,079037

Figure 2. 33 2nd Floor Main Beam 1 SPColumn Output
Mnc a $\quad=332.4555 \mathrm{kNm}$
Mnc b
$=301.2256 \mathrm{kNm}$
MPR BI 1

Mprb, ki (-) $=32.4264 \mathrm{kNm}$
Mprb, $\mathrm{ka}(+) \quad=32.4264 \mathrm{kNm}$
$($ Mnc $a+M n c b) \geq 1,2(M p r b k i+M p r b k a)$
$(332.4555+301.2256) \geq 1,2(32.4264+32.4264)$
$633.6812 \mathrm{kNm} \geq 77.8233 \mathrm{kNm}$

Because Mnc > 1.2 Mprb, the column meets the requirements (Strong Column Weak Beam)

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis $\mathrm{Vu}=-21.6853 \mathrm{kNm}$
b. Based on Mpr beam left and right column:

Mprb, ki (-) $=32.4264 \mathrm{kNm}$

Mprb, ki $(+)$	$=32.4264 \mathrm{kNm}$
Mprb, ka $(-)$	$=32.4264 \mathrm{kNm}$
Mprb, ka $(+)$	$=32.4264 \mathrm{kNm}$
Mprk of block	$=0.5 \mathrm{x}(32.4264+32.4264)$
Mprk	$=32.4264 \mathrm{kNm}$

Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{32.4264+32.4264}{(4-0.4)} \quad=18.0146 \mathrm{kN}$
Value of $\mathrm{Ve} \quad=18.0146 \mathrm{kN}$
$18.0146 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=-21.6853 \mathrm{kN}$

Then use Vu	$=\mathrm{Ve}=-21.6853 \mathrm{kN}$
Diameter of stirrup	$=12 \mathrm{~mm}$
Concrete cover	$=40 \mathrm{~mm}$
D	$=500-40-12 / 2$
	$=454 \mathrm{~mm}$

The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\emptyset}-0=\frac{18.0146 \times 1000}{0.75}=24019.5555 \mathrm{~N}$
$\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}} \mathrm{d}}=\frac{24019.5}{280 \times 453,5} \quad=0.188951822 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculations for restraint reinforcement by:
For $\mathrm{Pu}=-65427.1 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c}$
Ag $\quad=0.3 \times 25 \times 500 \times 500$
$=1875000 \mathrm{~N}$
fc' $\quad=25 \mathrm{Mpa}<70 \mathrm{Mpa}$, use the equations:
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$

$$
\begin{aligned}
\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} & =0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
\mathrm{Bc} & =\text { column width }- \text { concrete cover } \\
& =500-2 \times 40 \\
& =420 \mathrm{~mm} \\
\mathrm{Ag} & =500 \times 500 \\
& =250000 \mathrm{~mm} 2 \\
& =(b-2 \text { cover }) \times(\mathrm{h}-2 \text { cover }) \\
& =(500-2 \times 40) \times(500-2 \times 40) \\
& =176400 \mathrm{~mm} 2 \\
\frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} & =0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0,3\left(\frac{250000}{176400}-1\right) \frac{25}{280}=0,0111758
\end{aligned}
$$

$\frac{A_{\text {sh }}}{\mathrm{S}} \quad=0,0111758 \times 420=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$

$$
\begin{align*}
\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} & =0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0,09 \frac{25}{280}=0,0070714 \tag{C}
\end{align*}
$$

$\frac{A_{\text {sh }}}{S} \quad=0,0070714 \times 420=2,97 \mathrm{~mm}^{2} / \mathrm{mm}$
From (A), (B), and (C) which determine (B)
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{S}} \quad=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $S=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
12 mm diameter, 1 ft wide
$A v=1 / 4 \times \pi \times 12^{2}=113.10 \mathrm{~mm} 2$

Number of legs of transverse reinforce $=469.39 / 113.10=175,11>$ use $n=5$
Transverse reinforcement 5D12-100
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $\mathrm{Hx}=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175,333 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements
Calculation of transverse reinforcement outside the area l_{0} by:
$\mathrm{Ve}=18.0146 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0.17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0.17 \times \sqrt{25} \times 500 \times 453.5=192.7375 \mathrm{kN}$
$\mathrm{Vc}=192.7375 \mathrm{kN}>\mathrm{Ve}=18.0146 \mathrm{kN}$
The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$
Then use 5D12-100.
2.9.7 $2^{\text {nd }}$ Floor Main Beam 2

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:

Pu max $\quad=-69.8864 \mathrm{kN}$
$\mathrm{Mx} \quad=55,9191 \mathrm{kNm}$
My $\quad=57.3015 \mathrm{kNm}$
Pu min $\quad=-348.0503 \mathrm{kN}$
$\mathrm{Mx} \quad=-53,6283 \mathrm{kNm}$
My $\quad=-40,6711 \mathrm{kNm}$
$\mathrm{Vu} \quad=25,3576 \mathrm{kN}$
Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement $\mathrm{fy}=420$ MPa; fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColoumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\emptyset \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.34

0	Pu	Mus	Mur	4Vins	+ Many	4Ma/Na	ha Depan	dr Dopth	st \quad -
	N	Leal	isurs	kNom	Wmm		* ${ }^{\text {a }}$	\%	
1	69	-97	53	-20kz 21	-25as	4.736	233	461	0.0058 - 0
2	348	40	51	29, 62	3275	3.989	251	4S4	200478 0ast
				¢ M_{nx}		中 $\mathrm{M}_{\text {cy }}$	ϕ	¢ $\mathrm{M}_{\text {ex }}$	$\mathrm{x}^{\text {a }}$ (M_{zy}
				kNm		kNm		kNm	kNm
Pu max				268,21		258,8	0,9	298,0111111	287,5555556
Pu min				239,62		317,5	0,8810	271,9863791	\| 360,3859251

Figure 2. 34 2nd Floor Main Beam 2 SPColumn Output

Mnc a

$$
=298.0111 \mathrm{kNm}
$$

Mnc b

$$
=271.9863 \mathrm{kNm}
$$

MPR BI 1

Mprb, ki $(-)$	$=32.4264 \mathrm{kNm}$
Mprb, ka $(+)$	$=32.4264 \mathrm{kNm}$

$(\mathrm{Mnc} \mathrm{a}+\mathrm{Mnc} \mathrm{b}) \geq 1,2(\mathrm{Mprb} \mathrm{ki}+\mathrm{Mprb} \mathrm{ka})$
$(298.0111+271.9863) \geq 1,2(32.4264+32.4264)$
$569.9974 \mathrm{kNm} \geq 77.8233 \mathrm{kNm}$

Because Mnc >1.2 Mprb, the column meets the requirements (Strong

Column Weak Beam)

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis $\mathrm{Vu}=16.3576 \mathrm{kNm}$
b. Based on Mpr beam left and right column:
$\begin{array}{ll}\text { Mprb, ki }(-) & =32.4264 \mathrm{kNm} \\ \text { Mprb, ki }(+) & =32.4264 \mathrm{kNm}\end{array}$
Mprb, ka (-) $\quad=32.4264 \mathrm{kNm}$
Mprb, $\mathrm{ka}(+) \quad=32.4264 \mathrm{kNm}$
Mprk of block $\quad=0.5 \times(32.4264+32.4264)$

Mprk

$$
=32.4264 \mathrm{kNm}
$$

Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{32.4264+32.4264}{(4-0,35)}=17.7678 \mathrm{kN}$
Value of $\mathrm{Ve} \quad=17.7678 \mathrm{kN}$
$17.7678 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=16,3576 \mathrm{kN}$
Then use $\mathrm{Vu} \quad=\mathrm{Ve}=17.7678 \mathrm{kN}$
Diameter of stirrup $=12 \mathrm{~mm}$
Concrete cover $\quad=40 \mathrm{~mm}$
D

$$
\begin{aligned}
& =500-40-12 / 2 \\
& =454 \mathrm{~mm}
\end{aligned}
$$

The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\varnothing}-0=\frac{17.7678 \times 1000}{0,75}=23690.52055 \mathrm{~N}$
$\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}}}=\frac{23690.52055}{280 \times 454} \quad=0.18636344 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculations for restraint reinforcement by:
For $\mathrm{Pu}=-69886,4 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c}$
Ag $\quad=0.3 \times 25 \times 500 \times 500=1875000 \mathrm{~N}$
fc' $\quad=25 \mathrm{Mpa}<70 \mathrm{Mpa}$, use the equations:
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0.3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0.09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
Bc = column width - concrete cover
$=500-2 \times 40$
$=420 \mathrm{~mm}$

$$
\begin{align*}
& \mathrm{Ag} \quad=500 \times 500 \\
& =250000 \mathrm{~mm} 2 \\
& \text { Ach } \quad=(\mathrm{b}-2 \text { cover }) \mathrm{x}(\mathrm{~h}-2 \text { cover }) \\
& =(500-2 \times 40) \times(500-2 \times 40)=176400 \mathrm{~mm} 2 \\
& \begin{aligned}
\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} & =0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0,3\left(\frac{250000}{176400}-1\right) \frac{25}{280}=0,0111758
\end{aligned} \\
& \frac{\mathrm{~A}_{\text {sh }}}{\mathrm{S}} \quad=0,0111758 \times 420=4,69387 \mathrm{~mm}^{2} / \mathrm{mm} \tag{B}\\
& \frac{\mathrm{~A}_{\text {sh }}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0,09 \frac{25}{280}=0,0070714 \\
& =0,0070714 \times 420=2,97 \mathrm{~mm}^{2} / \mathrm{mm} \text {. } \tag{C}
\end{align*}
$$

From (A), (B), and (C) which determine (B)
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{S}} \quad=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $\mathrm{S}=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
12 mm diameter, 1 ft wide
$\mathrm{Av}=1 / 4 \times \pi \times 12^{2}=113.10 \mathrm{~mm} 2$
Number of legs of transverse reinforce $=469.39 / 113.10=175,11>$ use $n=5$
Transverse reinforcement 5D12-100
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $\mathrm{Hx}=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175.333 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements.

Calculation of transverse reinforcement outside the area 1_{0} by:
$\mathrm{Ve}=17.7678 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0,17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0,17 \times \sqrt{25} \times 500 \times 453,5=192,7375 \mathrm{kN}$
$\mathrm{Vc}=192,7375 \mathrm{kN}>\mathrm{Ve}=17.7678 \mathrm{kN}$
The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$
Then use 5D12-100.

