CHAPTER II

UPPER STRUCTURE

2.1 Introduction

The top structure is a structure that is above the ground consisting of roof plans, staircase plans, floor slab plans, beam and column plans. The top structure design usesreinforced concrete structures for beams, columns, stairs and slabs, while the roof usessteel structures.

The top structure planning begins with planning the roof structure with the by entering live load, dead load, and wind load according to the combination. Followedby beam and column planning using ETABS. By determining the size of the beams, columns and plates that are owned according to the conditions. The design using ETABS includes spectrum design data according to each area.
In the top structure planning, there are several references used, such as:

- SNI 2847:2019 concerning Structural Concrete Requirements for Buildings and Explanations
- SNI 1729:2020 concerning Specifications for Structural Steel Buildings
- SNI 1727:2020 concerning Minimum Design Load and Related Criteria forBuildings and Other Structures
- SNI 1726:2019 concerning Procedures for Planning Earthquake Resistancefor Building and Non-building Structures
- PBI (Indonesian Reinforced Concrete Regulation) 1971

2.2 Loaded

In top structure, it must be determined in advance the loading that occurs. There are 4 loads that occur, namely dead loads, live loads, earthquake loads and wind loads. Dead loads are loads that come from the self-weight of the
structure and are permanent loads. Live load is a load that is dynamic or can change, for example humans and other objects in the building. Earthquake loads are loads that occur on structures that occur due to ground movements due to earthquakes.

2.2.1 Dead Load

Dead loads are loads that come from the own-weight of each structural element in the form of floor slabs, beams, columns, etc. which are part of the mainstructure. In structural modeling using software, the self-weight of the structure will be calculated automatically by the software based on the data on the density of the material and the dimensions of the structural elements entered in the software.

2.2.2 Live Load

Live load is the load that occurs as a result of the use of the building structure. The living burden can come from people/goods that can move from place to place. The church is included in the category of public space accordingto SNI 1727:2013 so that the living expenses are determined as follows : Live load $=4.79 \mathrm{kN} / \mathrm{m} 2$

2.2.3 Wind Load

In planning the wind load, it is necessary to know the location of the building, the function of the building, the number of floors, the height and width of the building. The building which functions as a church is located in Muntilan, Central Java. The building consists of 2 buldings with 4 floors in each building. The building height is 15 m and the building width is 60 m .

Wind loading refers to SNI 1727:2020 concerning Minimum Design Loads and Related Criteria for Buildings and Other Structures. To determine the loading, there are several steps that need to be taken in accordance with SNI 1727:2020.

The determination of the risk category can be seen in SNI 1727:2020. Buildings that function as houses of worship are included in important facilities so that they are included in risk category IV. The basic wind speed (V) for risk category IV according to the Indonesian Wind Map Book is $43.4 \mathrm{~m} / \mathrm{s}$.

2.2.4 Earthquake Load

The earthquake load starts from determining the class of the soil site first.Site classification can be searched using soil data in the form of SPT data. According to SNI 1726:2019, site classification is a seismic design classificationin the form of an amplification factor determined based on the soil profile. The soil profile is reviewed to a depth of 30 m from the land surface. Site class classification for SPT data can be performed by finding the average field standard penetration resistance $\left(\mathrm{N}^{-}\right)$using the formula:

$$
\bar{N}=\frac{\sum_{i=1}^{n} d_{i}}{\sum_{i=1}^{n} \frac{d_{i}}{N_{i}}}
$$

In determining the earthquake load, it is necessary to know the location of the building, the class of the site based on soil data, and the function of the building. Based on existing soil data, the class of the soil site is class SE or clay soil. This building functioned as a church. Based on table 3 of SNI 1726:2019, houses of worship are categorized as risk category IV.

Table 2. 1 Building and non-building risk categories

Jenis Pemanfaata n	Kategori Risiko
Gedung dan non gedung yang memiliki risiko rendah terhadap jiwa manusia pada saat terjadi kegagalan, termasuk, tapi tidak dibatasi untuk, antara lain: Fasilitas pertanian, perkebunan, perternakan, dan perikanan Fasilitas sementara Gudang penyiMPanan Rumah jaga dan struktur kecil lainnya	I
Semua gedung dan struktur lain, kecuali yang termasuk dalam kategori risiko I,III,IV, termasuk, tapi tidak dibatasi untuk: Perumahan Rumah toko dan rumah kantor Pasar Gedung perkantoran Gedung apartemen/ rumah susun Pusat perbelanjaan/ mall Bangunan industri	II
Gedung dan non gedung yang memiliki risiko tinggi terhadap jiwa manusia pada saat terjadi kegagalan, termasuk, tapi tidak dibatasi untuk: Bioskop Gedung pertemuan Stadion Fasilitas kesehatan yang tidak memiliki unit bedah dan unit gawat darurat Fasilitas penitipan anak Penjara - Bangunan untuk orang jompo Gedung dan non gedung, tidak termasuk kedalam kategori risiko IV, yang memiliki potensi untuk menyebabkan daMPak ekonomi yang besar dan/atau gangguan massal terhadap kehidupan masyarakat sehari-hari bila terjadi kegagalan, termasuk, tapi tidak dibatasi untuk: Pusat pembangkit listrik biasa	III
- Fasilitas penanganan limbah	

\left.| Pusat telekomunikasi |
| :--- | :--- | :--- |
| Gedung dan non gedung yang tidak termasuk dalam kategori risiko IV, |
| (termasuk, tetapi tidak dibatasi untuk fasilitas manufaktur, proses, |
| penanganan, |
| penyimpanan, penggunaan atau tempat pembuangan bahan bakar |
| berbahaya, |
| bahan kimia berbahaya, limbah berbahaya, atau bahan yang mudah |
| meledak) |
| yang mengandung bahan beracun atau peledak di mana jumlah |
| kandungan |
| bahannya melebihi nilai batas yang disyaratkan oleh instansi yang |
| berwenang |
| dan cukup menimbulkan bahaya bagi masyarakat jika terjadi kebocoran. |$\right]$

Determination of site coefficients and parameters of the maximum earthquake acceleration spectral response considered risk-targeted (MCER), namely in the form of short period mapped earthquake acceleration spectral response parameters (Ss) and 1 second period mapped earthquake acceleration spectral response parameters can be seenon the official website of The Spektra Indonesia design from the Ministry of Public Worksand Public Housing found that $\mathrm{Ss}=0.8863 \mathrm{~g}$ and $\mathrm{S} 1=0.4205 \mathrm{~g}$. This parameter has a different value depending on where the building is located.

Then, the amplification factor for short period vibration (Fa) can be determined using Table 6 of SNI 1726:2019, with the SE site class it is found that $\mathrm{Fa}=1.191$. The amplification factor representing the 1 second period (Fv) is determined using Table 7 sothat $\mathrm{Fv}=2.359$ is obtained.

Table 2.2 Site coefficient, Fa

Site Class	MCEr tearthquake acceleration spectral response parameters mapped In short periods, $\mathrm{T}=0,2$ second (S)				
	Ss $\leq 0,25$	$\mathrm{S}_{\mathrm{s}}=0,5$	$\mathrm{S}_{\mathrm{s}}=0,75$	$\mathrm{S}_{\mathrm{s}=1,0}$	$\mathrm{S}_{\mathrm{s}} \geq 1,25$
SA	0,8	0,8	0,8	0,8	0,8
SB	1,0	1,0	1,0	1,0	1,0
SC	1,2	1,2	1,1	1,0	1,0
SD	1,6	1,4	1,2	1,1	1,0
SE	2,5	1,7	1,2	0,9	0,9
SF	ATM/A JAMA Ss^{b}				

Source: SNI 1726:2012
Notes:
(a) For values between Ss , linear interpolation can be performed
(b) $\quad \mathrm{SS}=$ site that requires a specific geotechnical investigation and sitespecific response analysis, see Section 6.10.1
By knowing the amplification factor and the spectral response parameters for theearthquake acceleration, we can look for the parameters for the short period (SMS) and 1 second period (SM1) MCE spectral response acceleration with the formula:
$\mathrm{S}_{\mathrm{MS}}=S_{s} \times F_{a}$
$\mathrm{S}_{\mathrm{M} 1}=S_{1} \times F_{v}$

From the equation above, it is found that the value of SMS $=1.056 \mathrm{~g}$ and the valueof SM1 $=0.992 \mathrm{~g}$. After the SMS and SM1 values are known, then the design spectral acceleration parameters for the short period (SDS) and 1 second period (SD1) are calculated using the following formula:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{DS}}=\left(\frac{2}{3}\right) S_{M S}=0.704 \mathrm{~g} \\
& \mathrm{~S}_{\mathrm{D} 1}=\left(\frac{2}{3}\right) S_{M 1}=0.661 \mathrm{~g}
\end{aligned}
$$

The SDS values obtained were 0.704 g and SD1 were 0.661 g . If the design spectral acceleration parameters are known, then the design response spectrum can
be searched and graphed. There are several provisions based on SNI 1726:2019 Article 6.4 that must be followed to make a design response spectrum, including:

1. For periods smaller than T0, the design acceleration response spectrum (Sa) is found using the following equation:

$$
S_{a}=S_{D S}\left(0,4+0,6\left(\frac{T}{T_{0}}\right)\right)
$$

2. For periods greater than or equal to T 0 and less than or equal to Ts , the design acceleration response spectrum (Sa) is the same as SDS.
3. For periods greater than Ts but smaller than or equal to TL (Long period transitionmap whose values are taken from Figure 20 SNI 1726:2019, the design acceleration spectral response (Sa) is calculated by the following formula:

$$
S_{a}=\frac{S_{D 1}}{T}
$$

To find T (the fundamental vibration period of the structure) the following formula canbe used:

$$
\mathrm{T}_{\mathrm{s}}=\frac{S_{D S}}{S_{D 1}}
$$

$$
\mathrm{T}_{0}=0,2 T_{s}
$$

So that the value of $\mathrm{T}_{\mathrm{s}}=1.065$ seconds, $\mathrm{T}_{0}=0.213$ seconds and the TL value is obtained according to the area where the building stands. For Muntilan, the TL value $=6$ seconds

Figure 2.1 Graphic Design Spectrum Muntilan

2.3 Combine Load Plan

The ultimate load combination is determined based on Article 4.2.2 of SNI 1726:2019 Procedure for Calculation of Concrete Structures for Buildings, which areas follows:

