

12

CHAPTER 2. LITERATURE REVIEW

2.1 Weather Forecasting

Throughout the past century, one of the most challenging scientific and technological problems

has been forecasting the weather. Weather forecasting systems are one of the most complex

equation systems that a computer must solve. Weather is a continuous, dynamic, multi-

dimensional chaotic process, and data-intensive and these properties make weather forecasting

a stimulating challenge [1]. It is one of the most important and difficult operational duties that

numerous meteorological services around the world are required to carry out. Weather

forecasting can be categorized into six different groups according to the length of the

forecasting period:

1. Now-casting, current weather variables and 0-6 hour’s description of forecasted

weather variables.

2. Very short range weather forecasting, up to 12 hours description of weather variables

3. Short range weather forecasting, for a period of 12 hours to 72 hours.

4. Medium range weather forecasting, for periods of 3 to 10 days.

5. Extended range weather forecasting, for periods of 10 to 30 days.

6. Long range weather forecasting, the long range weather forecasts are issued thrice in

year. Validity period of long range weather forecast is 10 to 30 days [2].

Weather forecasters utilize a variety of tools like barometers to measure air pressure, radar to

locate and track clouds, thermometers to measure temperature, and computer models to process

the information these tools' data generate.

2.2 Android

Android is an open-source operating system that runs on the linux kernel. Java IDEs and

android java libraries are both supported, giving developers a flexible platform for creating

mobile applications for Android. The android operating system gained popularity among

developers for its customizable nature [3]. Building an application in one platform and

13

deploying it in multiple platforms at once and doesn't require any additional changes to be

made is very effective. Furthermore, software developers can easily modify and incorporate

improved features to meet the latest standards for mobile technology. Android Operating

System is mainly divided into four main layers: the kernel, libraries, application framework

and applications.

2.2.1 Kernel

Linux Kernel (Linux 2.6) is at the bottom layer of the software stack [4]. The entire Android

operating system is constructed on top of this layer, with some modifications made by Google.

Similar to the main operating system, it offers the following functionalities: process

management, memory management, and device management (for example, camera, keypad,

display, etc.). Additionally, it also works on network management and security systems.

2.2.2 Native Libraries Layer

On the top of the Linux Kernel layer is Android's native libraries. The device can handle

different types of data thanks to this layer. Data is hardware-specific. These libraries are all

written in the languages C or C++. These libraries are called through java interface. Some

important native libraries are: Surface Manager, SQLite, WebKit, Media framework, Free Type

and libc [4]. A set of core libraries and a Java virtual machine (Dalvik virtual machine) that

have been modified and optimized by Google to work with the Android platform are included

in the Android Runtime.

2.2.3 Application Framework Layer

This layer is designed to allow developers getting access to the core application services.

Developers may modify the system architecture of their applications in this layer so they can

use the various services offered by the API libraries. These are the blocks with which

developer's applications directly interact. Important blocks of Application framework are:

Activity Manager, Content Providers, Telephony Manager, Location Manager and Resource

14

Manager [4].

2.2.4 Application Layer

The top layer in the Android architecture is called the Applications Layer. Every device

contains a few preinstalled applications, including a dialer, web browser, contact manager, and

an SMS client app. A developer can create his own application and replace it into an existing

one.

2.3 JavaScript Object Notation (JSON)

JSON is intended to be a data exchange language that is both computer- and human-readable.

It is a lightweight format based on the data types of the JavaScript programming language [5].

JSON is directly supported inside JavaScript and is best suited for JavaScript applications [6].

JSON documents are dictionaries with key-value pairs in which the value may also be another

JSON document, allowing for any number of levels of nesting. Along with atomic types like

strings and numbers, JSON also supports arrays. The format is now fully compositional as it is

possible for arrays and dictionaries to hold any JSON document. JSON is quickly rising to the

top of the list of the most widely used formats for exchanging data on the Web due to its

simplicity and easily read by both humans and machines. This is especially clear when Web

services use Application Programming Interfaces (APIs) to communicate with their users

considering JSON is currently the format of choice for sending API requests and responses

over the HTTP protocol.

2.4 Android Studio

Android Studio is the official Integrated Development Environment (IDE) for Android app

development. Based on the powerful code editor and developer tools from IntelliJ IDEA. On

May 16, 2013, Android Studio was introduced as the official IDE for creating Android apps at

the Google I/O conference. It began its early access preview with version 0.1 in May 2013.

Beginning with version 1.0, the first stable built version was made available in December 2014.

Kotlin has been Google's preferred language for creating Android applications since May 7th.

15

Besides this, Android Studio also supports other programming languages. Android Studio

offers even more features that enhance productivity when building Android apps, such as:

• A flexible Gradle-based build system

• A fast and feature-rich emulator

• A unified environment where developer can develop for all Android devices

• Apply Changes to push code and resource changes to running app without restarting

app

• Code templates and GitHub integration to help developer build common app features

and import sample code

• Extensive testing tools and frameworks

• Lint tools to catch performance, usability, version compatibility, and other problems

• C++ and NDK support

• Built-in support for Google Cloud Platform, making it easy to integrate Google Cloud

Messaging and App Engine

2.4.1 Thread and Handler

Android automatically creates the "main" thread, the first thread of execution, when an

application is launched. The main thread is in charge of communicating with elements from

the Android UI toolkit and dispatching events to the appropriate user interface widgets.

Common examples of operations that should be avoided in the main thread include network

operations, database calls, and loading specific components. They are called synchronously

when they are made in the main thread, which means that the UI won't respond at all until the

operation is finished. They are typically carried out in separate threads due to preventing UI

blocking while they are being carried out. A thread is the direction a programme takes while

being executed. The Java virtual machine allows an application to run multiple threads

simultaneously. As Android is a single-threaded model, we need to create different threads to

perform our task and post the result to the main thread where the UI gets updated. All operations,

with the exception of updating UI elements, are allowed inside threads.

16

A Handler is a component that can be connected to a thread and instructed to take some action

via runnable tasks or simple messages [7]. It collaborates with a different component, Looper,

which manages message processing for a specific thread. When a handler is created, it can get

a Looper object in the constructor, which indicates which thread the handler is attached to.

Although Android offers a variety of thread management and handling options, none of them

are perfect. Depending on the use case, picking the appropriate threading strategy can make a

big difference in how simple it is to implement and comprehend the overall solution. Although

not in every situation, the native components work well. Similar things apply to the third-party

solutions.

2.5 Application Programming Interface (API)

API is the acronym for Application Programming Interface, which is a software intermediary

that allows two applications or systems to communicate with each other [8]. APIs allow

developers to use the services provided by an application or system without needing to know

the internal details of the application. APIs help in integrating applications easily, increase

flexibility, and speed up application development. API architecture is typically described in

terms of client and server [9]. Applications that transmit requests and responses are referred to

as clients and servers, respectively. In the weather example, the mobile app is the client and the

bureau's weather database are the server.

APIs come in different types, such as REST APIs, SOAP APIs, and RPC APIs. REST APIs are

the most common type of API, which stands for Representational State Transfer. REST APIs

use HTTP to transfer data between client and server. SOAP APIs, on the other hand, use XML

to transfer data and are less popular than REST APIs. RPC APIs invoke executable actions or

processes. RPC can employ two different languages, JSON and XML, for coding; these APIs

are dubbed JSON-RPC and XML-RPC, respectively [10].

	1ac68c849df16cb74370bfd2611aef908ed7443f23a0b9d2c481ff959e8e1a29.pdf