2.9.8 $2^{\text {nd }}$ Floor Main Beam 3

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:

Pu max	$=-80.6775 \mathrm{kN}$
Mx	$=37.2992 \mathrm{kNm}$
My	$=80.9504 \mathrm{kNm}$
Pu min	$=-293.129 \mathrm{kN}$
Mx	$=-58,2935 \mathrm{kNm}$
My	$=-51.002 \mathrm{kNm}$
Vu	$=-26,2753 \mathrm{kN}$

Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement $\mathrm{fy}=420$ MPa; fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColoumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\emptyset \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.35

Figure 2. 35 2nd Floor Main Beam 3 SPColumn Output
Mnc a $\quad=382.9222 \mathrm{kNm}$

Mnc b $\quad=293.1869 \mathrm{kNm}$

MPR BI 1

Mprb, ki $(-) \quad=24.2117 \mathrm{kNm}$
Mprb, ka $(+) \quad=24.2117 \mathrm{kNm}$
$($ Mnc a + Mnc b $) \geq 1,2($ Mprb ki + Mprb ka $)$
$(382.9222+293.1869) \geq 1,2(24.2117+24.2117)$
$676.1091 \mathrm{kNm} \geq 58.1080 \mathrm{kNm}$

Because Mnc > 1.2 Mprb, the column meets the requirements (Strong Column Weak Beam)

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis $\mathrm{Vu}=-29.6004 \mathrm{kNm}$
b. Based on Mpr beam left and right column:

Mprb, ki $(-) \quad=24.2117 \mathrm{kNm}$
Mprb, ki $(+) \quad=24.2117 \mathrm{kNm}$

Mprb, $\mathrm{ka}(-)$	$=24.2117 \mathrm{kNm}$
Mprb, $\mathrm{ka}(+)$	$=24.2117 \mathrm{kNm}$
Mprk of block	$=0.5 \times(24.2117+24.2117)$
Mprk	$=24.2117 \mathrm{kNm}$

Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{24.2117+24.2117}{(4-0,3)}=13.0874 \mathrm{kN}$
Value of $\mathrm{Ve} \quad=13.0874 \mathrm{kN}$
$13.0874 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=-29.6004 \mathrm{kN}$
Then use $\mathrm{Vu} \quad=\mathrm{Ve}=13.0874 \mathrm{kN}$

Diameter of stirrup	$=12 \mathrm{~mm}$
Concrete cover	$=40 \mathrm{~mm}$
D	$=500-40-12 / 2$
	$=454 \mathrm{~mm}$

The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\emptyset}-0=\frac{13.0874 \times 1000}{0,75}=17449.87387 \mathrm{~N}$
$\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}}}=\frac{17449.87387}{280 \times 453,5} \quad=0.137270877 \mathrm{~mm}^{2} / \mathrm{mm}$.
Calculations for restraint reinforcement by:
For $\mathrm{Pu}=-128850,5 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c}$
$\mathrm{Ag} \quad=0.3 \times 25 \times 500 \times 500=1875000 \mathrm{~N}$
fc $\quad=25 \mathrm{Mpa}<70 \mathrm{Mpa}$, use the equations:
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}} \quad=0,3\left(\frac{\mathrm{~A}_{\mathrm{c}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{yt}}}$
$\begin{array}{ll}\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} & =0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\ \mathrm{Bc} & =\text { column width }- \text { concrete cover }\end{array}$
$=500-2 \times 40$
$=420 \mathrm{~mm}$
$\mathrm{Ag} \quad=500 \times 500$
$=250000 \mathrm{~mm} 2$

Ach $\quad=(\mathrm{b}-2$ cover $) \times(\mathrm{h}-2$ cover $)$
$=(500-2 \times 40) \times(500-2 \times 40)$
$=176400 \mathrm{~mm} 2$
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$

$$
\begin{align*}
& =0,3\left(\frac{250000}{176400}-1\right) \frac{25}{280}=0,0111758 \\
\frac{\mathrm{~A}_{\text {sh }}}{\mathrm{S}} & =0,0111758 \times 420=4,69387 \mathrm{~mm}^{2} / \mathrm{mm} . \tag{B}\\
\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} & =0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0,09 \frac{25}{280}=0,0070714 \\
\frac{\mathrm{~A}_{\text {sh }}}{\mathrm{S}} & =0,0070714 \times 420=2,97 \mathrm{~mm}^{2} / \mathrm{mm} \ldots \ldots \ldots . \tag{C}
\end{align*}
$$

From (A), (B), and (C) which determine (B)
$\frac{A_{\text {sh }}}{\mathrm{S}} \quad=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $S=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
12 mm diameter, 1 ft wide
$A v=1 / 4 \times \pi \times 12^{2}=113.10 \mathrm{~mm} 2$
Number of legs of transverse reinforce $=469.39 / 113.10=175,11>$ use $n=5$
Transverse reinforcement 5D12-100
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $\mathrm{Hx}=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175,333 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements
Calculation of transverse reinforcement outside the area 1_{0} by:
$\mathrm{Ve}=13.0874 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0,17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0,17 \times \sqrt{25} \times 500 \times 453,5=192,7375 \mathrm{kN}$
$\mathrm{Vc}=192,7375 \mathrm{kN}>\mathrm{Ve}=13.0874 \mathrm{kN}$
The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$ Then use 5D12-100.

2.9.9 $2^{\text {nd }}$ Floor Main Beam 4

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:

Pu max	$=31.5843 \mathrm{kN}$
Mx	$=42.8979 \mathrm{kNm}$
My	$=48.2265 \mathrm{kNm}$
$\mathrm{Pu} \min$	$=-207.9834 \mathrm{kN}$
Mx	$=-51.6438 \mathrm{kNm}$
My	$=-41.1375 \mathrm{kNm}$
Vu	$=-23.7151 \mathrm{kN}$

Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement $\mathrm{fy}=420$ MPa; fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColoumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\emptyset \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.36

Figure 2. 36 2nd Floor Main Beam 4 SPColumn Output
Mnc a $=302.4888 \mathrm{kNm}$

Mnc b $=271.4111 \mathrm{kNm}$

MPR BI 1

Mprb, ki $(-)$	$=24.2117 \mathrm{kNm}$
Mprb, $\mathrm{ka}(+)$	$=24.2117 \mathrm{kNm}$

$($ Mnc $a+M n c b) \geq 1,2($ Mprb ki + Mprb ka $)$
$(302.4888+271.4111) \geq 1,2(24,2117+24,2117)$
$573.9 \mathrm{kNm} \geq 58.1080 \mathrm{kNm}$

Because Mnc > 1.2 Mprb, the column meets the requirements (Strong Column Weak Beam)

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis $\mathrm{Vu}=-23.7151 \mathrm{kNm}$
b. Based on Mpr beam left and right column:

Mprb, $\mathrm{ki}(-) \quad=24.2117 \mathrm{kNm}$
Mprb, ki $(+) \quad=24.2117 \mathrm{kNm}$
Mprb, ka $(-) \quad=24.2117 \mathrm{kNm}$
Mprb, ka (+) $\quad=24.2117 \mathrm{kNm}$
Mprk of block $\quad=0.5 \mathrm{x}(24.2117+24.2117)$
Mprk
$=24.2117 \mathrm{kNm}$
Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{24.2117+24.2117}{(4-0,3)}=12.9129 \mathrm{kN}$
Value of $\mathrm{Ve} \quad=12.9129 \mathrm{kN}$
$12.9129 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=-23.7151 \mathrm{kN}$
Then use $\mathrm{Vu} \quad=\mathrm{Ve}=12.9129 \mathrm{kN}$
Diameter of stirrup $\quad=12 \mathrm{~mm}$
Concrete cover $=40 \mathrm{~mm}$
$\begin{aligned} \mathrm{D} & =500-40-12 / 2 \\ & =454 \mathrm{~mm}\end{aligned}$
The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\emptyset}-0=\frac{12.9129 \times 1000}{0,75}=17217.2088 \mathrm{~N}$
$\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}}}=\frac{17217.2088}{280 \times 453,5} \quad=0.135440599 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculations for restraint reinforcement by:
For $\mathrm{Pu}=31584.3 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c}$
$\mathrm{Ag} \quad=0.3 \times 25 \times 500 \times 500=1875000 \mathrm{~N}$
fc' $\quad=25 \mathrm{Mpa}<70 \mathrm{Mpa}$, use the equations:
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$\frac{A_{\text {sh }}}{S b_{c}} \quad=0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$\mathrm{Bc}=$ column width - concrete cover
$=500-2 \times 40$
$=420 \mathrm{~mm}$
$\mathrm{Ag} \quad=500 \times 500$
$=250000 \mathrm{~mm} 2$
Ach $\quad=(\mathrm{b}-2$ cover $) \times(\mathrm{h}-2$ cover $)$
$=(500-2 \times 40) \times(500-2 \times 40)=176400 \mathrm{~mm} 2$
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$=0,3\left(\frac{250000}{176400}-1\right) \frac{25}{280}=0,0111758$
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{S}} \quad=0,0111758 \times 420=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$.
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0.09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$=0,09 \frac{25}{280}=0.0070714$
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{S}} \quad=0,0070714 \times 420=2.97 \mathrm{~mm}^{2} / \mathrm{mm}$.

From (A), (B), and (C) which determine (B)
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{S}} \quad=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $S=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
12 mm diameter, 1 ft wide
$A v=1 / 4 \times \pi \times 12^{2}=113.10 \mathrm{~mm} 2$
Number of legs of transverse reinforce $=469.39 / 113.10=175.11>$ use $n=5$
Transverse reinforcement 5D12-100
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $\mathrm{Hx}=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175.333 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements.
Calculation of transverse reinforcement outside the area 1_{0} by:
$\mathrm{Ve}=12.9129 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0,17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0,17 \times \sqrt{25} \times 500 \times 453,5=192,7375 \mathrm{kN}$
$\mathrm{Vc}=192,7375 \mathrm{kN}>\mathrm{Ve}=12.9129 \mathrm{kN}$
The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$
Then use 5D12-100.

2.9.10 $2^{\text {nd }}$ Floor Main Beam 5

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:

Pu max	$=-109.5854 \mathrm{kN}$
Mx	$=60.8556 \mathrm{kNm}$
My	$=55.5325 \mathrm{kNm}$
$\mathrm{Pu} \min$	$=-343.0406 \mathrm{kN}$

$\mathrm{Mx} \quad=-99.573 \mathrm{kNm}$
My $\quad=-36.7215 \mathrm{kNm}$
$\mathrm{Vu} \quad=-44.2221 \mathrm{kN}$
Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement $\mathrm{fy}=420$ MPa; fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColoumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\emptyset \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.37

$\underline{\square}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{Ne} \end{aligned}$	No NEe	Sher Use	ANET An	iNty	26n-3/2	naperth tim	ebent	et	+
1	18	is	-	-27130	-37	2 \%e	125	188	exesas	4
2	30	36	\#	12780	31025	140	254	35	epora	4
				$\phi \mathrm{M}_{\mathrm{mx}}$		¢ $\mathrm{M}_{\text {tr }}$	\$	$\phi \mathrm{M}_{\text {tX }}$		
				kNm		kNm		kNm		m
Pu max				-219,08		-239	0,9	-213,1222222		
Pu min				122,64		337,26	0,9000	136,2666667		

Figure 2. 37 2nd Floor Main Beam 5 SPColumn Output

Mnc a

$$
=243.4222 \mathrm{kNm}
$$

Mnc b

$$
=136.2666 \mathrm{kNm}
$$

MPR BI 1

Mprb, ki $(-)$	$=24.2117 \mathrm{kNm}$
Mprb, $\mathrm{ka}(+)$	$=24.2117 \mathrm{kNm}$

$($ Mnc $a+M n c b) \geq 1,2(M p r b k i+M p r b k a)$
$(243.4222+136.2666) \geq 1,2(24.2117+24.2117)$
$379.6888 \mathrm{kNm} \geq 58.1080 \mathrm{kNm}$

Because Mnc > 1.2 Mprb, the column meets the requirements (Strong Column Weak Beam)

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis $\mathrm{Vu}=-44.2221 \mathrm{kNm}$
b. Based on Mpr beam left and right column:

Mprb, ki $(-)$	$=24.2117 \mathrm{kNm}$
Mprb, ki $(+)$	$=24.2117 \mathrm{kNm}$
Mprb, ka $(-)$	$=24.2117 \mathrm{kNm}$
Mprb, ka $(+)$	$=24.2117 \mathrm{kNm}$
Mprk of block	$=0.5 \times(24.2117+24.2117)$
Mprk	$=24.2117 \mathrm{kNm}$

Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{24.2117+24.2117}{(4-0.2)} \quad=12.743 \mathrm{kN}$
Value of Ve $\quad=12.743 \mathrm{kN}$
$12.743 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=-44.2221 \mathrm{kN}$
Then use $\mathrm{Vu} \quad=\mathrm{Ve}=12.743 \mathrm{kN}$
Diameter of stirrup $\quad=12 \mathrm{~mm}$
Concrete cover $=40 \mathrm{~mm}$
D

$$
\begin{aligned}
& =500-40-12 / 2 \\
& =454 \mathrm{~mm}
\end{aligned}
$$

The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\emptyset}-0=\frac{12.743 \times 1000}{0,75}=16990.66667 \mathrm{~N}$
$\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}}}=\frac{16990.66667}{280 \times 454} \quad=0.133658485 \mathrm{~mm}^{2} / \mathrm{mm}$.
Calculations for restraint reinforcement by:
For $\mathrm{Pu}=-109585.4 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c}$