1. $1,4 \mathrm{DL}$
2. $1,2 \mathrm{DL}+1,6 \mathrm{LL}+0,5(\mathrm{Lr}$ or R$)$
3. $1,2 \mathrm{DL}+1,6(\mathrm{Lr}$ atau R$)+(1,0 \mathrm{~L}$ or $0,5 \mathrm{~W})$
4. $1,2 \mathrm{DL}+1,0 \mathrm{~W}+1,0 \mathrm{~L}+0,5(\mathrm{Lr}$ or R$)$
5. 1,2DL + 1,0E + 1,0LL
6. $0,9 \mathrm{DL}+1,0 \mathrm{~W}$
7. $0,9 \mathrm{DL}+1,0 \mathrm{E}$

For load combinations number 5 and 7 which is a combination of earthquake loads, itis specifically regulated in Article 7.4 SNI 1726:2019 Earthquake Resistance Planning Standards for Building Structures, which are as follows:

1. $(1,2+0,2$ SDS $) \mathrm{DL}+1,0 \mathrm{LL} \pm 0,3 \rho E x \pm 1,0 \rho E y$
2. $(1,2+0,2$ SDS $) \mathrm{DL}+1,0 \mathrm{LL} \pm 1,0 \rho E x \pm 0,3 \rho E y$
3. ($0,9-0,2 \mathrm{SDS}) \mathrm{DL} \pm 0,3 \rho E x \pm 1,0 \rho E y$
4. ($0,9-0,2 \mathrm{SDS}) \mathrm{DL} \pm 1,0 \rho E x \pm 0,3 \rho E y$

While the combination of service loads is determined based on Article 4.2.3
SNI 1726:2019 Procedures for Calculation of Concrete Structures for Buildings, which are as follows

1. DL
2. $\mathrm{DL}+\mathrm{LL}$
3. $\mathrm{DL}+(\mathrm{Lr}$ or R$)$
4. $\mathrm{DL}+0,75 \mathrm{LL}+0,75(\mathrm{Lr}$ or R$)$
5. $\mathrm{DL}+(0,6 \mathrm{~W}$ or $0,7 \mathrm{E})$
6. $\mathrm{DL}+0,75(0,6 \mathrm{~W}$ or $0,7 \mathrm{E})+0,75 \mathrm{LL}+0,75(\mathrm{Lr}$ or R$)$
7. $0,6 \mathrm{DL}+0,6 \mathrm{~W}$
8. $0,6 \mathrm{DL}+0,7 \mathrm{E}$
means,
DL = Dead load (self-weight of structure and additional dead load)
LL = Live load
$\mathrm{Lr}=$ Live load on roof structure
R = Rain load
W = Wind load
Ex $=$ Earthquake load x direction
Ey $=$ Earthquake load y direction
$\rho=$ Redundancy factor
SDS $=$ Design spectral acceleration parameters for a short period of 0,2 seconds

2.4 Strucure Modeling

Structural modeling is carried out to determine the internal forces that occur in structural elements and structural behavior due to workloads. The results of the structural modeling are used as the basis for designing the required cross-sectional dimensions of the structural elements. The structural model is carried out with severalidealizations. For example, floor slabs are idealized as shell elements, while beams and columns are idealized as truss elements.

The structural modeling carried out is able to accommodate the effects of steel damage during an earthquake, namely by reducing the moment of inertia of the cross-section of the structural elements. The moment of inertia of the plate is reduced to 25% of the initial moment of inertia. In beam structural elements, the moment of inertia is reduced to 35% of the initial moment of inertia. In addition, the torque is also reduced by 25% to balance the reduction value against the inertia of the structuralelements. Whereas in the column, the moment of inertia is reduced to 70% of the initial moment of inertia.

The structure of the restaurant is designed using a structural system in the form ofa special moment resisting frame structure. The structure is modeled in 3D models (3D Models) using software assistance.

2.4.1 Definition of Material

The materials used in the structural analysis are as follows:
Steel ; fy 280 MPa fu 370MPa
Concrete ; fc’ $30 \mathrm{MPa} / \mathrm{K} 300$
Reinforcing Steel ; fy 420 Mpa
Plain Reinforcement Steel ; fy 280 Mpa

Figure 2.2 Material Properties

2.4.2 Definition of Beam and Column Profile

The beam and column cross sections are defined as follows

Figure 2.4. Section Properties Column K1

2.4.3 3D Modeling of Structure

After the material and section properties are complete, the next step is to create a3D model. The model accommodates all sizes of beams and columns, along withthe reinforcement planned to be installed as shown in Figure 4 below.

Figure 2.5. 3D Model of Building A (right) and Building B (left)

2.4.4 Giving Workload

Broadly speaking, the loads acting on this structure are divided into:

- Dead load (self weight of steel, wall load),
- Additional dead load (ceramic load, pipe, ceiling etc.)
- Live load (working load), and
- Earthquake load. (response spectrum)

A complete explanation of the loading is found in the Loading section of thisreport.

Figure 2.6. Loading of Floor Plates in 3D Model

2.4.5 Giving Earthquake Burden

Earthquake load is modeled in the program with the response spectrum function. Calculations and quantities can be seen in the Input data response spectrum section. After obtaining the spectrum response graph, the graph is then input intothe program, as shown in Figure 6 below. After the earthquake load has entered, a combination of loading is carried out which allows several extreme loads to work together.

Figure 2.8. Load Combination Input

2.4.7 Running Program

After all the forces are installed, several treatments on the structure are carried out such as giving a mass source and a diaphragm, after which the programis run.

The result of running the program is in the form of internal forces acting on the beams and columns of the structure. This force is the key in analyzing the strength of the structure itself. The force obtained in the running results can be seen in Figure 2.

Figure 2.9 Running Results

2.4.8 Inner Result

The styles that have been obtained are then imported into excel, and analyzed. Each structural element is checked for safety values. The checking results are also displayed in excel as in the attachment.

The roof structure can be interpreted as the part of the building that holds or drains the load from the roof. The roof structure is divided into roof trusses and roof truss supports. The roof truss is the part that has the function of supporting the load of the roof covering in the form of a vertical and horizontal arrangement of beams. Supporting the roof truss itself is called the truss which serves to support the roof truss. These trusss are then connected to the structural columns to transfer the load to the ground. In the planning of the roof there is planning of truss elements, joints, and plans for curtains.

2.5.1 Purlin Plan

Roof planning begins with planning purlin. In planning purlin there are several thingsthat need to be considered :
a. For tiled roofs, the distance between the curtains in the horizontal direction can be taken at $1500-2000 \mathrm{~mm}$, while for tin/asbestos roofs it is taken at $1000-1200 \mathrm{~mm}$.
b. The distance between the trusses determines the purlin distance, so the
distancebetween the trusses should be the same as the distance between columns. However, if this is not possible, the truss distance is taken to be 2500 - 4000 mmfor tiled roofs, while for tin/asbestos roofs the truss distance is taken to be 6000 mm .
c. The number of sag-rods or tension rods that hold the load in the direction of the weak axes of the purlin is determined based on the distance between the trusses. The usual sag-rod distance is taken a maximum of 2000 mm .
d. Wind tie spans are cross-fitted between the trusses. Wind ties are allowed to be installed alternately, so there is no need to install each truss.
e. After considering the things above, the roof is planned according to the data below.

Table 2. 3 Roof Plan Data

Slope of roof (α)	10°
Distance between truss (L1)	2 m
Distance between purlin (a)	1 m
Roof covering	Metal roof
Quality of profile steel	BJ $41\left(\mathrm{f}_{\mathrm{y}}=250 \mathrm{MPa}, \mathrm{f}_{\mathrm{u}}=370\right.$
	$\mathrm{MPa})$
Modulus of elasticity	$200000000 \mathrm{~N} / \mathrm{m}^{2}$
Profile type	IWF $600 \times 600 \times 6 \times 10$
Cording	$\mathrm{C} 200 \times 75 \times 20$

Purlin can be planned as follows:
a. Calculation of purlin loading

The roof load is $1.7238 \mathrm{kN} / \mathrm{m}$, the curtain rodding self-load is 0.0637 , and the ceiling weight is estimated at $0.4 \mathrm{kN} / \mathrm{m}$. Calculation of curtain load can be seen in the following table:

Table 2.4 Purlin Load

Own weight	Estimated	$0.0872 \mathrm{kN} / \mathrm{m}^{\prime}$
Roof weight	$\frac{\alpha}{\cos \alpha} \times$ roof weight	$0.812 \mathrm{kN} / \mathrm{m}^{\prime}$
Ceiling weight	$\alpha \times$ celling load	$0.4 \mathrm{kN} / \mathrm{m}^{\prime}$
Dead Load (DL)	Total purlin load	$1.289 \mathrm{kN} / \mathrm{m}^{\prime}$
Live Load (L)	Worker Load	1 kN

b. Moment purlin plan

Figure 2.11 Purlin Load Direction Axis-2 And Axis-3
The purlin moment is searched in the 2 nd and 3 rd axis directions in the following way:

Table 2.5 Purlin Moment on Axis-2 And Axis-3 Direction

$M_{3 D}$	$\frac{1}{8} q \cos \alpha\left(\mathrm{~L}_{1}\right)^{2}$	2.5572 kNm
$M_{3 L}$	$\frac{1}{4} P \cos \alpha\left(\mathrm{~L}_{1}\right)$	0.492 kNm
$M_{2 D}$	$\frac{1}{8} q \sin \alpha\left(\frac{L_{1}}{3}\right)^{2}$	0.1127 kNm
$M_{2 L}$	$\frac{1}{4} P \sin \alpha\left(\frac{L_{1}}{3}\right)$	0.0868 kNm

Then for find the ultimate moment (Mu) the following loading combinations bellow:

$$
\begin{aligned}
& M_{U}=1,4 M_{D} \\
& M_{U}=1,2 M_{D}+1,6 M_{L}
\end{aligned}
$$

Tabel 2.6 Ultimate Moment for Axis-2 And Axis-3 Direction

$M_{3 U}$	3.580 kNm
$M_{3 U}$	3.857 kNm
$M_{2 U}$	0.158 kNm
$M_{2 U}$	$0,274 \mathrm{kNm}$

From the two loading combinations, the largest M3U value was chosen, is
3.580 kNmand the largest M2U value is 0.274 kNm .
c. Check the tension on profile C

dimension	тHickness	${ }_{\text {sen }}^{\text {section }}$	WEIAT			modutus					Stear	Tonstion	mansime
$\underset{\mathrm{mm} \times \mathrm{C}}{ }$	mm	${ }_{\text {ama }}$	ksmm	${ }^{\text {Lex }}$	${ }_{\text {cm }}$	z.	cm^{3}	$\stackrel{\square}{\text { am }}$	am	c_{cm}	${ }_{\text {co }}^{\text {co }}$	${ }^{\text {cma }}$	cm_{m}
		4	${ }^{356}$	a		,	5.4	3,97	+	\%			
C $100 \times 50 \times 20$													
			${ }_{3}{ }^{319}$	$\frac{96}{108}$									
					18		5						
C $125 \times$			${ }_{4}^{4.55^{5}}$	${ }^{1396}$	${ }^{22}$	${ }_{21}^{22}$	${ }_{6}^{68}$	${ }^{\text {a }}$,	${ }^{1.69}$	$\frac{4.12}{4.1}$	${ }^{\frac{1027}{1025}}$	${ }^{755}$
$125 \times 50 \times$							${ }^{7}$		2,				
	-	${ }_{7} 8$	${ }^{\frac{0}{0.3}}$	${ }^{1 / 21}$	${ }_{27}^{27}$				+1.	$\stackrel{1.08}{1.08}$	4.	${ }^{2007}$	
		${ }_{554}^{638}$	${ }^{4.356}$	${ }_{210}^{19}$	${ }^{19}$		${ }^{\frac{5}{65}}$	${ }_{5}^{577}$	${ }_{1}^{1,8}$	${ }^{1.55}$		${ }_{\text {739 }}$,
C $150 \times 50 \times 20$	${ }_{28}^{28}$	${ }^{\text {cea }}$	${ }_{5}^{537}$	${ }_{\substack{220}}^{250}$			$\frac{6}{7,}$		$\stackrel{1}{1 .}$	${ }^{1,5}$			
							${ }^{\frac{7}{82}}$						
C $150 \times 65 \times 20$													${ }^{2148}$
	${ }^{3}$	$\stackrel{907}{907}$		${ }^{316}$	${ }^{51}$		T11	${ }_{5}^{5.0}$	$\frac{2}{2}$	${ }^{211}$			
C $200 \times 75 \times 20$													${ }_{5637}$
		$\frac{10}{11}$	- ${ }_{\text {a }}^{812}$					${ }^{780}$		${ }^{\frac{220}{219}}$			${ }_{6}^{69}$

Figure 2.12 C-Profile

To check the tension on profile C (f_b), the following formula is used:

$$
f_{b}=\frac{M_{3 U}^{\prime}}{\varphi W_{3}}+\frac{M_{2 U}^{\prime}}{\varphi \mathrm{W}_{2}} \leq F_{y}
$$

With a value of $\varphi=0.9$ for bending and shear, $\mathrm{W} 3=67.6 \mathrm{~cm} 3$ and $\mathrm{W} 2=$ 15.0 cm 3 , the fb value obtained is $83.698 \mathrm{MPa} \leq 240 \mathrm{MPa}$, so it according to terms. If not according to terms so choose another profile.
d. Check the purlin deflection

The purlin deflection can be calculated by the following formula:
Deflection 2-axis direction $=\delta 2=\frac{5}{384} \frac{q \cos \alpha\left(L_{1}\right)^{4}}{E I}+\frac{1}{48} \frac{P \cos \alpha\left(L_{1}\right)^{3}}{E I}=1.6759 \mathrm{~mm}$ Deflection 3-axis direction $=\delta 3=\frac{5}{384} \frac{q \sin \alpha\left(L_{1}\right)^{4}}{E I}+\frac{1}{48} \frac{P \sin \alpha}{E I}\left(\frac{L_{1}}{3}\right)^{3}=5.9728 \mathrm{~mm}$

Deflection Purlin $=\delta=\sqrt{\delta_{3}^{2}+\delta_{2}^{2}} \leq \frac{1}{240} L_{1}=6.2035 \mathrm{~mm}$

$$
\frac{1}{240} \mathrm{~L}=8.33 \mathrm{~mm}
$$

Because the value of $\delta=6.2035 \leq 8.33 \mathrm{~mm}$, so the purlin is safe.
e. Sag-rod Calculation

The number of purlin under the nokis $\mathrm{n}=10$ rows. Sag-rod force for dead loadand live load can be calculated by the following formula:

$$
\begin{gathered}
F_{t D}=n \cdot\left(\frac{L_{1}}{3} \cdot q \sin \alpha\right)=3.006 \mathrm{kN} \\
F_{t L}=\frac{n}{2} \cdot P \sin \alpha=1 \mathrm{kN}
\end{gathered}
$$

From the two equations above, it is found that $F_{t D}=3.006 \mathrm{kN}$ dan $F_{t L}=1$ $k N$.

Then, the value of the sag-rod force is put into the following load combinations::
$F_{t U}=1,4 . F_{t D}=4.2085 \mathrm{kN}$
$F_{t U}=1,2 . F_{t D}+1,6 F_{t L}=4.9965 \mathrm{kN}$

Then, the largest value of $F_{t U}$ is chosen. $F_{t U}=4.9965 \mathrm{kN}$
The required area of the sag-rod can be found using the following formula:

$$
A s r=\frac{F_{t U} \cdot 10^{3}}{\varphi \cdot \mathrm{~F}_{\mathrm{y}}}=22.2065 \mathrm{~mm} 2
$$

The required sag-rod area is 22.2065 mm 2 , so the selected sag-rod diameter is 10 mm .

2.5.2 Truss Load Plan

The plan for the load of the truss can be made after the purlin, sag-rod and so on are determined. Usually, the width of the trellis varies between $750-1250$ mm . The width of the embankment (b) will be taken as 1000 mm or 1 m .

Loads P1, P2, and P3 are calculated according to the length of the purlin (distance between the trusses) and the purlin distance (supported of the width roof). Based on the applicable loading regulations, the self-weight of the trusss is estimated at $0.50 \mathrm{kN} / \mathrm{m}^{\prime}$. The per- m ' purlin weight is $0.0637 \mathrm{kN} / \mathrm{m}$ and the roof weight is $0.953 \mathrm{kN} / \mathrm{m}$ obtained from the previous purlin calculations. The weight of the ceiling is also obtained from the calculation of the curtains at $0.297 \mathrm{kN} / \mathrm{m}$.

Table 2. 7 Calculation of Projected Loads at Certain Points on the Roof

P1 Load		
Truss own weight	$\frac{a}{2} x$ truss weight	0.25 kN
Truss weight	$L_{1} \times$ Weight of purlin per $-m^{\prime}$	0.34 kN
Roof weight	$\frac{\left(\frac{a}{2}+b\right)}{\cos \alpha} \times L_{1} \times$ roof weight	5.9391 kN
Ceiling weight	$\left(\frac{a}{2}+b\right) \times L_{1} \times$ ceiling weight	2.88 kN
	P_{1} Load $=$	9.41 kN
\mathbf{P}_{2} Load		
Truss own weight	a x Truss weight	0.5 kN
Truss weight	$L_{1} \times$ Curtains weight per m	0.34 kN
Roof weight	$\frac{a}{\cos \alpha} \times L_{1} \times \text { Roof weight }$	6.59 kN

Ceiling weight	$a \times L_{1} \times$ Ceiling weight	3.2 kN
P_{2} Load $=$		
P3 Load	10.64 kN	
Truss own weight	$a \times$ Truss weight	0.5 kN
Truss weight	$2 \times L_{1} \times$ Curtains weight per m	0.69 kN
Roof weight	$\frac{a}{\cos \alpha} \times L_{1} \times$ roof weight	6.59 kN
Ceiling weight	$a \times L_{1} \times$ ceiling weight	3.2 kN
P_{3} Load $=$		

2.5.3 Wind Load

Wind load, $\mathrm{Qw}=0.25 \mathrm{kN} / \mathrm{m} 2$
W1 Load $=\frac{\left(\frac{a}{2}+b\right)}{\cos \alpha} \cdot C h \cdot L^{\prime} \cdot Q w=0.8314$

- $\quad \mathrm{X}$-way $=\operatorname{Sin} 10^{\circ} \times \mathrm{W} 1=0.4157$
- Y -way $=\operatorname{Cos} 10^{\circ} \times \mathrm{W} 1=0.7200$
$\mathrm{W} 2 \mathrm{Load}=\frac{a}{\cos \alpha} \cdot C h \cdot L^{\prime} \cdot Q w=1.1733$
- X-way $=\operatorname{Sin} 10^{\circ} \times \mathrm{W} 2=0.5867$
- Y -way $=\operatorname{Cos} 10^{\circ} \times \mathrm{W} 2=2.1894$

W 3 Load $=1 / 2 \frac{a}{\cos \alpha} \cdot$ Ch $\cdot L^{\prime} \cdot Q w=0.4619$

- $\quad \mathrm{X}$-way $=\operatorname{Sin} 10^{\circ} \times \mathrm{W} 3=0.2309$
- \quad Y-way $=\operatorname{Cos} 10^{\circ} \times \mathrm{W} 3=0.4000$

W4 Load $=1 / 2 \frac{a}{\cos \alpha} \cdot$ Ch $\cdot L^{\prime} \cdot Q w=-0.6928$

- $\quad \mathrm{X}$-way $=\operatorname{Sin} 10^{\circ} \times \mathrm{W} 4=-0.6000$
- $\quad \mathrm{Y}$-way $=\operatorname{Cos} 10^{\circ} \times \mathrm{W} 4=-0.6093$

W5 Load $=\frac{\left(\frac{a}{2}+b\right)}{\cos \alpha} \cdot C h \cdot L^{\prime} \cdot Q w=-1.2185$

- $\quad \mathrm{X}$-way $=\operatorname{Sin} 10^{\circ} \times \mathrm{W} 1=-0.6093$
- $\quad \mathrm{Y}$-way $=\operatorname{Cos} 10^{\circ} \times \mathrm{W} 1=-2.2738$

W6 Load $=\frac{\left(\frac{a}{2}+b\right)}{\cos \alpha} \cdot C h \cdot L^{\prime} \cdot Q w=-1.2471$

- $\quad \mathrm{X}$-way $=\operatorname{Sin} 10^{\circ} \times \mathrm{W} 1=-0.6235$
- $\quad \mathrm{Y}$-way $=\operatorname{Cos} 10^{\circ} \times \mathrm{W} 1=-1.0800$

2.5.4 Truss Element Plan

The planning of the truss elements uses WF profile steel $400 \times 200 \times 8 \times$ 13. Things to consider in the planning of the truss elements are the planning of tension elements and the planning of compression elements. In the planning of the Muntilan Christian Church, all elements of the easel experience compression forces. The compressive rod force is a rod force which has a negative value. Compression element planning is carried out by checking profile slenderness, profile stability, moment capacity, shear capacity, and deflection control.