Ag $\quad=0.3 \times 25 \times 500 \times 500=1875000 \mathrm{~N}$
fc' $\quad=25 \mathrm{Mpa}<70 \mathrm{Mpa}$, use the equations:

$$
\begin{align*}
& \frac{\mathrm{A}_{\text {sh }}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0.3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{yt}}} \\
& \frac{\mathrm{~A}_{\text {sh }}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0.09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& \text { Bc = column width }- \text { concrete cover } \\
& =500-2 \times 40 \\
& =420 \mathrm{~mm} \\
& \text { Ag } \quad=500 \times 500 \\
& =250000 \mathrm{~mm} 2 \\
& \text { Ach } \quad=(b-2 \text { cover }) x(h-2 \text { cover }) \\
& =(500-2 \times 40) \times(500-2 \times 40)=176400 \mathrm{~mm} 2 \\
& \frac{\mathrm{~A}_{\text {sh }}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0.3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0.3\left(\frac{250000}{176400}-1\right) \frac{25}{280}=0.0111758 \\
& \frac{A_{\text {sh }}}{\mathrm{S}} \quad=0.0111758 \times 420=4.69387 \mathrm{~mm}^{2} / \mathrm{mm} \text {. } \tag{B}\\
& \frac{\mathrm{A}_{\text {sh }}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0.09 \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0.09 \frac{25}{280}=0.0070714 \\
& \frac{A_{\text {sh }}}{\mathrm{S}} \quad=0.0070714 \times 420=2.97 \mathrm{~mm}^{2} / \mathrm{mm} \tag{C}
\end{align*}
$$

From (A), (B), and (C) which determine (B)
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{S}} \quad=4.69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $S=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
12 mm diameter, 1 ft wide
$A v=1 / 4 \times \pi \times 12^{2}=113.10 \mathrm{~mm} 2$
Number of legs of transverse reinforce $=469.39 / 113.10=175,11>$ use $n=5$
Transverse reinforcement 5D12-100
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $\mathrm{Hx}=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175,333 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements
Calculation of transverse reinforcement outside the area 1_{0} by:
$\mathrm{Ve}=12.743 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0,17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0,17 \times \sqrt{25} \times 500 \times 453,5=192,7375 \mathrm{kN}$
$\mathrm{Vc}=192,7375 \mathrm{kN}>\mathrm{Ve}=12.743 \mathrm{kN}$
The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$
Then use 5D12-100.

2.9.11 $3^{\text {rd }}$ Floor Main Beam 1

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:
$\mathrm{Pu} \max \quad=-28.0854 \mathrm{kN}$

Mx	$=36.9177 \mathrm{kNm}$
My	$=38.6086 \mathrm{kNm}$
$\mathrm{Pu} \min$	$=-171.351 \mathrm{kN}$
Mx	$=-32.4736 \mathrm{kNm}$
My	$=-58.5033 \mathrm{kNm}$
Vu	$=-31.3752 \mathrm{kN}$

Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement $\mathrm{fy}=420$ MPa; fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColoumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\emptyset \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.38

4	\cdots	Mor	340\%	4ther	$\begin{gathered} \text { 4sty } \\ \text { isin } \end{gathered}$	-6imin		nat Deith	atomel	$\pm \quad$ *	
	**	ver	Uns $\quad 30$					=	*-		¢
1	z	-	-30	-2015	73y	7100		2 E	361	cassir	58
1	173	37	12	3H04	meas	3180		220	480		3
				¢ M_{fK}		¢ $\mathrm{M}_{\text {ry }}$		ϕ	$\phi \mathrm{M}_{\text {fx }}$		
				kNm		kNm			kNm		
Pu max				-267,15		-253,09		0,9	$-296,8333333$		
Pumin				341,04		188,16		0,9000	378,9333333		

Figure 2. 38 3rd Floor Main Beam 1 SPColumn Output
Mnc a $\quad=296.8333 \mathrm{kNm}$

Mnc b $\quad=378.9333 \mathrm{kNm}$

MPR BI 1

Mprb, ki $(-)$	$=32.4265 \mathrm{kNm}$
Mprb, ka $(+)$	$=32.4265 \mathrm{kNm}$
$($ Mnc a + Mnc b $) \geq 1,2($ Mprb ki + Mprb ka $)$	
$(296.8333+378.9333) \geq 1,2(32.4265+32.4265)$	

$675.7667 \mathrm{kNm} \geq 77.8236 \mathrm{kNm}$

Because Mnc > 1.2 Mprb, the column meets the requirements (Strong Column Weak Beam)

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis $\mathrm{Vu}=-31.3752 \mathrm{kNm}$
b. Based on Mpr beam left and right column:

Mprb, ki $(-)$	$=32.4265 \mathrm{kNm}$
Mprb, ki $(+)$	$=32.4265 \mathrm{kNm}$
Mprb, ka $(-)$	$=32.4265 \mathrm{kNm}$
Mprb, ka $(+)$	$=32.4265 \mathrm{kNm}$
Mprk of block	$=0.5 \times(32.4265+32.4265)$
Mprk	$=32.4265 \mathrm{kNm}$
	129

Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{32.4265+32.4265}{(4-0.4)}=18.0147 \mathrm{kN}$
Value of Ve $\quad=18.0147 \mathrm{kN}$
$18.0147 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=-31.3752 \mathrm{kN}$
Then use Vu

$$
=\mathrm{Ve}=18.0147 \mathrm{kN}
$$

Diameter of stirrup $\quad=12 \mathrm{~mm}$
Concrete cover $\quad=40 \mathrm{~mm}$
D $=500-40-12 / 2$
$=454 \mathrm{~mm}$

The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\varnothing}-0 \quad=\frac{18.0147 \times 1000}{0,75}=24019.62963 \mathrm{~N}$
$\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}}}=\frac{24019.62963}{280 \times 453,5}=0.188952404 \mathrm{~mm}^{2} / \mathrm{mm}$

Calculations for restraint reinforcement by:
For $\mathrm{Pu}=-28085.4 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c}$
$\mathrm{Ag} \quad=0.3 \times 25 \times 500 \times 500$
$=1875000 \mathrm{~N}$
fc' $\quad=25 \mathrm{Mpa}<70 \mathrm{Mpa}$, use the equations:
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0.3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0.09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$\mathrm{Bc} \quad=$ column width - concrete cover
$=500-2 \times 40$
$=420 \mathrm{~mm}$

$$
\begin{align*}
& \mathrm{Ag} \quad=500 \times 500 \\
& =250000 \mathrm{~mm} 2 \\
& \text { Ach } \quad=(b-2 \text { cover }) x(h-2 \text { cover }) \\
& =(500-2 \times 40) \times(500-2 \times 40) \\
& =176400 \mathrm{~mm} 2 \\
& \frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0.3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0.3\left(\frac{250000}{176400}-1\right) \frac{25}{280}=0.0111758 \\
& \frac{\mathrm{~A}_{\text {sh }}}{\mathrm{S}} \quad=0.0111758 \times 420=4.69387 \mathrm{~mm}^{2} / \mathrm{mm} \tag{B}\\
& \frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0.09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0.09 \frac{25}{280}=0.0070714 \\
& =0.0070714 \times 420=2.97 \mathrm{~mm}^{2} / \mathrm{mm} \tag{C}
\end{align*}
$$

From (A), (B), and (C) which determine (B)
$\frac{A_{\text {sh }}}{\mathrm{S}}=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $\mathrm{S}=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
12 mm diameter, 1 ft wide
$\mathrm{Av}=1 / 4 \times \pi \times 12^{2}=113.10 \mathrm{~mm} 2$
Number of legs of transverse reinforce $=469.39 / 113.10=175,11>$ use $n=5$
Transverse reinforcement 5D12-100
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $\mathrm{Hx}=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175,333 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements
Calculation of transverse reinforcement outside the area l_{0} by:
$\mathrm{Ve}=18.0147 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0,17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0,17 \times \sqrt{25} \times 500 \times 453,5=192,7375 \mathrm{kN}$
$\mathrm{Vc}=192,7375 \mathrm{kN}>\mathrm{Ve}=18.0147 \mathrm{kN}$
The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$
Then use 5D12-100.

2.9.12 $3^{\text {rd }}$ Floor Main Beam 2

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:
$\begin{array}{ll}\text { Pu max } & =-30.2479 \mathrm{kN} \\ \mathrm{Mx} & =42.0299 \mathrm{kNm} \\ \mathrm{My} & =35.5657 \mathrm{kNm} \\ \text { Pu min } & =-167.6629 \mathrm{kN}\end{array}$
Mx

$$
=-45.8179 \mathrm{kNm}
$$

My

$$
=-54.8356 \mathrm{kNm}
$$

$$
\mathrm{Vu} \quad=-20.0759 \mathrm{kN}
$$

Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement $\mathrm{fy}=420$ MPa ; fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColoumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\emptyset \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.39

Figure 2. 39 3rd Floor Main Beam 2 SPColumn Output

Mnc a

$$
=262.7888 \mathrm{kNm}
$$

Mnc b $=328.9 \mathrm{kNm}$

MPR BI 1

Mprb, ki $(-) \quad=32.4265 \mathrm{kNm}$
Mprb, ka $(+) \quad=32.4265 \mathrm{kNm}$
$($ Mnc a + Mnc b) $\geq 1,2($ Mprb ki + Mprb ka $)$
$(262.7888+328.9) \geq 1,2(32.4265+32.4265)$
$591.6888 \mathrm{kNm} \geq 77.8236 \mathrm{kNm}$
Because Mnc > 1.2 Mprb, the column meets the requirements (Strong Column Weak Beam)

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis $\mathrm{Vu}=-20.0759 \mathrm{kNm}$
b. Based on Mpr beam left and right column:

Mprb, ki $(-) \quad=32.4265 \mathrm{kNm}$
Mprb, $\mathrm{ki}(+) \quad=32.4265 \mathrm{kNm}$
Mprb, ka (-) $\quad=32.4265 \mathrm{kNm}$
Mprb, $\mathrm{ka}(+) \quad=32.4265 \mathrm{kNm}$
Mprk of block $\quad=0.5 \times(32.4265+32.4265)$
Mprk $\quad=32.4265 \mathrm{kNm}$
Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{32.4265+32.4265}{(4-0.35)}=17.7679 \mathrm{kN}$
Value of $\mathrm{Ve} \quad=17.7679 \mathrm{kN}$
$17.7679 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=-20.0759 \mathrm{kN}$

Then use $\mathrm{Vu} \quad=\mathrm{Ve}=17.7679 \mathrm{kN}$
Diameter of stirrup $\quad=12 \mathrm{~mm}$
Concrete cover $=40 \mathrm{~mm}$
D

$$
\begin{aligned}
& =500-40-12 / 2 \\
& =454 \mathrm{~mm}
\end{aligned}
$$

The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\emptyset}-0=\frac{17.7679 \times 1000}{0,75}=23690.59361 \mathrm{~N}$
$\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}}}=\frac{23690.59361}{280 \times 453,5} \quad=0.186364015 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculations for restraint reinforcement by:
For $\mathrm{Pu}=-30247.9 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c}$
$\mathrm{Ag} \quad=0.3 \times 25 \times 500 \times 500$
$=1875000 \mathrm{~N}$
fc' $=25 \mathrm{Mpa}<70 \mathrm{Mpa}$, use the equations:
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}} \quad=0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{c}}}$
$\mathrm{Bc} \quad=$ column width - concrete cover

$$
\begin{aligned}
& =500-2 \times 40 \\
& =420 \mathrm{~mm} \\
\mathrm{Ag} \quad & =500 \times 500 \\
& =250000 \mathrm{~mm} 2 \\
\text { Ach } \quad & =(\mathrm{b}-2 \text { cover }) \times(\mathrm{h}-2 \text { cover }) \\
& =(500-2 \times 40) \times(500-2 \times 40)
\end{aligned}
$$

$$
=176400 \mathrm{~mm} 2
$$

$$
\begin{align*}
\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} & =0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0,3\left(\frac{250000}{176400}-1\right) \frac{25}{280}=0,0111758 \\
\frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{~S}} & =0,0111758 \times 420=4,69387 \mathrm{~mm}^{2} / \mathrm{mm} . \tag{B}\\
\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} & =0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0,09 \frac{25}{280}=0,0070714 \\
\frac{\mathrm{~A}_{\mathrm{sh}}}{\mathrm{~S}} & =0,0070714 \times 420=2,97 \mathrm{~mm}^{2} / \mathrm{mm} \ldots \ldots . . \tag{C}
\end{align*}
$$

\qquad

From (A), (B), and (C) which determine (B)
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{S}} \quad=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $\mathrm{S}=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
12 mm diameter, 1 ft wide
$\mathrm{Av}=1 / 4 \times \pi \times 12^{2}=113.10 \mathrm{~mm} 2$
Number of legs of transverse reinforce $=469.39 / 113.10=175,11>$ use $\mathrm{n}=5$
Transverse reinforcement 5D12-100
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $\mathrm{Hx}=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175,333 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements.
Calculation of transverse reinforcement outside the area 1_{0} by:
$\mathrm{Ve}=17.7679 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0,17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0,17 \times \sqrt{25} \times 500 \times 453,5=192,7375 \mathrm{kN}$
$\mathrm{Vc}=192,7375 \mathrm{kN}>\mathrm{Ve}=17.7679 \mathrm{kN}$

The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$ Then use 5D12-100.