Figure 2. 13 Result from SAP2000

Table 2.8 Data profil WF $60 \times 60 \times 6$

h	60	mm
b	60	mm
t	6	mm
$\mathrm{l}_{\mathrm{x}}=\mathrm{l}_{\mathrm{y}}$	228000	mm 4
$\mathrm{i}_{\mathrm{x}}=\mathrm{i}_{\mathrm{y}}$	18.2	mm
$\mathrm{C}_{\mathrm{x}}=\mathrm{C}_{\mathrm{y}}$	17	mm
Tp	10	mm
j	2673	mm 4
G	77200	Mpa
Ratio	0.3	SNI
E	200000	
Ag	1382	mm 2
l_{xg}	456000	mm 4
I_{yg}	896888	mm 4
r_{xg}	18.2	mm
r_{yg}	25.47505235	mm
X 0	0	mm
Y 0	14.75	mm
r 0	1196.497377	mm 2
H	0.818167173	

(Source: www.grdsteel.com)

Table 2.9 Data profil WF $65 \times 65 \times 6$

h	65	mm
b	65	mm
t	6	mm
A	6.91	cm 2
$\mathrm{l}_{\mathrm{x}}=\mathrm{l}_{\mathrm{y}}$	126000	mm 4
$\mathrm{i}_{\mathrm{x}=} \mathrm{i}_{\mathrm{y}}$	14.9	mm
$\mathrm{C}_{\mathrm{x}=} \mathrm{C}_{\mathrm{y}}$	14.4	mm
Tp	10	mm
j	2313	mm 4
G	77200	Mpa
Ratio	0.3	SNI
E	200000	
Ag	1128	mm 2
l_{xg}	252000	mm 4
I_{yg}	550534.08	mm 4
r_{xg}	14.9	mm
r_{yg}	22.09212818	mm
X 0	0	mm
Y 0	12.15	mm
r 0	859.088883	mm 2
H	0.82816388	

(Source: www.grdsteel.com)

2.5.5 Exterior Compression Member

a. Flexural Bending Check

$\lambda=\frac{b}{t}=\frac{60}{6}=10$
$\lambda_{r}=0.45 \sqrt{\frac{200000}{2}}=12.7279$
$\lambda=10<\lambda_{r}=12.7279$ so the
b. Flexural Bending Check (Against X-X Axis)
$\frac{\mathrm{KL}}{\mathrm{r}_{\mathrm{x}}}=\frac{2000}{18.2}=219.78$
$F_{e}=\frac{\pi^{2} E}{18.2}=40.865$
$4.71 \sqrt{\frac{E}{240}}=133.219$
$\frac{K L}{r_{x}}>4.71 \sqrt{\frac{E}{F y}}$, so Fcr using equation
$F_{c r}=0.877 F_{e}=35.8386$
c. Check Against Torsional Bending

$$
\begin{aligned}
& a=2000 \\
& \frac{a}{r}=\frac{2000}{18.2}=109.89>40, \text { so using }\left(\frac{K L}{r}\right)_{m} \\
& \left(\frac{K L}{r}\right)_{m}=\sqrt{\left(\frac{K L}{r}\right)^{2}+\left(\frac{K L}{r}\right)^{2}=} 226.544 \\
& \text { Because }\left(\frac{K L}{r}\right)_{m}>4.71 \sqrt{\frac{E}{F y}}, \text { so Fcr using equation } F_{c r}=0.877 F_{e} \\
& F_{e}=\frac{\pi^{2} E}{\left(\frac{K L}{r}\right)^{2}}=38.4613 \\
& F_{c r y}=0.877 F_{e}=33.7305 \\
& F_{c r z}=\frac{\mathrm{GJ}}{\text { Axr0 }}=124.795
\end{aligned}
$$

$$
F_{c r z}=\frac{F_{c r y}+F_{c r z}}{2 H}\left[1-\sqrt{1-\frac{4 F_{c r y} \cdot F_{c r z} H}{\left.\left(F_{c r y}+F_{c r z}\right)^{2}\right)}}\right]=31.7592
$$

d. Design Compressive Strength

$\mathrm{F}_{\mathrm{cr}}=35.8386 \mathrm{Mpa}$
$\mathrm{F}_{\mathrm{cr}}=31.7592 \mathrm{Mpa}$ Using Fcr which has a smaller value, namely
Fcr $=31.7592 \mathrm{Mpa}$.
$\emptyset_{c} P_{n}=0,9 \times F_{c r} \times A_{g}=0=39502.1 \mathrm{kN}$
$\emptyset_{c} P_{n}=85,68 \mathrm{kN}>$ Gaya tekan maksimum $=7.33 \mathrm{kN}(\mathrm{OK})$

2.5.6 Interior Compression

Member
a. Check Element Slenderness

$$
\begin{aligned}
& \lambda=\frac{b}{t}=\frac{60}{6}=10 \\
& \lambda_{r}=0.45 \sqrt{\frac{200000}{2}}=12.7279 \\
& \lambda=10<\lambda_{r}=12.7279
\end{aligned}
$$

b. Flexural Bending Check (Against X-X Axis)

$\frac{\mathrm{KL}}{\mathrm{r}_{\mathrm{x}}}=\frac{2000}{18.2}=187.589$
$F_{e}=\frac{\pi^{2} E}{18.2}=56.0937$
$4.71 \sqrt{\frac{E}{240}}=133.219$
$\frac{K L}{r_{x}}>4.71 \sqrt{\frac{E}{F y}}$, so Fcr using equation
$F_{c r}=0.877 F_{e}=49.1941$

c. Check Against Torsional Bending

$a=1397.54$
$\frac{a}{r}=\frac{1397.54}{14.9}=93.7946>40$, so using $\left(\frac{K L}{r}\right)_{m}$
$\left(\frac{K L}{r}\right)_{m}=\sqrt{\left(\frac{K L}{r}\right)^{2}+\left(\frac{K L}{r}\right)^{2}}=193.363$
Because $\left(\frac{K L}{r}\right)_{m}>4.71 \sqrt{\frac{E}{F y}}$, so Fcr using equation $F_{c r}=0.877 F_{e}$
$F_{e}=\frac{\pi^{2} E}{\left(\frac{K L}{r}\right)^{2}}=52.794$
$F_{c r y}=0.877 F_{e}=46.3004 \mathrm{Mpa}$
$F_{c r z}=\frac{\mathrm{GJ}}{A \times r 0}=184.266 \mathrm{Mpa}$
$F_{c r}=\frac{F_{c r y}+F_{c r z}}{2 H}\left[1-\sqrt{1-\frac{4 F_{c r y} \cdot F_{c r z .} H}{\left.\left(F_{c r y}+F_{c r z}\right)^{2}\right)}}\right]=43.815$
d. Design Compressive Strength
$\mathrm{F}_{\mathrm{cr}}=49.1941 \mathrm{Mpa}$
$\mathrm{F}_{\mathrm{cr}}=43.815 \mathrm{Mpa}$ Using Fcr which has a smaller value, namely Fcr $=43.815 \mathrm{Mpa}$.
$\emptyset_{c} P_{n}=0,9 \times F_{c r} \times A_{g}=54497.1 \mathrm{kN}$
$\emptyset_{c} P_{n}=85,68 \mathrm{kN}>$ Gaya tekan maksimum $=176.341 \mathrm{kN}(\mathrm{OK})$

2.5.7 Exterior Tension Member

1. Calculation of Tensil Slenderness
$\lambda=\frac{\mathrm{L}}{\mathrm{r}}=\frac{2291.67}{18.2}=125.916<300(\mathrm{OK})$
2. Tensile Check
$\emptyset P n=F y A g=0,9 \times 250 \times 1382=310950 \mathrm{~N}$
$\emptyset P n=310950 \mathrm{kN}>\mathrm{Pu}=176.228 \mathrm{kN}(\mathrm{OK})$

2.5.8 Interior Tension Member

1. Calculation of Tensile Slenderness

$$
\lambda=\frac{\mathrm{L}}{\mathrm{r}}=\frac{1375}{18.2}=155.235<300(\mathrm{OK})
$$

2. Tensile Check

$$
\emptyset P n=F y A g=0,9 \times 250 \times 1128=253800 \mathrm{~N}
$$

$$
\emptyset P n=253800 \mathrm{kN}>\mathrm{Pu}=20.35 \mathrm{kN}(\mathrm{OK})
$$

2.5.9 Connection Plan of Truss

ElementsConnection Planning

a. Data

- A325-X bolts with bolt diameter used M-20
- Plate size used $6 \times 250 \mathrm{~mm}$
- ASTM A36 steel spliced
buhul plate(fy: 240 Mpa ;
fu: 410 Mpa)
- Strength of joglo roof pull rods:
$>176.228 \mathrm{kN}(2 \mathrm{~L} 60 \times 60 \times 6$ Exterior profile $)$
$>20.305 \mathrm{kN}(2 \mathrm{~L} 50 \times 50 \times 6$ Interior profile)
- BJ 41 (fy: 240 Mpa ; fu: 410 Mpa)

b. Tensile yield check on gross cross-section

$\mathrm{Ag} \quad=6 \times 250=1500 \mathrm{~mm} 2$
$\emptyset \mathrm{Pn} \quad=0,9 \times \mathrm{Fy} \times \mathrm{Ag}$
$=0,9 \times 240 \times 1500$
$=324000 \mathrm{~N}$
$=324 \mathrm{kN}>176.228 \mathrm{kN}$ (2L 60x60x6 exterior profile)
$=324 \mathrm{kN}>20.305 \mathrm{kN}(2 \mathrm{~L} 50 \times 50 \times 6$ interior profile)

c. Check of Tensile Collapse at Net Cross Section

$A n=(250-2 \times(22+2)) \times 6=1212 \mathrm{~mm} 2$
$\operatorname{Max} \mathrm{An}=0.85 \times 1500=1275 \mathrm{~mm} 2$
$\mathrm{Ae}=\mathrm{An}=1212 \mathrm{~mm} 2$ ØPn
$=0.75 \times \mathrm{Fu} \times \mathrm{Ae}$
$=0.75 \times 410 \times 1212$
$=372690 \mathrm{~N}$
$=372.69 \mathrm{kN}>250 \mathrm{kN}$ (SAFE)

d. Bolt support strength

$$
\begin{aligned}
\mathrm{Rn} \quad & =2,4 \times \mathrm{dt} \times \mathrm{Fu} \\
& =2,4 \times 20 \times 6 \times 410 \\
& =118080 \mathrm{~N} \\
& =118.08 \mathrm{kN} \\
\emptyset \mathrm{Rn} & =\emptyset \times \mathrm{Rn}(\emptyset: 0,75) \\
& =0,75 \times 118.08 \\
& =88.56 \mathrm{kN}
\end{aligned}
$$

e. Bolt Shear Strength

$$
\begin{aligned}
& \mathrm{Rn}=\text { FnvAb } \\
& =457 \times(1 / 4 \times \pi \times 202) \times 2 \\
& =287141,5 \mathrm{~N} \\
& \emptyset \mathrm{Rn} \quad=\emptyset \times \operatorname{Rn}(\emptyset: 0.75) \\
& =0,75 \times 287141,5 \\
& =215356 \mathrm{~N} \\
& =215.356 \mathrm{kN}
\end{aligned}
$$

Selected the smallest value of bolt fulcrum strength and bolt shear strength $\emptyset \mathrm{Rn}=88.56 \mathrm{kN}$
f. Calculation of Number of Bolts

Number of Bolts $=250 \times 88.56$

$$
=2.82294
$$

$$
\text { = } \mathbf{3} \text { bolts. }
$$

2.6 Stair Planing

Stairs are a very important structure for multi-storey buildings. The stairs are plannedfor the $1^{\text {st }}$ and $2^{\text {nd }}$ building with a size of $1980 \times 4500 \mathrm{~mm}$ and a height of 3 m . The stepshave a height (Optrede) of 180 mm and a width (Antrede) of 290 mm . The size of the stairs is designed with comfort in mind because if it is too high and too narrow it will cause users to feel uncomfortable. The stair plate has a thickness of 150 mm

To simplify the planning of the stairs, the staircase space plan is made as shown in Figure 2.18.

Figure 2. 14 Room Plan of Front Stairs and Stepss

The stair data required to plan the stairs can be seen in table 2.16.
Table 2.10 Stair Dimension

Floor width	2900 mm
Bordes width	1800 mm
Stair height (Optrede)	180 mm
Floor height (hlt)	3000 mm
Stair width (Antrede)	290 mm
Number of steps	16 pcs
Optrede/Antrede (O/A)	0,5833
Stair slope angle $=\arctan (\mathrm{O} / \mathrm{A})$	31.83°
Thickness of stair slab (htg)	160 mm
Volume weight of concrete	$24 \mathrm{kN} / \mathrm{m}^{3}$
Volume weight of granite tiles	$21 \mathrm{kN} / \mathrm{m}^{3}$

2.6.1 Stair Load Plan

The load of the stairs can be known after planning the dimensions of the stairs which include, the slope of the stairs and the thickness of the stair plate The thickness ofstairs can be determined by using trial and error. Control is needed to ensure the safety with a concept of $600 \mathrm{~mm} \leq 2 \times$ height of staircase x widht of starcase $\leq 650 \mathrm{~mm}$.

Table 2.11 Stair Load Plan

Load qtg		
Self weight of stairs	$\overline{h_{t g}}$ \times berat volume beton $\cos \alpha$	$4.93 \mathrm{kN} / \mathrm{m}^{2}$
Weight of stairs	${ }^{1} 0 \times$ berat volume beton 2	$2.4 \mathrm{kN} / \mathrm{m}^{2}$
Weight of ceramic tile and mortar	$0,05 \times$ berat volume ubin	$1.05 \mathrm{kN} / \mathrm{m}^{2}$
Railing weight (estimated)		$1 \mathrm{kN} / \mathrm{m}^{2}$
	Load qtg	$9.38 \mathrm{kN} / \mathrm{m}^{2}$
Load qbd		
Self weight of stairs	$h_{t g} \times$ berat volume beton	$4.32 \mathrm{kN} / \mathrm{m}^{2}$
Weight of ceramics and specs	0,05 \times berat volume ubin	$1.05 \mathrm{kN} / \mathrm{m}^{2}$
Railing weight (estimated)		$1 \mathrm{kN} / \mathrm{m}^{2}$
Load q_{bd}		$6.37 \mathrm{kN} / \mathrm{m}^{2}$

Live load (LL) is taken as $4.79 \mathrm{kN} / \mathrm{m} 2$ (building function as a house of worship).After the ladder load is determined, the plan force can be calculated using the help of theSAP2000 computer program. Images of SFD and BMD forces can be seen in the following figure.

The thickness of stairs can be determined by using trial and error. Control is neededto ensure the safety with a concept of $600 \mathrm{~mm} \leq 2 \times$ height of staircase x widht of starcase $\leq 650 \mathrm{~mm}$. Then, 7 calculated the load that applied for the borders beam. Afterthat, input it into ETABS so that it can analyse the bending moment diagram (BMD).
a. Shear Force Diagram (SFD)

Figure 2.15 SFD Due to Dead Load

- Due to Live load

Figure 2.16 SFD Due to Live load
b. Bending Momen Diagram (BMD)

- Due to dead load

Figure 2.17 BMD Due to Dead Load

- Due to Live load

Figure 2.18 BMD Due to Live load

From the results of the SAP2000 analysis, the moments and shear on the stairs areobtained as follows:

Table 2.12 Front Stair Moment and Shear

	Live load	Dead load
Moment (kNm)	14.67	35.75
Shear (kN)	10.18	23.47

Table 2.13 Combination Moment and Shear

Table 2.14 Main Reinforcement Calculations

	Pedestal	Field
Moment	33.186 kNm	56.4 kNm
Rn	1.59	2.5
Ratio of reinforcemen needed	0.00402	0.00644
Area of reinforcement needed	$201.06 \mathrm{~mm}^{2}$	$1159.29 \mathrm{~mm}^{2}$
Reinforcement spacing	277.67 mm	114.49 mm
Main reinforcement	D16-300	D13-200
Shrinkage reinforcement	P10-200	

Figure 2. 19 Stair reinforcement

2.7 Slab Structural Planning

One part of the construction that needs to be calculated is slab planning. The calculation of the slab itself uses calculation assumptions involving the load acting onthe floor slab, the moment due to the factored load, and the plate reinforcement. Fromthe results of the calculation of the floor slab itself, the diameter of the reinforcementand the required reinforcement spacing will be obtained. The thickness of the floor slab is 15 cm for the $1^{\text {st }}$ and $2^{\text {nd }}$ building. The reinforcement used on the entire floor is reinforcement with a diameter of 10 and a spacing of 200 mm .

Slab is a flat and horizontal structure made of cast concrete. A concrete slab is a horizontal, flat building form. Building layout determines the different types of slabs.The more beams in a building, the more different types of slabs that can be made in accordance with SNI specifications. There are three types of slabs in this situation: types A, B, C, and D. Each type comes in a variety of lengths and widths. The Type A, B, and C slabs must be divided into one-way and two-way slabs. Ly Lx 2 for one-way slabs and Ly Lx 2 for two-way slabs is the formula to determine slab category.

To determine the moment that occurs in the structure, modeling in ETABS is required. The amount of reinforcement needed to withstand the moment is calculatedusing the slab's moment. 8 The more reinforcement is required, the higher the momentvalue. After moment analysis, the spacing between each reinforcement must be taken into account. The ability to resist the moment force decreases with increasing distancebetween reinforcements.

2.7.1 Preliminary Design

Figure 2. 20 Slab Plan

Table 2. 15 Loading of $1^{\text {st }}$ and $2^{\text {nd }}$ Building Slab

Slab Function	Types of Loading	Thickness (cm)	Vol	DL	$\begin{aligned} & \text { DL } \\ & \text { Slub } \end{aligned}$	LL	$\begin{gathered} \mathrm{W}_{\mathrm{u}}=1.2 \\ \mathrm{D}+1.6 \mathrm{~L} \end{gathered}$
			kN/ m ${ }^{2}$	kN/m ${ }^{2}$	kN/m ${ }^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	kN/m ${ }^{2}$
Floor	Own-load	120	24	3			
	Finishing Tile Load	50	21	1.05			
	Ceiling Load		0.2	0.2			
	ME installation			0.5			
	,		Total	4.75	2,13	4,79	13,364

Preliminary Design of the slab is the minimum provision allowed to design thefloor slab. The minimum plate thickness has been stated in SNI 2847: 2019 through a table:

Table 2.16 Minimum Thickness of Prestressed One-way Solid Slab

Support Condition	h minimum
Simple Support	$1 / 20$
One ways	$1 / 24$
Two ways	$1 / 28$
Cantilever	$1 / 10$

Through the table, if the yield stress used is more than 420 MPa , then the analysis of the minimum thickness (h) of the plate can be multiplied by $0.4+\mathrm{f}_{\mathrm{y}} /$ 700 (SNI 2847: 2019). The use of plates at Muntilan Christian Church is calculated through this reference. To determine the floor slab in one-way or two-way Muntilan

Church planning, it needs to be seen through the formula: $\frac{L y}{L x}<2$, for one-way slub and $\frac{L y}{L x}>2$, for two-way slub

The floor slab of Muntilan Christian Church has 4 slab types, namely A, B, C and D. The calculation shows that Depok Church has a one-way floor slab as a whole. For that, the minimum h is used with the formula:
$\mathrm{h} \min =\frac{L x \times 1000}{24}$. The result of the h calculation itself becomes the reference for determining the thickness of the plate used. For the all type Slub, a slab thickness of 150 mm is used, while for the first and second floors, a slub thickness of 150 mm is used as a safety requirement.