2.9.13 $3^{\text {rd }}$ Floor Main Beam 3

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:

Pu max	$=-33.7122 \mathrm{kN}$
Mx	$=54.2299 \mathrm{kNm}$
My	$=67.5293 \mathrm{kNm}$
$\mathrm{Pu} \min$	$=-144.2445 \mathrm{kN}$
Mx	$=-32.7982 \mathrm{kNm}$
My	$=-96.8783 \mathrm{kNm}$
Vu	$=-23.4653 \mathrm{kN}$

Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement $\mathrm{fy}=420$ $\mathrm{MPa} ;$ fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColoumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\emptyset \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.40

Hum	m	Mus	$\begin{gathered} \mathrm{My} \\ \text { Nan } \end{gathered}$	$\begin{gathered} \text { QMerz } \\ \text { Nant } \end{gathered}$	4Nivy	4Min/M	SuI Depth tim		\pm -
	is	thay						\square	
1	33	θ	34	[20, 21	43188	4294	213	639 a	203 59
2	144	38	12	17093	121,11	1.300	131	3490	$3 \quad 98$
				ф M_{nx}		$\phi \mathrm{M}_{\mathrm{tv}}$	中	$\phi \mathrm{M}_{\mathrm{ix}}$	ф M_{ny}
				kNm		kNm		kNm	kNm
Pu max				-287,71		-231,88	0,9	-319,6777778	-257,6444444
Pu min				370,53		123,51	0,9000	411,7	137,2333333

Figure 2. 40 3rd Floor Main Beam 3 SPColumn Output
Mnc a $=319.6777 \mathrm{kNm}$

Mnc b $=411.7 \mathrm{kNm}$

MPR BI 1

Mprb, ki $(-)$	$=24.2118 \mathrm{kNm}$
Mprb, ka $(+)$	$=24.2118 \mathrm{kNm}$

$($ Mnc $a+M n c b) \geq 1,2($ Mprb ki + Mprb ka $)$
$(319.6777+411.7) \geq 1,2(24.2118+24.2118)$
$731.3777 \mathrm{kNm} \geq 58.1083 \mathrm{kNm}$
Because Mnc > 1.2 Mprb, the column meets the requirements (Strong Column Weak Beam)

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis $\mathrm{Vu}=-23.4653 \mathrm{kNm}$
b. Based on Mpr beam left and right column:

Mprb, ki $(-)$	$=24.2118 \mathrm{kNm}$
Mprb, ki $(+)$	$=24.2118 \mathrm{kNm}$
Mprb, ka $(-)$	$=24.2118 \mathrm{kNm}$
Mprb, ka $(+)$	$=24.2118 \mathrm{kNm}$
Mprk of block	$=0.5 \times(24.2118+24.2118)$
Mprk	$=24.2118 \mathrm{kNm}$

Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{24.2118+24.2118}{(4-0.3)}=13.0874 \mathrm{kN}$
Value of $\mathrm{Ve} \quad=13.0874 \mathrm{kN}$
$13.0874 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=-23.4653 \mathrm{kN}$
Then use $\mathrm{Vu} \quad=\mathrm{Ve}=13.0874 \mathrm{kN}$
Diameter of stirrup $\quad=12 \mathrm{~mm}$
Concrete cover $=40 \mathrm{~mm}$

D

$$
\begin{aligned}
& =500-40-12 / 2 \\
& =454 \mathrm{~mm}
\end{aligned}
$$

The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\emptyset}-0=\frac{13.0874 \times 1000}{0,75}=17449.94595 \mathrm{~N}$
$\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}}}=\frac{17449.94595}{280 \times 453,5} \quad=0.137271444 \mathrm{~mm}^{2} / \mathrm{mm}$.

Calculations for restraint reinforcement by:
For $\mathrm{Pu}=-33712.2 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c}$
$\mathrm{Ag} \quad=0.3 \times 25 \times 500 \times 500$
$=1875000 \mathrm{~N}$
$\mathrm{fc} \quad=25 \mathrm{Mpa}<70 \mathrm{Mpa}$, use the equations:
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}}=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$\mathrm{Bc} \quad=$ column width - concrete cover
$=500-2 \times 40$
$=420 \mathrm{~mm}$
$\mathrm{Ag}=500 \times 500$
$=250000 \mathrm{~mm} 2$

Ach $\quad=(\mathrm{b}-2$ cover $) \mathrm{x}(\mathrm{h}-2$ cover $)$
$=(500-2 \times 40) \times(500-2 \times 40)$
$=176400 \mathrm{~mm} 2$

$$
\begin{aligned}
\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} & =0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}} \\
& =0,3\left(\frac{250000}{176400}-1\right) \frac{25}{280}=0,0111758
\end{aligned}
$$

$$
\begin{equation*}
\frac{\mathrm{A}_{\text {sh }}}{\mathrm{S}} \quad=0,0111758 \times 420=4,69387 \mathrm{~mm}^{2} / \mathrm{mm} . \tag{B}
\end{equation*}
$$

$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$

$$
=0,09 \frac{25}{280}=0,0070714
$$

$\frac{A_{\text {sh }}}{\mathrm{S}} \quad=0,0070714 \times 420=2,97 \mathrm{~mm}^{2} / \mathrm{mm}$
From (A), (B), and (C) which determine (B)
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{S}} \quad=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $S=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
12 mm diameter, 1 ft wide
$A v=1 / 4 \times \pi \times 12^{2}=113.10 \mathrm{~mm} 2$
Number of legs of transverse reinforce $=469.39 / 113.10=175,11>$ use $n=5$
Transverse reinforcement 5D12-100.
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $\mathrm{Hx}=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175,333 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements.
Calculation of transverse reinforcement outside the area 1_{0} by:
$\mathrm{Ve}=13.0874 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0,17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0,17 \times \sqrt{25} \times 500 \times 453,5=192,7375 \mathrm{kN}$
$\mathrm{Vc}=192,7375 \mathrm{kN}>\mathrm{Ve}=13.0874 \mathrm{kN}$
The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$
Then use 5D12-100.

2.9.14 $3^{\text {rd }}$ Floor Main Beam 4

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:

Pu max $\quad=17.6532 \mathrm{kN}$

Mx	$=41.2942 \mathrm{kNm}$
My	$=29.3837 \mathrm{kNm}$
$\mathrm{Pu} \min$	$=-94.8577 \mathrm{kN}$
Mx	$=-28.5541 \mathrm{kNm}$
My	$=-39.8497 \mathrm{kNm}$
Vu	$=-17.4495 \mathrm{kN}$

Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement $\mathrm{fy}=420$ MPa; fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColoumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\emptyset \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.41

Figure 2. 41 3rd Floor Main Beam 4 SPColumn Output

Mnc a $=232.8667 \mathrm{kNm}$

Mnc b

$$
=340.3333 \mathrm{kNm}
$$

MPR BI 1

Mprb, ki $(-)$	$=24.2118 \mathrm{kNm}$
Mprb, ka $(+)$	$=24.2118 \mathrm{kNm}$

$($ Mnc $a+M n c b) \geq 1,2(M p r b k i+M p r b k a)$
$(232.8667+340.3333) \geq 1,2(24.2118+24.2118)$
$573.2 \mathrm{kNm} \geq 58.1083 \mathrm{kNm}$
Because Mnc > 1.2 Mprb, the column meets the requirements (Strong

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis $\mathrm{Vu}=-17,4495 \mathrm{kNm}$
b. Based on Mpr beam left and right column:

Mprb, ki $(-)$	$=24.2118 \mathrm{kNm}$
Mprb, ki $(+)$	$=24.2118 \mathrm{kNm}$
Mprb, ka $(-)$	$=24.2118 \mathrm{kNm}$
Mprb, ka $(+)$	$=24.2118 \mathrm{kNm}$
Mprk of block	$=0.5 \times(24.2118+24.2118)$
Mprk	$=24.2118 \mathrm{kNm}$

Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{24.2118+24.2118}{(4-0.25)}=12.9129 \mathrm{kN}$
Value of $\mathrm{Ve} \quad=12.9129 \mathrm{kN}$
$12.91296 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=-17,4495 \mathrm{kN}$
Then use $\mathrm{Vu} \quad=\mathrm{Ve}=12.9129 \mathrm{kN}$

Diameter of stirrup $\quad=12 \mathrm{~mm}$
Concrete cover $\quad=40 \mathrm{~mm}$
D
$=500-40-12 / 2$
$=454 \mathrm{~mm}$
The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\varnothing}-0=\frac{12.91296 \times 1000}{0,75}=17217.28 \mathrm{~N}$
$\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}} \mathrm{d}}=\frac{17217.28}{280 \times 453,5} \quad=0.135441158 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculations for restraint reinforcement by:
For $\mathrm{Pu}=17653.2 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c}$

$$
\begin{aligned}
\mathrm{Ag} \quad & =0.3 \times 25 \times 500 \times 500 \\
& =1875000 \mathrm{~N}
\end{aligned}
$$

fc' $\quad=25 \mathrm{Mpa}<70 \mathrm{Mpa}$, use the equations:
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
Bc = column width - concrete cover
$=500-2 \times 40$
$=420 \mathrm{~mm}$
$\mathrm{Ag}=500 \times 500$
$=250000 \mathrm{~mm} 2$
Ach $\quad=(\mathrm{b}-2$ cover $) \times(\mathrm{h}-2$ cover $)$
$=(500-2 \times 40) \times(500-2 \times 40)$
$=176400 \mathrm{~mm} 2$
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$=0,3\left(\frac{250000}{176400}-1\right) \frac{25}{280}=0,0111758$
$\frac{A_{s h}}{\mathrm{~S}} \quad=0,0111758 \times 420=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$.
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$=0,09 \frac{25}{280}=0,0070714$
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{S}} \quad=0,0070714 \times 420=2,97 \mathrm{~mm}^{2} / \mathrm{mm}$
From (A), (B), and (C) which determine (B)
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{S}} \quad=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $\mathrm{S}=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
12 mm diameter, 1 ft wide
$\mathrm{Av}=1 / 4 \times \pi \times 12^{2}=113.10 \mathrm{~mm} 2$
Number of legs of transverse reinforce $=469.39 / 113.10=175,11>$ use $n=5$
Transverse reinforcement 5D12-100
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $\mathrm{Hx}=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175,333 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements.
Calculation of transverse reinforcement outside the area 1_{0} by:
$\mathrm{Ve}=12.9129 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0,17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0,17 \times \sqrt{25} \times 500 \times 453,5=192,7375 \mathrm{kN}$
$\mathrm{Vc}=192,7375 \mathrm{kN}>\mathrm{Ve}=12.9129 \mathrm{kN}$
The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$
Then use 5D12-100.