Table 2.17 Slub Types of $1^{\text {st }}$ and $2^{\text {nd }}$ Building

Floor	Ly/Lx	Ket	Lx (m)	Thickness (mm)	Used
A	1.33	two-way	3	83,3333	150
B	1	one-way	4	83,3333	150
C	2,6667	two-way	1.5	93,7500	150
D	2	one-way	2	93,7500	150

2.7.2 Calculation of Slab Type A

The reinforcement calculation of slab has been divided into 4 types of slab types as shown in the table above. This calculation is based on the loading as shown in Table 2.29

The slab reinforcement plan is carried out after Wu is obtained. Wu was found tobe $13.364 \mathrm{kNm}^{2}$. Wu on the slab can be found with the following combination:
$\mathrm{W}_{\mathrm{u}}=1.2 \mathrm{M}_{\mathrm{DL}}+1.6 \mathrm{M}_{\mathrm{LL}}=13.364 \mathrm{kN} / \mathrm{m}^{2}$

The slab reinforcement plan is calculated with the following known data:
Table 2. 18 General Data of Slab

Concrete blanket	
d	20 mm
Main reinforcement	d 100 (pedestal)
Main reinforcement	d 10 (field)
f_{y}	420 MPa
$1 \mathrm{f}^{\prime}$	30 MPa
h	150 mm

The following are the steps for calculating the reinforcement of floor slab:

Figure 2.21 Slab Type A

Table 2. 19 Slab Type A Data

L_{y}	4000 mm
$\mathrm{~L}_{\mathrm{x}}$	3000 mm
M_{u}	$0,001 \times W_{u} \times l x^{2} \times k$
M_{lx}	3.824 kNm
M_{ly}	-3.824 kNm
M_{tx}	1.63476 kNm
M_{ty}	-1.63476 kNm

The floor slab calculation step is divided into the calculation of x direction field reinforcement, y-direction field reinforcement, x-direction pedestal reinforcement and y-direction pedestal reinforcement. The following is an example of calculation for x - direction field reinforcement:

1. Find d

The effective height (d_{x}) can be found by the following formula: $\mathrm{d}_{\mathrm{x}}=\mathrm{h}$ slab - concrete blanket -d reinforcement/2 The effective height is 113.5 mm
2. Finding the Coefficient of Cross-Sectional Capacity (Rn)

The cross-sectional capacity coefficient is obtained through equation $R n=$
$\stackrel{M_{u}}{ }$ assuming that the tensile restraint, $\varnothing=0.9$. The result of the crosssectional
$\emptyset b d^{2}$
capacity coefficient (Rn) is 0.3298
3. Finding Reinforcement Ratio

The minimum reinforcement ratio according to SNI is 0.0018 . If the reinforcement ratio is smaller than 0.0018 , then 0.0018 is used. If the reinforcementratio is greater than 0.0018 , the calculated reinforcement ratio is used. In addition to checking the minimum reinforcement ratio, the maximum reinforcement ratio is also checked to see if it is overreinforced. The reinforcement ratio is obtained by equation :

$$
\rho_{\text {need }}=\frac{0,85 f_{c}^{\prime}}{f_{y}}\left(1-\sqrt{1-\frac{2 R n}{0,85 f_{c}^{\prime}}}\right) .
$$

The result of the reinforcement ratio obtained from the formula calculation is 0.0007917 , which is smaller than that of $\rho_{\min } 0.0018$, and certainly smaller than the maximum reinforcement ratio of 0.03299 . After checking the minimum and maximum reinforcement ratios, the following are used $\rho_{\text {minimum }}=0,0018$.
4. Finding the Number of Tensile Reinforcement

First must be known is the area of reinforcement required. The reinforcement area needs to be found with equation, then the dieter reinforcement area is calculated.
$\mathrm{A}_{\mathrm{s}} \mathrm{D} 10=\left(\frac{1}{4}\right) \pi D^{2}$ The area of reinforcement needed based on the calculation is $227 \mathrm{~mm}^{2}$. Then the area of reinforcement with a diameter of 10 is $663.666 \mathrm{~mm}^{2}$. Then d 10 reinforcement is used.
5. Finding the reinforcement spacing

The result of 359.0392 mm is obtained from the calculation of the spacing with equation, then the maximum spacing of 3 times the thickness of the plate is 45 mm . Therefore, a spacing of 200 mm is taken.
After obtaining a reinforcement spacing, then main reinforcement and D13-200 reinforcement are used.

Calculation of Y-Direction Field Reinforcement is the same as X-Direction Support Reinforcement with different M_{u} values according to Table 2.20 Thus, the location of the difference in calculations is only in $R_{n, \text { need. }}$. The reinforcement of the X and Y direction supports also has a difference in the value of M_{u} so that with the same calculation method as the X direction Field Reinforcement Calculation, therefore, the calculation of Y Direction Field Reinforcement, X Direction Support Reinforcement Calculation, and Y Direction Support Reinforcement Calculation at the basement floor are summarized in the appendix table.

Table 2. 20 X Direction Field Reinforcement

Table 2.21 Y Direction Field Reinforcement

Type	dx	Way	Rn	ρ	ρ min	ρ used		s use	As Installed	Use Reinforcement				Check
	mm	Mly					mm		mm					
A	100.5	0,75608	0.17984	0.00043	0,002	0,002	201	300	442.4409654	D	10	-	300	OK
B	100.5	0,75608	0.30288	0.00073	0,002	0,002	201	300	442.4409654	D	10	-	300	OK
C	100.5	1,70118	0.10937	0.00026	0,002	0,002	201	300	442.4409654	D	10	-	300	OK
D	100.5	4,5801	0.29447	0.00071	0,002	0,002	201	300	442.4409654	D	10	-	300	OK

Table 2. 22 X Direction Pedestal Reinforcement

Type	dx	Way	Rn	ρ	$\rho \mathrm{min}$	ρ used	As need	s use	As Installed	Use Reinforcement				Check
	mm	Mlx					mm		mm					
A	125	3,66408	0.32128	0.00077	0,0020	0,002	230	300	442.4409654	D	10	-	300	OK
B	125	2,21008	0.23132	0.00055	0,0020	0,002	230	300	442.4409654	D	10	-	300	OK
C	125	4,97268	0.05693	0.00014	0,0020	0,0021	230	300	442.4409654	D	10	-	300	OK
D	125	4,5801	0.05602	0.00013	0,0020	0,0020	230	300	442.4409654	D	10	-	300	OK

Table 2.23 Y Direction Pedestal Reinforcement

Type	dx	Way	Rn	ρ	ρ min	ρ used		s use	As Installed	Use Reinforcement				Check
	mm	Mlx					mm		mm					
A	125	2,21008	0.16475	0.00039	0,0020	0,0020	210	300	442.4409654	D	10	-	300	OK
B	125	2,21008	0.27748	0.00067	0,0020	0,0020	210	300	442.4409654	D	10	-	300	OK
C	125	4,97268	0.10020	0.00024	0,0020	0,0020	210	300	442.4409654	D	10	-	300	OK
D	125	4,5801	0.26977	0.00065	0,0020	0,0020	210	300	442.4409654	D	10	-	300	OK

2.8 Beam Planning

In this instance, the beam structure consists of a primary beam and a practical beam.The primary beam connects each column and withstands the majority of forces that are applied to the building. The secondary beam is the part of the building that helps supportthe slab with an excessively long length and resist forces that occur in the building. Since the reinforcement beam in this instance is being used, the reinforcement needs to be calculated to arrive at the ideal value that will give it enough strength to withstand the force.

According to ETABS calculations, the beam that needs to be examined has the largest moment on each floor. The biggest moment was chosen because, if the beam canwithstand it, other, smaller moments that may occur in the building will also be able to withstand it. The area of steel is used to calculate the diameter of the reinforcement usedafter calculating the total moment that occurs in the beam. The maximum spacing neededto achieve effective strength can be calculated based on the total amount of steel used. Itis also necessary to model the beam in AutoCAD to ensure that other people can see it clearly.

2.8.1 Preliminary Design

The initial stage in beam planning is to conduct preliminary design or determine the initial dimensions of the beam. According to SNI 2847:2019, the minimum beam height is as follows.

$$
h_{\min }=\left(\frac{l}{18,5}\right)
$$

Based on SNI 2847:2019, the net span for structural components, 1_{n} should not be less than four times its effective height.

$$
l_{n} \geq 4 d
$$

Meanwhile, the component width, b_{w} should not be less than 0.3 h and 250 mm .
For a 40×55 main beam, it has span $(1)=6000 \mathrm{~mm}$. The 40×50 main beam has span $(1)=4000 \mathrm{~mm}$.

Table 2. 24 Preliminary Design of Beams

Beams	h min	h plan	\ln	4 d	bw	$0,3 \mathrm{~h}$	Check
BI 40×55	500	550	10600	2350	400	165	Ok
BI 40×50	324,324	500	5500	1750	400	150	Ok

2.8.2 Main Beam 40×55

Table 2.25 Specification of 40×65 Main Beam

Beam Data	
Beam width (b)	400 mm
Beam height (h)	550 mm
Total span (l)	6000 mm
Concrete blanket (Cc)	40 mm
Concrete quality (f'c)	25 MPa
Reinforcement Data	25 mm
Diameter of flexural reinforcement (D)	
Diameter of stirrup reinforcement (d)	12 mm
Flexural reinforcement quality (fy)	420 MPa
Shear reinforcement quality (fyt)	280 MPa
Modulus of Elasticity (E)	200000 MPa
β_{1}	0,85
d = h - 2Cc - 2 d. stirrup - 2 d.reinforcemnt	587.5 mm

Based on the structural analysis with the ETABS program, the forces in the beamare obtained as in the following table.

Table 2. 26 Inner force Main beam 40×55

Force	Reaction	
	$-(\mathrm{kNm})$	$+(\mathrm{kNm})$
$\mathrm{M}_{\mathrm{u}}{ }^{-}(\mathrm{kNm})$	-299.08	183.230
$\mathrm{~V}_{\mathrm{u}}{ }^{+}(\mathrm{kNm})$	183.2297	145.4425

1. Reinforcement Calculation

Table 2.27 Calculation of Reinforcement

Concrete stress distribution form factor, For : $\mathrm{fc}^{\prime} \leq 30$ MPa,		0.85
Reinforcement ratio at balanced condition	$\rho_{\text {maks }}=0,75 \frac{0,85 f_{c}^{\prime} \beta_{1}}{f_{y}}\left(\frac{600}{600+f_{y}}\right)$	

2. Calculation of Support Reinforcement

Table 2.28 Calculation of support Shear Reinforcement

Nominal positive moment of the plan	$\mathrm{M}_{\mathrm{n}}=\mathrm{M}_{\mathrm{u}}{ }^{+} / \phi$	373.850 kNm
Estimated distance of center of reinforcement to side of concrete	ds	66 mm
Effective height of the beam	$\mathrm{d}=\mathrm{h}-\mathrm{ds}$	486 mm
Moment resistance factor	$\mathrm{R}_{\mathrm{n}}=\mathrm{M}_{\mathrm{n}} \times 10^{6} /\left(\mathrm{b} \times \mathrm{d}^{2}\right)$	3.982
Cun	$\rightarrow \mathrm{R}_{\max } \longrightarrow$ (OK
Ratio of required reinforcement	$\begin{gathered} \rho=0.85 \times \mathrm{fc}^{\prime} / \mathrm{fy} \times[1-\mathrm{O} \times[1- \\ \left.2 \times \mathrm{Rn} /\left(0.85 \times \mathrm{fc}^{\prime}\right)\right] \end{gathered}$	0.0104
Minimum ratio of reinforcement	$\rho_{\min }=\frac{\sqrt{f_{c}^{\prime}}}{4 f_{y}}$	0.0033
Miximum ratio of reinforcement	$\rho_{\text {maks }}=0,75 \frac{0,85 f_{c}^{\prime} \beta_{1}}{f_{y}}\left(\frac{600}{600+f_{y}}\right)$	0.0228
Ratio of reinforcement used	ρ	0.0104
Area of reinforcement required	$\mathrm{A}_{\mathrm{s}}=\rho \times \mathrm{b} \times \mathrm{d}$	$2009 \mathrm{~mm}^{2}$
Required Number of reinforcement,	$\mathrm{n}=\mathrm{A}_{\mathrm{s}} /\left(\mathrm{p} / 4 \times \mathrm{D}^{2}\right)$	$4.095 \approx 5$
Used reinforcement	$5 Ø 25$	
Area of reinforcement used	$\mathrm{A}_{\mathrm{s}}=\mathrm{n} \times \pi \times \mathrm{b} 3 \times \mathrm{D}^{2}$	$2454 \mathrm{~mm}^{2}$
Checking/Beam Analysis		
Equivalent concrete compressive stress block height	$\mathrm{a}=\mathrm{As} \times \mathrm{fy} /\left(0.85 \times \mathrm{fc}^{\prime} \times \mathrm{b}\right)$	101.062 mm
Nominal moment,	$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\mathrm{s}} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2) 10^{-6}$	447.350 kNm
Moment resistance of the beam	$\phi \mathrm{Mn}$	357.880 kNm
Check Requirement:	$\phi \mathrm{Mn} \geq \mathrm{Mu}+$	Safe (OK)
Check the width of Beam		
Thickness of concrete	2×40	80 mm

blanket:		
2 foot stirrups	2×13	26 mm
Number of reinforcement bars used	5×22	125 mm
Net distance between reinforcements	4×25	100 mm
	TOTAL	331 mm
Check Requirement:		

3. Calculation of field Reinforcement

Table 2.29 Calculation of field Reinforcement

Nominal positive moment of the plan	$\mathrm{M}_{\mathrm{n}}=\mathrm{M}_{\mathrm{u}}{ }^{+} / \phi$	229.037 kNm
Estimated distance of center of reinforcement to side of concrete	$\mathrm{ds}=$	66 mm
Effective height of the beam	$\mathrm{d}=\mathrm{h}$	486 mm
Moment resistance factor	$\mathrm{R}_{\mathrm{n}}=\mathrm{M}_{\mathrm{n}} \times 10^{6} /\left(\mathrm{b} \times \mathrm{d}^{2}\right)=$	2.4393
$\mathrm{R}_{\mathrm{n}}>\mathrm{R}_{\text {max }}$		OK
Ratio of required reinforcement	$\begin{aligned} \rho= & 0.85 \times \mathrm{fc}^{\prime} / \mathrm{fy} \times[1-\mathrm{O} \times[1- \\ & \left.2 \times \mathrm{Rn} /\left(0.85 \times \mathrm{fc}^{\prime}\right)\right] \end{aligned}$	0.0061
Minimum ratio of reinforcement	$\rho_{\text {min }}=\frac{\sqrt{f_{c}^{\prime}}}{4 f_{y}}$.	0.0033
Miximum ratio of reinforcement	$\rho_{\text {maks }}=0,75 \frac{0,85 f_{c}^{\prime} \beta_{1}}{f_{y}}\left(\frac{600}{600+f_{y}}\right)$	0.0228
Ratio of reinforcement used	ρ	0.0033
Area of reinforcement required	$\mathrm{A}_{\mathrm{s}}=\rho \times \mathrm{b} \times \mathrm{d}$	$632 \mathrm{~mm}^{2}$
Required Number of reinforcement	$\mathrm{n}=\mathrm{A}_{\mathrm{s}} /\left(\pi / 4 \times \mathrm{D}^{2}\right)$	$1.287 \approx 3$
Used reinforcement	$3 \varnothing 22$	

Area of reinforcement used	$\mathrm{A}_{\mathrm{s}}=\mathrm{n} \times \pi / 3 \times \mathrm{D}^{2}$	$2945 \mathrm{~mm}^{2}$
Checking/Beam Analysis		
Equivalent concrete compressive stress block height	$\mathrm{a}=\mathrm{As} \times \mathrm{fy} /\left(0.85 \times \mathrm{fSc}^{\prime} \times \mathrm{b}\right)$	121.275 mm
Nominal moment	$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\mathrm{s}} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2) 10^{-6}$	524.319 kNm
Moment resistance of the beam,	$\phi \mathrm{Mn}$	419.455 kNm
Check Requirement:	$\phi \mathrm{Mn} \geq \mathrm{Mu}+$	Safe (OK)
Check the width of Beam		
Thickness of concrete blanket:	2×40	80 mm
2 foot stirrups:	2×13	26 mm
Number of reinforcement bars used	6×25	150 mm
Net distance between reinforcements	5×25	125 mm
TOTAL		381 mm
Check Requirement:	Total < b beam	OK

4. Calculation Shear Reinforcement

Table 2.30 Calculation Shear Reinforcement

Ultimate plan shear force,	V_{u}	146.365 kNm
Shear strength reduction factor,	ϕ	0.75 kN
Yield stress of shear reinforcement	f_{y}	280
Shear strength of concrete	$\mathrm{V}_{\mathrm{c}}=\left(\sqrt{ } \mathrm{f}_{\mathrm{c}}{ }^{\prime}\right) / 6 \times \mathrm{b} \times \mathrm{d} \times 10^{-3}$	176.367 kN
Shear resistance of concrete	$\phi \times \mathrm{V}_{\mathrm{c}}=$	132.688 kN

Shear resistance of stirrups	$\mathrm{f} \times \mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{u}}-\mathrm{f} \times \mathrm{V}_{\mathrm{c}}=$	13.681
Shear strength of stirrups	V_{s}	18.241 kN
Cross-sectioned stirrups are used	Ø	13
Area of shear reinforcement per meter of beam length	$\mathrm{A}_{\mathrm{v}}=\mathrm{Vs} \times \mathrm{S} / \mathrm{fy} \times \mathrm{d}$	$0.134 \mathrm{~mm}^{2}$
	$\mathrm{A}_{\mathrm{V} / \mathrm{s} \text { need }}$	$0.134 \mathrm{~mm}^{2} / \mathrm{mm}$
Maximum spacing of stirrup	$\mathrm{s}_{\max }=\mathrm{d} / 2$	242 mm
Taken stirrup spacing		150 mm
Area used for shear reinforcement	$\mathrm{A}_{\mathrm{v}}=2 \times 1 / 4 \times \mathrm{p} \times \emptyset^{2}$	$265 \mathrm{~mm}^{2}$
	$\mathrm{A}_{\mathrm{v} / \mathrm{s} \text { use }}$	$1.769 \mathrm{~mm}^{2} / \mathrm{mm}$
A stirrup is used	$13 \varnothing 15$	
Check Requirement	$\mathrm{A}_{\mathrm{v} / \mathrm{s} \text { need }}>\mathrm{A}_{\mathrm{v} / \mathrm{s} \text { use }}$	OK

Table 2.31 Recap of Reinforcement of Main Beam 40×55

Beam 40x55		
	Pedestal	Field
Size		
Main Reinforcement	5D25	6D25
Stirrup	2P13-150	2P13-150

2.8.3 Main Beam 40×50

Table 2. 32 Specification of 40×50 Main Beam

Beam Data	
Beam width (b)	400 mm
Beam height (h)	500 mm
Total span (l)	4000 mm
Concrete blanket (Cc)	40 mm
Concrete quality (f'c)	30 MPa
Reinforcement Data	
Diameter of flexural reinforcement (D)	25 mm
Diameter of stirrup reinforcement (d)	13 mm
Flexural reinforcement quality (fy $)$	420 MPa
Shear reinforcement quality (fyt $)$	280 MPa
Modulus of Elasticity (E)	200000 MPa
β_{1}	0,85
d = h - 2Cc - 2 d. stirrup - 2 d.tul	587.5 mm

Based on the structural analysis with the ETABS program, the forces in the beam are obtained as in the following table.

Table 2. 33 Inner force Main beam 40×55

Force	Reaction	
	$-(\mathrm{kNm})$	$+(\mathrm{kNm})$
$\mathrm{M}_{\mathrm{u}}(\mathrm{kNm})$	-299.08	183.2297
$\mathrm{~V}_{\mathrm{u}}(\mathrm{kNm})$	-108.069	103.2157

1. Reinforcement Calculation

Table 2. 34 Calculation of Reinforcement

Concrete stress distribution form factor, For : fc' ≤ 30 MPa,	$\mathrm{b}_{1}=$	0.85
Reinforcement ratio at balanced condition	$\rho_{m a k s}=0,75 \frac{0,85 f_{c}^{\prime} \beta_{1}}{f_{y}}\left(\frac{600}{600+f_{y}}\right)$	0.030
Maximum moment resistance factor	$\begin{aligned} R_{\max } & =0.75 \times \mathrm{rb} \times \mathrm{fy} \times[1-1 / 2 \times 0.75 \\ & \times \mathrm{rb} \times \mathrm{fy} /(0.85 \times \mathrm{fc})] \end{aligned}$	7.770
Flexural strength reduction factor	ϕ	0.80
Distance of reinforcement to the outside of the concrete	$d s=\mathrm{ts}+\emptyset+\mathrm{D} / 2$	66 mm
Number of reinforcement bars in one row	$n s=(\mathrm{b}-2 \times \mathrm{ds}) /(25+\mathrm{D})$	5.380
Distance of Horizontal center to center between reinforcement bars	$\mathrm{x}=(\mathrm{b}-\mathrm{ns} \times \mathrm{D}-2 \times \mathrm{ds}) /(\mathrm{ns}-1)$	30.71 mm