2.9.15 $3^{\text {rd }}$ Floor Main Beam 5

It is known that the column is 500×500 with a height of 4 m , the results obtained from the etabs are:

Pu max	$=-47.1475 \mathrm{kN}$
Mx	$=118.2426 \mathrm{kNm}$
My	$=35.0146 \mathrm{kNm}$
$\mathrm{Pu} \min$	$=-170.3012 \mathrm{kN}$
Mx	$=-82.7535 \mathrm{kNm}$
My	$=-55.5872 \mathrm{kNm}$
Vu	$=-54.4619 \mathrm{kN}$

Has a beam height of $0.4 \mathrm{~m} . \mathrm{F}^{\prime} \mathrm{c}=25 \mathrm{MPa}$; main reinforcement $\mathrm{fy}=420$ MPa; fy Sengkang $=280 \mathrm{MPa}$. The column has a main reinforcement diameter of 22 mm with a total of 12 reinforcement (set in SpColoumn). It is also known that the diameter of the stirrup is 12 mm . Planned reinforcement 12D22.

The " $\emptyset \mathrm{Mn}$ " column output due to Pu max and Pu min from the SPColumn software can be seen in Figure 2.42

Figure 2. 42 3rd Floor Main Beam 5 SPColumn Output
Mnc a $\quad=119.2667 \mathrm{kNm}$

Mnc b

$$
=239.8667 \mathrm{kNm}
$$

MPR BI 1

Mprb, ki (-) $\quad=24.2118 \mathrm{kNm}$
Mprb, $\mathrm{ka}(+) \quad=24.2118 \mathrm{kNm}$
$($ Mnc a + Mnc $b) \geq 1,2(M p r b k i+M p r b k a)$
$(119.2667+239.8667) \geq 1,2(24.2118+24.2118)$
$359.1333 \mathrm{kNm} \geq 58.1083 \mathrm{kNm}$
Because Mnc > 1.2 Mprb, the column meets the requirements (Strong Column Weak Beam)

The transverse reinforcement is based on column shear strength and concrete core confinement as follows:
a. From structural analysis $\mathrm{Vu}=-54.4619 \mathrm{kNm}$
b. Based on Mpr beam left and right column:

Mprb, ki (-) $\quad=24.2118 \mathrm{kNm}$
Mprb, ki $(+) \quad=24.2118 \mathrm{kNm}$
Mprb, ka (-) $=24.2118 \mathrm{kNm}$

Mprb, ka $(+)$	$=24.2118 \mathrm{kNm}$
Mprk of block	$=0.5 \times(24.2118+24.2118)$
Mprk	$=24.2118 \mathrm{kNm}$

Calculating the necessary shear strength in the following way:
$\mathrm{V}_{\mathrm{e}}=\frac{24.2118+24.2118}{(4-0.2)}=12.7430 \mathrm{kN}$
Value of $\mathrm{Ve} \quad=12.7430 \mathrm{kN}$
$12.7430 \mathrm{kN}>\mathrm{Vu}$ from structural analysis $=-54.4619 \mathrm{kN}$
Then use Vu

$$
=\mathrm{Ve}=12.7430 \mathrm{kN}
$$

Diameter of stirrup $\quad=12 \mathrm{~mm}$
Concrete cover $=40 \mathrm{~mm}$
D $\quad=500-40-12 / 2$

$$
=454 \mathrm{~mm}
$$

The shear strength of concrete is neglected $\mathrm{Vc}=0$ (because $\mathrm{Ve}>\mathrm{Vu}$)
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{u}}}{\varnothing}-0=\frac{12.7430 \times 1000}{0,75}=16990.73684 \mathrm{~N}$
$\frac{\mathrm{A}_{\mathrm{v}}}{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{f}_{\mathrm{yt}} \mathrm{d}}=\frac{16990.74}{280 \times 453.5} \quad=0.133659037 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculations for restraint reinforcement by:
For $\mathrm{Pu}=-47147.5 \mathrm{~N}<0.3 \mathrm{f}^{\prime} \mathrm{c}$
$\mathrm{Ag} \quad=0.3 \times 25 \times 500 \times 500$
$=1875000 \mathrm{~N}$
fc' $\quad=25 \mathrm{Mpa}<70 \mathrm{Mpa}$, use the equations:
$\frac{\mathrm{A}_{\mathrm{sh}}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,3\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{A}_{\mathrm{ch}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{Sb}_{\mathrm{c}}} \quad=0,09 \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{yt}}}$

From (A), (B), and (C) which determine (B)
$\frac{\mathrm{A}_{\text {sh }}}{\mathrm{S}} \quad=4,69387 \mathrm{~mm}^{2} / \mathrm{mm}$
Calculation of transverse reinforcement in the area along 10 by means of:
For example, taken $S=100 \mathrm{~mm}$
Ash $=4.69387 \times 100=469.39 \mathrm{~mm} 2$
12 mm diameter, 1 ft wide
$\mathrm{Av}=1 / 4 \times \pi \times 12^{2}=113.10 \mathrm{~mm} 2$
Number of legs of transverse reinforce $=469.39 / 113.10=175,11>$ use $n=5$
Transverse reinforcement 5D12-100
S max:
a. $1 / 4$ smallest column dimension $=1 / 4 \times 500=125 \mathrm{~mm}$
b. 6 times the diameter of the longitudinal reinforcement $=6 \times 22=132 \mathrm{~mm}$
c. $\mathrm{Hx}=(500-(2 \times 40)-(2 \times 13)-(22)) / 3=124 \mathrm{~mm}$
d. $S_{0}=100+\left(\frac{350-124}{3}\right)=175,333 \mathrm{~mm}$

Thus, a spacing of 100 mm transverse reinforcement meets the requirements.
Calculation of transverse reinforcement outside the area 1_{0} by:
$\mathrm{Ve}=12.7430 \mathrm{kN}$
$\mathrm{V}_{\mathrm{c}}=0,17 \sqrt{30} \mathrm{~b}_{\mathrm{w}} \mathrm{d}=0,17 \times \sqrt{25} \times 500 \times 453,5=192,7375 \mathrm{kN}$
$\mathrm{Vc}=192,7375 \mathrm{kN}>\mathrm{Ve}=12.7430 \mathrm{kN}$
The distance of the transverse reinforcement is taken $=100 \mathrm{~mm}$
Then use 5D12-100.

2.10 Floor Slab Design

The slab is one part of the horizontal structure which can be affected by the length of the span and the load on the slab. Slabs need to be strengthened using steel reinforcement because the structure bears more bending moments and shear forces so that the plan of floor slabs must have the same height and not be slanted. The thickness of the floor slab can be determined from the load, allowable deflection, and span width.

2.10.1 One Way Slab

The one-way plate reinforcement system is only supported on both sides so that the plate experiences a deflection in a direction perpendicular to the support side. If the slab is supported on all four sides, almost 95% of the load will be distributed in the short span direction resulting in a one way slab. There are several conditions for the use of moment efficiency which are regulated in SNI 2847:2019 article 6.5.2, as follows :
a. The difference in span length is not too far, with the span length limit not exceeding 20% of the shortest span.
b. The loads that work are distributed.
c. Live load < $3 x$ dead load.

Assalaffiyah Islamic Boarding School have 16 one way slabs type. 5 slabs for dormitory building and 11 slabs for educational building. The following is the result of calculating floor slabs with one-way reinforcement :

Structure Material Data

Plat Code	$=\mathrm{A}$
$\mathrm{f}^{\prime} \mathrm{c}$	$=25 \mathrm{Mpa}$

Floor Slab Data

fy	$=240 \mathrm{Mpa}$	Cly	$=11$
Lx	$=1.95 \mathrm{~m}$	Ctx	$=83$
Ly	$=4.3 \mathrm{~m}$	Cty	$=57$
h	$=120 \mathrm{~mm}$		$=20$

1. Dead Load

Own Weight of Floor Plate
Unit Weight

$$
=24
$$

Thickness

$$
=0.12 \mathrm{~m}
$$

Q

$$
=24 \times 0.12=2.88 \mathrm{kN} / \mathrm{m}^{2}
$$

2. Floor Finishing Weight

Unit Weight	$=21$
Thickness	$=0.05 \mathrm{~m}$
Q	$=21 \times 0.05=1.05 \mathrm{kN} / \mathrm{m}^{2}$
Ceiling and Frame Weight	$=0.2$
ME Installation Weight	$=0.5$

QD
$=$ QDL + QFloor + ceiling and frame weight + QFloor
$=2.88+1.05+0.2+1.05$
$=4.63 \mathrm{kN} / \mathrm{m}^{2}$

3. Live Load

Live Load Building Floors $=480 \mathrm{~kg} / \mathrm{m}^{2}$
QL

$$
=4.8 \mathrm{kN} / \mathrm{m}^{2}
$$

Factored Plan Load
QU

$$
\begin{aligned}
& =(1.2 \times \text { QD })+(1.2 \times \text { QL }) \\
& =(1.2 \times 4.63)+(1.6 \times 4.8) \\
& =13.2 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

4. Slab Moment Due to Factored Load

$$
\begin{aligned}
\text { Mulx } & =\mathrm{Clx} \times 0.001 \times \mathrm{QU} \mathrm{X} \mathrm{Lx}^{2} \\
& =41 \times 0.001 \times 13.2 \times 1.95^{2} \\
& =2.0635 \mathrm{kNm} / \mathrm{m} \\
\text { Muly } & =\mathrm{Cly} \times 0.001 \times \mathrm{QU} \times \mathrm{Ly}^{2} \\
& =11 \times 0.001 \times 13.2 \times 4.3^{2} \\
& =2.6921 \mathrm{kNm} / \mathrm{m} \\
\text { Mutx } & =\mathrm{Ctx} \times 0.001 \times \mathrm{QU} \times \mathrm{Lx}^{2} \\
& =83 \times 0.001 \times 13.2 \times 1.95^{2} \\
& =4.1774 \mathrm{kNm} / \mathrm{m} \\
\text { Muty } & =\mathrm{Cty} \times 0.001 \times \mathrm{QU} \times \mathrm{Ly}^{2} \\
& =57 \times 0.001 \times 13.2 \times 4.3^{2} \\
& =13.9498 \mathrm{kNm} / \mathrm{m} \\
\mathrm{Mu} & =13,9498 \mathrm{kNm} / \mathrm{m}
\end{aligned}
$$

Slab Reinforcement

$\mathrm{fc}^{\prime} \leq 30 \mathrm{MPa}$
$\beta 1=0.85$
$\beta 1=-$
Form Factor of Concrete Stress Distribution
$\beta 1=0.85$
$\rho \mathrm{b} \quad=\frac{0.85 \times 0.85 \times \mathrm{xc}}{}{ }^{6}$

$$
\begin{gathered}
=\frac{0.85 \times 0.85 \times 25^{\prime}}{240 \times \frac{600}{(600+240)}} \\
=0.05375744
\end{gathered}
$$

$R \max =0.75 \times \rho b x f y x \frac{(1-0.5 \times 0.75 \times \rho b \times f y)}{\left(0.85 \times f c^{\prime}\right)}$

$$
\begin{aligned}
& =0.75 \times 0.05375744 \times 240 \times \frac{(1-0.5 \times 0.75 \times 0.05375744 \times 240)}{(0.85 \times 25)} \\
& =7.47324418 \\
& \phi \quad=0.8 \\
& \mathrm{ds} \quad=\emptyset+\frac{t s}{2} \\
& =10+\frac{20}{2} \\
& =20 \mathrm{~mm} \\
& \mathrm{~d} \quad=\mathrm{h}-\mathrm{ds} \\
& =120-20 \\
& =100 \mathrm{~mm} \\
& \mathrm{~b} \quad=1000 \mathrm{~mm} \\
& \mathrm{Mn}=\frac{M u}{\phi} \\
& =\frac{4.1774}{0.18} \\
& =5.221726088 \mathrm{kNm} \\
& \mathrm{Rn} \quad=\frac{(\mathrm{Mn} \times 1000000)}{(\mathrm{b} \times \mathrm{Mn})^{2}} \\
& =0.522172609 \mathrm{kNm} \\
& (\mathrm{Rn}<\mathrm{Rmax})=\mathrm{OK} \\
& (0.522172609<7.47324418)=\mathrm{OK} \\
& \rho \quad=\frac{0.85 \times \mathrm{fc}^{\prime}}{\mathrm{fyx}\left(1-\left(\frac{1-2 \times \mathrm{Rn}}{\left(0.85 \times \mathrm{fc}^{\prime}\right)}\right)\right.} \\
& =\frac{0.85 \times 25}{240 \times\left(1-\frac{1-2 \times 0.52217}{(0.85 \times 25}\right)} \\
& =0.002203129 \\
& \rho \min =\frac{1.4}{f y} \\
& =\frac{1.4}{240} \\
& =0.005833333 \\
& \rho \text { used }=0.005833333 \\
& \text { As } \quad=\rho \text { used } \times b \times d \\
& =0.005833333 \times 1000 \times 100 \\
& =583.3333 \mathrm{~mm}^{2} \\
& \text { S } \\
& =\frac{\pi}{4^{2}} \times \frac{\phi}{\text { As }}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3.14}{4^{2}} \times \frac{1000}{583.3333} \\
& =134.6396852 \\
\text { smax } & =2 \times \mathrm{h} \\
& =2 \times 120 \\
& =240 \mathrm{~mm} \\
\text { Smax } & =200 \mathrm{~mm} \\
\mathrm{~s} & =134.6396852 \mathrm{~mm} \\
\mathrm{~s} & =130 \mathrm{~mm}
\end{aligned}
$$

Reinforcement Used $=$ D10-130 mm

As $\quad=\frac{\pi}{4} \times \phi \times \frac{\mathrm{b}}{s}$

$$
=\frac{3.14}{4} \times 10 \times \frac{1000}{130}
$$

$$
=604.1524334 \mathrm{~mm}
$$

$$
\mathrm{Ec}=4700 \times \mathrm{fc}^{\prime}
$$

$$
=4700 \times 25
$$

$$
=23500 \mathrm{Mpa}
$$

$$
\text { Es } \quad=20000 \mathrm{Mpa}
$$

$$
\mathrm{Q}=\mathrm{QD}+\mathrm{QL}
$$

$$
=4.63+4.8
$$

$$
=9.430
$$

$$
\mathrm{Lx}=\mathrm{Lx} \times 1000
$$

$$
=1.95 \times 1000
$$

$$
=1950 \mathrm{~mm}
$$

$$
\mathrm{Lx} / 240=\frac{1950}{240}
$$

$$
=8.125 \mathrm{~mm}
$$

$$
\lg \quad=\left(\frac{1}{12}\right) \times \mathrm{b} \times \mathrm{h} 3
$$

$$
=\left(\frac{1}{12}\right) \times 1000 \times 1203
$$

$$
=144000000 \mathrm{~mm}^{3}
$$

$$
\mathrm{fr} \quad=0.7 \times \sqrt{ } \mathrm{fc}
$$

$$
=0.7 \times \sqrt{ } 25
$$

$$
=3.5 \mathrm{Mpa}
$$

$$
\begin{aligned}
& \mathrm{n}=\frac{\mathrm{Es}}{E c} \\
& =\frac{200000}{23500} \\
& =8.510638298 \\
& \mathrm{c} \quad=\mathrm{n} \times \frac{A s}{b} \\
& =8.510638298 \times\left(\frac{604.152}{1000}\right) \\
& =5.141722837 \\
& \text { Lcr }=\frac{1}{3} \times b \times \mathrm{c}^{3}+\mathrm{n} \times \text { As } \times(\mathrm{d}-\mathrm{c})^{2} \\
& =\frac{1}{3} \times 1000 \times 5.141723+8.51064 \times 604.12 \times(100-5.14172) 2 \\
& =46311010 \\
& \text { yt }=\frac{h}{2} \\
& =\frac{120}{2} \\
& =60 \mathrm{~mm}^{4} \\
& \mathrm{Mcr}=\frac{\mathrm{fr} \times \mathrm{lg}}{y t} \\
& =\frac{3.5 \times 144000000}{60} \\
& =8400000 \mathrm{~mm} \\
& \mathrm{Ma}=\frac{1}{8} \times \mathrm{Q} \times L x^{2} \\
& =\frac{1}{8} \times 9.430 \times 19502 \\
& =4482197 \mathrm{Nmm} \\
& \text { Ie } \quad=\left(\frac{\mathrm{Mcr}}{\mathrm{Ma}}\right)^{3} \times \operatorname{Ig}+\left(1-\left(\frac{\mathrm{Mcr}}{\mathrm{Ma}}\right)^{3} \times \operatorname{lcr}\right. \\
& =\left(\frac{8400000}{4482197}\right)^{3} \times 144000000+\left(1-\left(\left(\frac{8400000}{4482197}\right)\right)^{3} \times 46311010\right. \\
& =689310594 \mathrm{Nmm} \\
& \text { סe }=\frac{5}{384} \times \mathrm{Q} \times \frac{\mathrm{Lx} 4}{E c} \times \mathrm{Ie} \\
& =\frac{5}{384} \times 9.430 \times \frac{1950^{4}}{23500} \times 689310594 \\
& =0.110 \mathrm{~mm}^{4} \\
& \rho \quad=\frac{A s}{b} \times d^{\prime} \\
& =\frac{604.152}{1000 \times 100} \\
& =0.006
\end{aligned}
$$

$$
\begin{aligned}
\zeta & =2 \\
\lambda & =1+(50 \times \rho) \\
& =1+(50 \times 0.006) \\
& =1.302 \\
\delta \mathrm{~g} \quad & =\lambda \times \frac{5}{384} \times \mathrm{Q} \mathrm{x} \frac{\mathrm{Lx}^{4}}{E c} \times \mathrm{Ie} \\
& =1.302 \times \frac{5}{384} \times 9.430 \times \frac{19504}{23500} \times 689310594 \\
& =0.143 \mathrm{~mm} \\
\delta \text { total } & =\delta \mathrm{e}+\delta \mathrm{g} \\
& =0.110+0.143 \\
& =0.252 \mathrm{~mm}
\end{aligned}
$$

Terms ((tot \leq Lx $/ 240$)

$$
=0.252 \leq 8.13(\mathrm{OK})
$$

One Way Slab Result Recap

Slab Code	Smax	S	Used Reinforcement	Stot	$\frac{L x}{240}$	Stot $<\frac{L x}{240}$
Dormitory Building						
A	200	134.64	D10-130	4.647	11.25	OK
C	200	134.64	D10-130	0.019	6.25	OK
E	200	134.64	D10-130	0.019	6.25	OK
G	200	134.64	D10-130	0.019	6.25	OK
Educational Building						
A	200	134.64	D10-130	0.252	8.13	OK
C	200	134.64	D10-130	0.636	8.96	OK
D	200	134.64	D10-130	0.321	8.33	OK
E	200	134.64	D10-130	0.066	7.08	OK
F	200	134.64	D10-130	0.636	8.96	OK
G	200	134.64	D10-130	0.321	8.33	OK
H	200	134.64	D10-130	0.066	7.08	OK
I	200	134.64	D10-130	0.636	8.96	OK
J	200	134.64	D10-130	0.321	8.33	OK

\mathbf{K}	200	134.64	D10-130	0.066	7.08	OK
\mathbf{L}	200	134.64	D10 -130	0.252	8.13	OK

2.10.2 Two Way Slab

In two way slab reinforcement the load received will be distributed by the slab in two directions with all four sides supported, if the slab rests on all four sides and the ratio Ly/Lx <2 then the entire load will be transferred to all sides. 2 Approach methods in conducting system analysis and design two way structure in accordance with SNI2847:2019, among others.
a. Direct Design Method, DMM this method is formulated in SNI 2847:2019 article 8.10 where this method is limited to slab systems that are loaded by uniform loads. The use of a number of efficiency to determine the magnitude of the design moment at a critical location.
b. Equivalent Frame Method, EFM this method is formulated in SNI 2847:2019 article 8.11 . The 3 -dimensional building structure is divided into several twodimensional equivalent frames, where the frame structures are then analyzed separately floor by floor in the longitudinal and transverse directions.

The analysis and design of the 2-way plate is focused on the direct design method (DMM) where in the analysis and design there are several limitations on its use which are regulated in article 8.10.2, these include:
a. There are at least 3 straight spans in each direction (8.10.2.1)
b. The lengths of adjacent spans, measured between the axes to the axes of the supports in each direction, do not differ and are more than one third of the longest span (8.10.2.2)
c. The rectangular slab with the ratio between the long span and the short span is measured from the axis to the support axis and does not exceed 2 (8.10.2.3)
d. Column positions may deviate by a maximum distance of 10% from the span length and the lines connecting adjacent column axes (8.10.2.4)
e. The load that is calculated is only the gravity load and is distributed evenly throughout the plate panel (8.10.2.5)
f. The live load shall not exceed 2 times the dead load (8.10.2.6)
g. For a slab panel with beams between supports on all sides (8.10.2.7)

Structure Material Data

Plat Code	$=$ B
Fc	
	$=25 \mathrm{Mpa}$

Floor Slab Data

Fy	$=240 \mathrm{Mpa}$	Cly	$=16$
Lx	$=2.15 \mathrm{~m}$	Ctx	$=79$
Ly	$=3.5 \mathrm{~m}$	Cty	$=57$
h	$=120 \mathrm{~mm}$	ts	$=20 \mathrm{~mm}$
Coef.Moment	$=\frac{\mathrm{Ly}}{\mathrm{Lx}}=\frac{3.5}{2.15}=1.6 \mathrm{~m}$	\varnothing	$=10 \mathrm{~mm}$

1. Dead Load

Own Weight of Floor Plate
Unit Weight $=24$
Thickness
$=0.12 \mathrm{~m}$

Q
$=24 \times 0.12=2.88 \mathrm{kN} / \mathrm{m}^{2}$

2. Floor Finishing Weight

Unit Weight
$=21$
Thickness
$=0.05 \mathrm{~m}$
Q
$=21 \times 0.05=1.05 \mathrm{kN} / \mathrm{m}^{2}$
Ceiling and Frame Weight $=0.2$
ME Installation Weight $\quad=0.5$
QD
$=2.88+1.05+0.2+1.05=4.63 \mathrm{kN} / \mathrm{m}^{2}$

3. Live Load

Live Load Building Floors $=480 \mathrm{~kg} / \mathrm{m}^{2}$
QL
$=4.8 \mathrm{kN} / \mathrm{m}^{2}$

Factored Plan Load

QU

$$
\begin{aligned}
& =(1.2 \times \text { QD })+(1.2 \times \text { QL }) \\
& =(1.2 \times 4.63)+(1.6 \times 4.8) \\
& =13.236 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

4. Slab Moment Due to Factored Load

$$
\begin{aligned}
\text { Mulx } & =\mathrm{Clx} \times 0.001 \times \mathrm{QU} \mathrm{x} \mathrm{Lx}^{2} \\
& =37 \times 0.001 \times 13.236 \times 2.15^{2} \\
& =2.2638 \mathrm{kNm} / \mathrm{m} \\
\text { Muly } & =\mathrm{Cly} \times 0.001 \times \mathrm{QU} \times \mathrm{Ly}^{2} \\
& =16 \times 0.001 \times 13.236 \times 3.5^{2} \\
& =2.5943 \mathrm{kNm} / \mathrm{m} \\
\text { Mutx } & =\mathrm{Ctx} \times 0.001 \times \mathrm{QU} \times \mathrm{Lx}^{2} \\
& =79 \times 0.001 \times 13.236 \times 2.15^{2} \\
& =4.8335 \mathrm{kNm} / \mathrm{m} \\
\text { Muty } & =\mathrm{Cty} \times 0.001 \times \mathrm{QU} \times \mathrm{Ly}{ }^{2} \\
& =57 \times 0.001 \times 13.236 \times 2.15^{2} \\
& =9.2420 \mathrm{kNm} / \mathrm{m} \\
\text { Mu } & =9.2420 \mathrm{kNm} / \mathrm{m}
\end{aligned}
$$

Slab Reinforcement

$\mathrm{fc}^{\prime} \leq 30 \mathrm{MPa}$
$\beta 1=0.85$
$\beta 1=-$
Form Factor of Concrete Stress Distribution
$\beta 1=0.85$
$\rho b \quad=\frac{0.85 \times 0.85 \times \mathrm{fc}^{\prime}}{\frac{f y \times 600}{(600+240)}}$

$$
\begin{aligned}
& =\frac{0.85 \times 0.85 \times 25}{\frac{240 \times 600}{(600+240)}} \\
& =0.05375744 \\
& \operatorname{Rmax}=0.75 \times \rho \mathrm{b} \times \mathrm{fy} \times\left(\frac{1-0.5 \times 0.75 \times \rho \mathrm{b} \times \mathrm{fy}}{(0.85 \times \mathrm{fc})}\right) \\
& =0.75 \times 0.05375744 \times 240 \times\left(\frac{1-0.5 \times 0.75 \times 0.05375744 \times 240}{(0.85 \times 25)}\right) \\
& =7.47324418 \\
& \phi \quad=0.8 \\
& \text { ds } \quad=\emptyset+\text { ts } \\
& =10+\frac{20}{2} \\
& =20 \mathrm{~mm} \\
& \mathrm{~d} \quad=\mathrm{h}-\mathrm{ds} \\
& =120-20 \\
& =100 \mathrm{~mm} \\
& \mathrm{~b} \quad=1000 \mathrm{~mm} \\
& \mathrm{Mn}=\frac{\mathrm{Mu}}{\emptyset} \\
& =\frac{4.8335}{0.8} \\
& =0.604186174 \mathrm{kNm} \\
& \mathrm{Rn}=\frac{(\mathrm{Mn} \times 1000000)}{(\mathrm{b} \times \mathrm{Mn})^{2}} \\
& =\frac{(0.604186174 \times 1000000)}{(\mathrm{b} \times 0.604186174)^{2}} \\
& =0.604186174 \mathrm{kNm} \\
& (\mathrm{Rn}<\mathrm{Rmax})=\mathrm{OK} \\
& (0.604186174<7.47324418)=\mathrm{OK} \\
& \rho \quad=\frac{0.85 \times \mathrm{fc}^{\prime}}{\mathrm{fyx}\left(1-\left(\frac{1-2 \times R n}{0.85 \times \mathrm{fc}}\right)\right.} \\
& =\frac{0.85 \times 25}{240 \times\left(1-\left(\frac{1-2 \times 0.64186174}{0.85 \times 25}\right)\right.} \\
& =0.002554286 \\
& \rho \min =\frac{1.4}{\mathrm{fy}} \\
& =\frac{1.4}{240} \\
& =0.005833333 \\
& \rho \text { used }=0.005833333
\end{aligned}
$$

$$
\begin{aligned}
& \text { As } \quad=\rho \text { used } \times b \times d \\
& =0.005833333 \times 1000 \times 100 \\
& =583.3333 \mathrm{~mm}^{2} \\
& =\frac{\pi}{4^{2}} \times \frac{\varnothing}{\mathrm{As}} \\
& =\frac{\pi}{4^{2}} \times \frac{1000}{583.3333} \\
& =134.6396852 \\
& \operatorname{smax}=2 \times \mathrm{h} \\
& =2 \times 120 \\
& =240 \mathrm{~mm} \\
& \text { Smax }=200 \text { mm } \\
& \mathrm{s} \quad=134.6396852 \mathrm{~mm} \\
& \mathrm{~s}=130 \mathrm{~mm} \\
& \text { Reinforcment used }=10 \mathrm{D}-130 \\
& \text { As }=\frac{\pi}{4} \times \emptyset \times \frac{b}{s} \\
& =604.1524334 \mathrm{~mm} \\
& \text { Ec }=4700 \times \mathrm{fc}^{\prime} \\
& =4700 \times 25 \\
& =23500 \mathrm{Mpa} \\
& \text { Es }=20000 \mathrm{Mpa} \\
& \mathrm{Q} \quad=\mathrm{QD}+\mathrm{QL} \\
& =4.63+4.8 \\
& =9.430 \\
& \mathrm{Lx}=\mathrm{Lx} \times 1000 \\
& =2.15 \times 1000 \\
& =2150 \mathrm{~mm} \\
& \mathrm{Lx} / 240=\frac{2150}{240} \\
& =8.958333333 \mathrm{~mm} \\
& \lg =\left(\frac{1}{12}\right) \times \mathrm{b} \times \mathrm{h} 3 \\
& =\left(\frac{1}{12}\right) \times 1000 \times 120^{3} \\
& =144000000 \mathrm{~mm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{fr} \quad=0.7 \times \sqrt{\mathrm{fc}} \\
& =0.7 \times \sqrt{ } 25 \\
& =3.5 \mathrm{Mpa} \\
& \mathrm{n}=\frac{E s}{E c} \\
& =\frac{200000}{23500} \\
& =8.510638298 \\
& \mathrm{c} \quad=\mathrm{n} \times \frac{A s}{b} \\
& =8.510638298 \times\left(\frac{604.152}{1000}\right) \\
& =5.141722837 \\
& \text { Lcr } \quad=\frac{1}{3} \times \mathrm{bxc}^{3}+\mathrm{n} \times \mathrm{As} \times(\mathrm{d}-\mathrm{c})^{2} \\
& =\frac{1}{3} \times 1000 \times 5.14172^{3}+8.51064 \times 604.12 \times(100-5.14172)^{2} \\
& =46311010 \\
& \mathrm{yt} \quad=\frac{h}{2} \\
& =\frac{120}{2} \\
& =60 \mathrm{~mm}^{4} \\
& \text { Mcr }=\mathrm{fr} \times \frac{l g}{y t} \\
& =3.5 \times \frac{144000000}{60} \\
& =8400000 \mathrm{~mm} \\
& \mathrm{Ma}=\frac{1}{8} \times \mathrm{Q} \times \mathrm{Lx}^{2} \\
& =\frac{1}{8} \times 9.430 \times 2150^{2} \\
& =5448772 \mathrm{Nmm} \\
& \text { Ie } \quad=\left(\frac{\mathrm{Mcr}}{\mathrm{Ma}}\right)^{3} \times \mathrm{Ig}+\left(1-\left(\frac{\mathrm{Mcr}}{\mathrm{Ma}}\right)^{3} \times\right. \text { lcr } \\
& =\left(\frac{8400000}{5448772}\right)^{3} \times 144000000+\left(1-\left(\frac{8400000}{5448772}\right)^{3} \times 46311010\right. \\
& =404232357 \mathrm{Nmm} \\
& \delta e=\frac{5}{384} \times Q \times \frac{L x^{4}}{E c} \times I e \\
& =\frac{5}{384} \times 9.430 \times \frac{2150^{4}}{23500} \times 404232357 \\
& =0.276 \mathrm{~mm}^{4} \\
& \rho \quad=\frac{\mathrm{As}}{\mathrm{bxd}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{604.152}{1000 \times 100} \\
& =0.006 \\
\zeta & =2 \\
\lambda & =1+(50 \times \rho) \\
& =1+(50 \times 0.006) \\
& =1.302 \\
\delta \mathrm{~g} & =\frac{\lambda \times 5}{\frac{384 \times \mathrm{Q} \times \mathrm{Lx} 4}{\mathrm{Ec} \mathrm{\times I}}} \\
& =\frac{1.302 \times 5}{\frac{384 \times 9.430 \times 2150^{4}}{23500 \times 404232357}} \\
& =0.360 \mathrm{~mm} \\
\delta \text { total } & =\delta \mathrm{e}+\delta \mathrm{g} \\
& =0.276+0.360 \\
& =0.636 \mathrm{~mm}
\end{aligned}
$$

Terms $\left(\delta\right.$ tot $\left.\leq \frac{\text { Lx }}{240}\right)$

$$
=0.636 \leq 8.96(\mathrm{OK})
$$

Two Way Slab Result Recap

Slab Code	Smax	S	Used Reinforcement	δ tot	$\frac{\boldsymbol{L} \boldsymbol{x}}{\mathbf{2 4 0}}$	סtot $<\frac{\boldsymbol{L} \boldsymbol{x}}{240}$
Dormitory Building						
B	200	134.64	D10-130	10.277	12.50	OK
D	200	134.64	D10-130	10.277	12.50	OK
F	200	134.64	D10-130	0.066	7.08	OK
H	200	134.64	D10-130	6.178	11.67	OK
I	200	134.64	D10-130	0.066	7.08	OK
Educational Building						
B	200	134.64	D10-130	0.636	8.96	OK
M	200	134.64	D10-130	0.321	8.33	OK

2.11 Stairs Planning

In the design, the stairs plan required the minimum landing width. It's as wide as the stairs. So, the landing width is half the width of L1. Where the Optrede height (O) is between $0.15 \mathrm{~m}-0.2 \mathrm{~m}$. This makes the number of steps between floors same as the floor height divided by $\mathrm{O}\left(n_{t g}=\frac{h_{l t}}{o}\right.$). The size of the antrede (A) is determined to be $0.28 \mathrm{~m}-$ 0.3 m . So, the width of the stairs (Ltg) is $\left(\frac{1}{2} \frac{h_{l t}}{o}-1\right) A$, the angle inclination of stairs can be calculated by $\propto=\tan ^{-1}\left(\frac{O}{A}\right)$ and stairs slab thickness $\left(\mathrm{h}_{\mathrm{tg}}\right)$ is estimated.
The calculation of stairs load can be calculated using an equation below. For qtg load as follows,

Stairs own load $=\frac{h_{t g}}{\cos \alpha} \times$ concrete volume weight $=\ldots \ldots . \mathrm{kN} / \mathrm{m}^{2}$
Stairs step load $=\frac{1}{2} O \times$ concrete volume weight $=\ldots \ldots . \mathrm{kN} / \mathrm{m}^{2}$
Tiles and spacing load $=0,05 \mathrm{x}$ tiles volume weight $=\ldots \ldots . \mathrm{kN} / \mathrm{m}^{2}$.
Railings load (estimated) $\quad=\ldots, \ldots, \mathrm{kN} / \mathrm{m}^{2}$
For qbd load calculation is using equation below.
Stairs own laod $=\mathrm{htg} \mathrm{x}$ berat volume beton $\quad=\ldots \ldots \ldots \ldots . . \mathrm{kN} / \mathrm{m}^{2} \ldots .$. (2.107)
Tiles and spacing load $=0,05 \times$ berat volume ubin
$=\ldots \ldots \mathrm{kN} / \mathrm{m}^{2}$
Railings load (estimated)

$$
\begin{equation*}
=1,0 \mathrm{kN} / \mathrm{m}^{2} . \tag{2.108}
\end{equation*}
$$

With cognizing the equation below,
$M_{u}=1,4 M_{D L}$
$M_{u}=1,2 M_{D L}+1,6 M_{L L}$
$V_{u}=1,4 V_{D L}$.
$V_{u}=1,2 V_{D L}+1,6 V_{L L}$.
In the design of stairs moment (Mur) produces area of tension reinforcement (Atg) in mm^{2}. The design shear force (Vur) is used to check the thickness of the stairs (htg) with Vc \geq Vur jika Vc < Vur so, the thickness of the stairs needs to be enlarged. In designing the moment of staircase foundation slab plan, the equation used is,
$M_{u}=\frac{1}{2} \frac{\left(\sigma_{u \max }+\sigma_{u \min }\right)}{2}\left(\frac{B}{2}+e-\frac{1}{2} b_{t g}\right)^{2}$.
And the calculation of the shear force of the stair foundation slab plan is calculated using the equation as follows,
$V_{u}=\frac{\left(\sigma_{u \max }+\sigma_{u \min }\right)}{2}\left(\frac{B}{2}+e-\frac{1}{2} b_{t g}\right)^{2}$

2.11.1 Dormitory and Educational Building Stairs Design

Stairs Dimension
Specification :

Width	$=3.4 \mathrm{~m}$
Bordes Width	$=3.4 / 2=1.7 \mathrm{~m}$
Optrede (o)	$=0.18 \mathrm{~m}$
Floor Height (Het)	$=4 \mathrm{~m}$
Number of Stairs	$=4 / 0.18=22$ piece
Antrede (A)	$=0.3 \mathrm{~m}$
Stairs Width (Ltg)	$=0.5 \times 22-1) \times 0.3=3.033 \mathrm{~m}$
Alpha	$=0.15$
Htg	$=24 \mathrm{kN} / \mathrm{m}^{2}$
Concrete Unit Weight	$=21 \mathrm{kN} / \mathrm{m}^{2}$
Tile Unit Weight	$=\frac{h t g}{\cos \alpha} \times$ concrete volume weight
LOAD	$=\frac{0.15}{\cos 30.96} \times 24=4.2 \mathrm{kN} / \mathrm{m}^{2}$
Qtg load	$=\frac{1}{2} \times 0 \times$ concrete volume weight
Stairs Unit Weight	$=\frac{1}{2} \times 0.2 \times 24=2.4 \mathrm{kN} / \mathrm{m}^{2}$
	$=0.05 \times$ tiles volume weight
Single Stairs Unit Weight	
Tile Unit Weight	$=0.05 \times 21=1.05 \mathrm{kN} / \mathrm{m}^{2}$
Railing Weight	$=1 \mathrm{kN} / \mathrm{m}^{2}$
Qtg load (Total)	$=4.2 \mathrm{kN} / \mathrm{m}^{2}+2.4 \mathrm{kN} / \mathrm{m}^{2}+1 \mathrm{kN} / \mathrm{m}^{2}$
	$=8.65 \mathrm{kN} / \mathrm{m}^{2}$

Qbd load
Stairs Unit Weight $\quad=h t g \times$ concrete volume weight
$=0.15 \times 24=3.6 \mathrm{kN} / \mathrm{m}^{2}$
Tile unit weight
$=0.05 \times$ tiles volume weight
$=0.05 \times 21=1.05 \mathrm{kN} / \mathrm{m}^{2}$

Railing weight	$=1 \mathrm{kN} / \mathrm{m}^{2}$
Qbd load (Total)	$=3.6 \mathrm{kN} / \mathrm{m}^{2}+1.05 \mathrm{kN} / \mathrm{m}^{2}+1 \mathrm{kN} / \mathrm{m}^{2}$
	$=5.65 \mathrm{kN} / \mathrm{m}^{2}$
Live load	$=4.79 \mathrm{kN} / \mathrm{m}^{2}$

Loading
MDL $=23.07 \mathrm{kNm}$
MLL $=14.71 \mathrm{kNm}$
VDL $=24.35 \mathrm{kN}$
$\mathrm{VLL}=15.265 \mathrm{kN}$
Combination :
MU1 $=1.4 \times 23.07$
$=32.3085 \mathrm{kNm}$
MU2 $=1.2 \times 23.07+1.6 \times 14.71=51.2430 \mathrm{kNm}$
$\mathrm{VU} 1=1.4 \times 24.35$
$\mathrm{VU} 2=1.2 \times 24.35+1.6 \times 15.265=53.6524 \mathrm{kN}$
Used :
Mur $=51.2430 \mathrm{kNm}$
Vur $=53.6524 \mathrm{kN}$

Stairs Reinforcement Design At Support Field
Mur $=0.5 \mathrm{kNm}$
$\operatorname{Mux}=0.5 \times 59,688 \times 10^{-3}=0.025 \mathrm{kNm}$
Design :
Main Reinforcement $=$ D16; As $=201.1 \mathrm{~mm}^{2}$
Shrinkage Reinforcement $=\mathrm{P} 10$; As $=78.54 \mathrm{~mm}^{2}$
Fy main reinforcement $=560 \mathrm{Mpa}$
Fy shrinkage reinforcement $=390 \mathrm{Mpa}$
F'c $=25 \mathrm{Mpa}$
B = $1 \mathrm{~m} ; \mathrm{htg}=150 \mathrm{~mm}$
Concrete Cover $=20 \mathrm{~mm} ; \beta 1=0.9$
$\mathrm{ds}=150-20-(16 / 2) / 1000=0.122 \mathrm{~m}$

Calculation

$$
\begin{array}{ll}
\text { Rn } & =\frac{0,256}{0,9 \times 1 \times 0,122^{2}}=1.9126 \mathrm{kN} / \mathrm{m}^{2} \\
\rho \text { min } & =0.0018 \\
\rho \text { need } & =\frac{0,85 f^{\prime} c}{f_{y}}\left[1-\sqrt{1-\frac{2 R n}{0,85 f \prime c}}\right] \\
& =\frac{0,85 \times 25}{560}\left[1-\sqrt{1-\frac{2 \times 1.9126}{0,85 \times 25}}\right]=0.0035 \\
& =0.75 \times 0.85 \times 0.9 \times \frac{25}{560} \times\left(\frac{600}{600+560}\right) \\
\rho \text { max } & =0.01325 \\
\text { As min } & =0.0018 \times 1 \times 1000 \times 0.122 \times 1000=219.6 \mathrm{~mm}^{2} \\
\text { As need } & =0.00358 \times 1 \times 1000 \times 150=537.7256 \mathrm{~mm}^{2} \\
\text { S } & =\frac{0,25 \pi d^{2} b}{A s} \\
& =\frac{0,25 \times \pi \times 16^{2} \times 1000}{537.7256}=373.9118 \mathrm{~mm}
\end{array}
$$

Used D16-300
As use $\quad=\frac{0,25 \pi d^{2} b}{H t g}$

$$
=\frac{0,25 \times \pi \times 16^{2} \times 1000}{150}=1340.4129
$$

As need $\quad=631.8250$
Shear Force Check
Vc

$$
\begin{aligned}
& =\frac{1}{6} \sqrt{\mathrm{f}^{\prime} \mathrm{c}} \times \mathrm{b} \times \mathrm{d} \\
& =\frac{1}{6} \sqrt{25} \times 1000 \times 0.122=101,667 \mathrm{kN} \\
& =0.75 \times 101.667 \\
& =76.25 \mathrm{kN}>\operatorname{Vur}=53.6524(\mathrm{SAFE})
\end{aligned}
$$

$\emptyset \mathrm{Vc}$

Shrinkage Reinforcement

$\rho \min$	$=0.0018$
htg	$=150 \mathrm{~mm}$
bw	$=1 \mathrm{~m}$
As min	$=0.0018 \times 1 \times 1000 \times 150=270 \mathrm{~mm} 2$
S	$=\frac{0.25 \pi d^{2} p}{\text { As min }}=\frac{0.25 \pi \times 10^{2} \times 1000}{270}=290.8882 \mathrm{~mm}$
Used	$=200 \mathrm{~mm}$

Reinforcement P10-200

As use

$$
=\frac{0.25 \pi d^{2} p}{H t g}=\frac{0.25 \pi \times 10^{2} \times 1000}{150}=523.6 \mathrm{~mm} 2
$$

As use > As min (OK)

STAIR REINFORCEMENT DESIGN AT FIELD AREA

Mur $=0.8 \mathrm{kNm}$
$\operatorname{Mux}=0.8 \times 51.2430 \times 10^{-3}=0.0409 \mathrm{kNm}$
Design :
Main Reinforcement

$$
=\mathrm{D} 16 ; \mathrm{As}=201.1 \mathrm{~mm}^{2}
$$

Shrinkage Reinforcement

$$
=\mathrm{P} 10 ; \mathrm{As}=78.54 \mathrm{~mm}^{2}
$$

Fy main reinforcement

$$
=560 \mathrm{Mpa}
$$

Fy shrinkage reinforcement $=390 \mathrm{Mpa}$
f'c

$$
=25 \mathrm{Mpa}
$$

$B=1 \mathrm{~m} ; \mathrm{htg}=150 \mathrm{~mm}$
Concrete Cover $=20 \mathrm{~mm} ; \beta 1=0.9$
$\mathrm{ds}=150-20-(16 / 2) / 1000=0.122 \mathrm{~m}$
Calculation :
Rn

$$
=\frac{0.0409}{0,9 \times 1 \times 0,122^{2}}=3.0602 \mathrm{kN} / \mathrm{m}^{2}
$$

ρ min $\quad=0.0018$
ρ need $\quad=\frac{0,85 f^{\prime} c}{f_{y}}\left[1-\sqrt{1-\frac{2 R n}{0,85 f^{\prime} c}}\right]$

$$
\begin{array}{ll}
& =\frac{0,85 \times 25}{560}\left[1-\sqrt{1-\frac{2 \times 1.9126}{0,85 \times 25}}\right]=0.0059 \\
\rho \max & =0.75 \times 0.85 \times 0.9 \times \frac{25}{560} \times\left(\frac{600}{600+560}\right) \\
& =0.01325 \\
\text { As min } & =0.0018 \times 1 \times 1000 \times 0.122 \times 1000=219.6 \mathrm{~mm}^{2} \\
\text { As need } & =0.00358 \times 1 \times 1000 \times 150=889.1726 \mathrm{~mm}^{2} \\
\mathrm{~S} & =\frac{0.25 \pi d^{2} b}{A s} \\
& =\frac{0,25 \times \pi \times 16^{2} \times 1000}{889.1726}=226.1225 \mathrm{~mm}
\end{array}
$$

Used D16-300
As use $\quad=\frac{0.25 \pi d^{2} b}{H t g}$

$$
=\frac{0.25 \times \pi \times 16^{2} \times 1000}{150}=2234.0214
$$

As need $\quad=889.1726$
As use > As need (OK)
Shear Force Check
Vc

ØVc

$$
\begin{aligned}
& =\frac{1}{6} \sqrt{\mathrm{f}^{\prime} \mathrm{c}} \times \mathrm{b} \times \mathrm{d} \\
& =\frac{1}{6} \sqrt{25} \times 1000 \times 0.122=101.6667 \mathrm{kN} \\
& =0.75 \times 101.667 \\
& =76.25 \mathrm{kN}>\text { Vur }=53.6524(\mathrm{SAFE})
\end{aligned}
$$

Shrinkage Reinforcement
ρ min $\quad=0.0018$
htg $\quad=150 \mathrm{~mm}$
bw $\quad=1 \mathrm{~m}$
As min $\quad=0.002 \times 1 \times 1000 \times 150=300 \mathrm{~mm} 2$
S

$$
=\frac{0.25 \pi d^{2} p}{\text { As min }}=\frac{0.25 \pi \times 10^{2} \times 1000}{300}=261.7994 \mathrm{~mm}
$$

Used $\quad=200 \mathrm{~mm}$
Reinforcement P10-200
As use $\quad=\frac{0.25 \pi d^{2} p}{H t g}=\frac{0.25 \pi \times 10^{2} \times 1000}{150}=523.6 \mathrm{~mm} 2$
As use $>$ As min (OK)

2.12 Conclusion

1. Assallafiyyah Islamic Boarding School has a medium land site class (SD), this library is included in category IV and is included in KDS D.
2. Assallafiyyah Islamic Boarding School has a medium land site class (SD), this library is included in category IV and is included in KDS D.
3. In planning the roof structure, this Boarding School has a limas roof that uses a profile C $200 \times 75 \times 20$ thickness 2.0 for curtain rods, C $200 \times 75 \times 20$ thickness 2.0 for truss element design and uses bolted connections in both buildings.
4. This Assallafiyyah Islamic Boarding School structural columns with a size of $500 \times 500 \mathrm{~mm}$. In addition, this building has 14 types of main beams with a size of $400 \times 200 \mathrm{~mm}$ (BI 1 Dorm), a size of $350 \times 200 \mathrm{~mm}$ (BI 2 Dorm, BI 2 Edu, and BI 3 Edu), a size of $300 \times 200 \mathrm{~mm}$ (BI 3 Dorm and BI 6 Edu), size $250 \times 200 \mathrm{~mm}$ (BI 4 Dorm, BI 4 Edu, BI 7 Edu, and BI 8 Edu), size 200×200 mm (BI 5 Dorm, BI 5 Edu and BI 9 Edu). There are 8 types of joists in this building with a size of
$250 \times 200 \mathrm{~mm}$ (BA 1 Dorm, BA 3 Dorm, BA 1 Edu and BA 5 Edu), size 350×200 mm (BA 2 Dorm, BA 2 Edu and BA 3 Edu) and size $400 \times 250 \mathrm{~mm}$ (BA 4 Edu).
5. In planning directional slabs, Assallafiyyah Islamic Boarding School has 6 types of slabs using two-way reinforcement and 16 types of slabs using one-way reinforcement.
6. The design of stairs in building one has main reinforcement D16-300, field main reinforcement D16-150, and shrinkage reinforcement P10-200. In the second building, the design of the stairs has D10-300 main support reinforcement, D10100 field main reinforcement, and P8-150 shrinkage reinforcement.