2. Calculation of Support Reinforcement

Table 2.35 Calculation of support Shear Reinforcement

Nominal positive moment of the plan	$\mathrm{M}_{\mathrm{n}}=\mathrm{M}_{\mathrm{u}}{ }^{+} / \phi$	373.850 kNm
Estimated distance of center of reinforcement to side of concrete	ds	66 mm
Effective height of the beam	$\mathrm{d}=\mathrm{h}-\mathrm{ds}$	436 mm
Moment resistance factor	$\mathrm{R}_{\mathrm{n}}=\mathrm{M}_{\mathrm{n}} \times 10^{6} /\left(\mathrm{b} \times \mathrm{d}^{2}\right)$	4.951
$\mathrm{R}_{\mathrm{n}}>\mathrm{R}_{\max }$		OK
Ratio of required	$\rho=0.85 \times \mathrm{fc}$ ' $/ \mathrm{fy} \times[1-\mathrm{O} \times[1-$	0.0132

reinforcement	$2 \times \mathrm{Rn} /(0.85 \times \mathrm{fc}$ ' $)$]	
Minimum ratio of reinforcement	$\rho_{\text {min }}=\frac{\sqrt{f_{c}^{\prime}}}{4 f_{y}} .$	0.0033
Miximum ratio of reinforcement	$\rho_{\text {maks }}=0,75 \frac{0,85 f_{c}^{\prime} \beta_{1}}{f_{y}}\left(\frac{600}{600+f_{y}}\right)$	0.0228
Ratio of reinforcement used	ρ	0.0132
Area of reinforcement required	$\mathrm{A}_{\mathrm{s}}=\rho \times \mathrm{b} \times \mathrm{d}$	2299 mm ${ }^{2}$
Required Number of reinforcement,	$\mathrm{n}=\mathrm{A}_{\mathrm{s}} /\left(\mathrm{p} / 4 \times \mathrm{D}^{2}\right)$	$4.670 \approx 5$
Used reinforcement	(-5Ø25	
Area of reinforcement used	$\mathrm{A}_{\mathrm{s}}=\mathrm{n} \times \pi \times \mathrm{b} 3 \times \mathrm{D}^{2}$	$2454 \mathrm{~mm}^{2}$
Checking/Beam Analysis		
Equivalent concrete compressive stress block height	$\mathrm{a}=\mathrm{As} \times \mathrm{fy} /\left(0.85 \times \mathrm{fc}^{\prime} \times \mathrm{b}\right)$	101.062 mm
Nominal moment,	$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\mathrm{s}} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2) 10^{-6}$	396.809 kNm
Moment resistance of the beam	$\phi \mathrm{Mn}$	316.647 kNm
Check Requirement:	$\phi \mathrm{Mn} \geq \mathrm{Mu}+$	Safe (OK)
Check the width of Beam		
Thickness of concrete blanket:	2×40	80 mm
2 foot stirrups	2×12	26 mm
Number of reinforcement bars used	5×25	125 mm
Net distance between reinforcements	4×25	100 mm
TOTAL		331 mm
Check Requirement:	Total < b beam	OK

3. Calculation of field Reinforcement

Table 2.36 Calculation of field Reinforcement

Nominal positive moment of the plan	$\mathrm{M}_{\mathrm{n}}=\mathrm{M}_{\mathrm{u}}{ }^{+} / \phi$	229.037 kNm
Estimated distance of center of reinforcement to side of concrete	$\mathrm{ds}=$	66 mm
Effective height of the beam	$\mathrm{d}=\mathrm{h}-\mathrm{ds}=$	435 mm
Moment resistance factor	$\mathrm{R}_{\mathrm{n}}=\mathrm{M}_{\mathrm{n}} \times 10^{6} /\left(\mathrm{b} \times \mathrm{d}^{2}\right)=$	3.0330
$\sqrt{2}$	$>\mathrm{R}_{\text {max }} \longrightarrow$	OK
Ratio of required reinforcement	$\begin{gathered} \rho=0.85 \times \mathrm{fc}^{\prime} / \mathrm{fy} \times[1-\mathrm{O} \times[1- \\ \left.2 \times \mathrm{Rn} /\left(0.85 \times \mathrm{fc}^{\prime}\right)\right] \end{gathered}$	0.0077
Minimum ratio of reinforcement	$\rho_{\text {min }}=\frac{\sqrt{f_{c}^{\prime}}}{4 f_{y}}$.	0.0033
Miximum ratio of reinforcement	$\rho_{\text {maks }}=0,75 \frac{0,85 f_{c}^{\prime} \beta_{1}}{f_{y}}\left(\frac{600}{600+f_{y}}\right)$	0.0228
Ratio of reinforcement used	ρ	0.0033
Area of reinforcement required	$\mathrm{A}_{\mathrm{s}}=\rho \times \mathrm{b} \times \mathrm{d}$	$567 \mathrm{~mm}^{2}$
Required Number of reinforcement	$\mathrm{n}=\mathrm{A}_{\mathrm{s}} /\left(\pi / 4 \times \mathrm{D}^{2}\right)$	$1.154 \approx 6$
Used reinforcement	$6 Ø 25$	
Area of reinforcement used	$\mathrm{A}_{\mathrm{s}}=\mathrm{n} \times \pi / 3 \times \mathrm{D}^{2}$	$2945 \mathrm{~mm}^{2}$
Checking/Beam Analysis		
Equivalent concrete compressive stress block height	$\mathrm{a}=\mathrm{As} \times \mathrm{fy} /(0.85 \times \mathrm{fSc} \times \mathrm{b})$	121.275 mm
Nominal moment	$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\mathrm{s}} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2) 10^{-6}$	462.469 kNm
Moment resistance of the beam,	$\phi \mathrm{Mn}$	369.975 kNm
Check Requirement:	$\phi \mathrm{Mn} \geq \mathrm{Mu}+$	Safe (OK)
Check the width of Beam		
Thickness of concrete	2×40	80 mm

blanket:		
2 foot stirrups:	2×12	26 mm
Number of reinforcement bars used	6×25	150 mm
Net distance between reinforcements	5×25	125 mm
	TOTAL	381 mm
Check Requirement:		Total < b beam

4. Calculation Shear Reinforcement

Table 2.37 Calculation Shear Reinforcement

Ultimate plan shear force,		108.062 kNm
Shear strength reduction factor,	ϕ	0.75 kN
Yield stress of shear reinforcement	f_{y}	280
Shear strength of concrete	$=\left(\sqrt{ } \mathrm{f}_{\mathrm{c}}^{\prime}\right) / 6 \times \mathrm{b} \times \mathrm{d} \times 10^{-}$	156.657 kN
Shear resistance of concrete	$\mathrm{f} \times \mathrm{V}_{\mathrm{c}}=$	118.993 kN
\rightarrow Need Shear Reinforcment		
Shear resistance of stirrups	$\mathrm{f} \times \mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{u}}-\mathrm{f} \times \mathrm{V}_{\mathrm{c}}=$	-
Shear strength of stirrups	$\mathrm{V}_{\text {s }}$	108.068 kN
Cross-sectioned stirrups are used	\emptyset	13
Area of shear reinforcement per meter of beam length	$A_{v}=\mathrm{Vs} \times \mathrm{S} / \mathrm{fy} \times \mathrm{d}$	$0.888 \mathrm{~mm}^{2}$
	$\mathrm{A}_{\mathrm{V} / \mathrm{s} \text { need }}$	$0.888 \mathrm{~mm}^{2} / \mathrm{mm}$

Table 2. 38 Recap of Reinforcement of Main Beam 40×50

Beam 40x50				
Image	Pedestal	Field		
		0 0 0		

2.8.4 Secondary Beam 250×350

Table 2.39 Specification of 25×35 Secondary Beam

Beam Data	
Beam width (b)	250 mm
Beam height (h)	350 mm
Total span (l)	4000 mm
Concrete blanket (Cc)	40 mm
Concrete quality (fc)	25 MPa
Reinforcement Data	
Diameter of flexural reinforcement (D)	25 mm
Diameter of stirrup reinforcement (d)	12 mm

Flexural reinforcement quality (f_{y})	420 MPa
Shear reinforcement quality $\left(\mathrm{f}_{\mathrm{yt}}\right)$	280 MPa
Modulus of Elasticity (E)	200000 MPa
β_{1}	0,85
$\mathrm{~d}=\mathrm{h}-2 \mathrm{Cc}-2$ d. stirrup -2 d.tul	587.5 mm

Based on the structural analysis with the ETABS program, the forces in the beam are obtained as in the following table.

Table 2.40 Inner force structural beam 40×55

Force	Reaction	
	$-(k N m)$	$+(\mathrm{kNm})$
$\mathrm{M}_{\mathrm{u}}{ }^{-}(\mathrm{kNm})$	-23.2667	14.3491
$\mathrm{~V}_{\mathrm{u}^{+}}(\mathrm{kNm})$	-18.591	18.1829

1. Reinforcement Calculation

Table 2.41 Calculation of Reinforcement

Concrete stress distribution form factor, For: $\mathrm{fc} \leq 30$ MPa,	$\mathrm{b}_{1}=$	0.85
Reinforcement ratio at balanced condition	$\rho_{\text {maks }}=0,75 \frac{0,85 f_{c}^{\prime} \beta_{1}}{f_{y}}\left(\frac{600}{600+f_{y}}\right)$	0.030
Maximum moment resistance factor	$R_{\text {max }}=0.75 \times \mathrm{rb} \times \mathrm{fy} \times[1-1 / 2 \times 0.75$ $\times \mathrm{rb} \times \mathrm{fy} /(0.85 \times \mathrm{fc})]$	7.770
Flexural strength reduction factor	ϕ	0.80
Distance of reinforcement to the outside of the concrete	$d s=\mathrm{ts}+\emptyset+\mathrm{D} / 2$	64 mm

Number of reinforcement bars in one row	$n s=(\mathrm{b}-2 \times \mathrm{ds}) /(25+\mathrm{D})$	2.596
Distance of Horizontal center to center between reinforcement bars	$\mathrm{x}=(\mathrm{b}-\mathrm{ns} \times \mathrm{D}-2 \times \mathrm{ds}) /(\mathrm{ns}-1)$	40.67 mm

2. Calculation of Support Reinforcement

Table 2.42 Calculation of support Shear Reinforcement

Nominal positive moment of the plan	$\mathrm{M}_{\mathrm{n}}=\mathrm{M}_{\mathrm{u}}^{+} / \phi$	29.658 kNm
Estimated distance of center of reinforcement to side of concrete	ds	66 mm
Effective height of the beam	$\mathrm{d}=\mathrm{h}-\mathrm{ds}$	286 mm
Moment resistance factor	$\mathrm{R}_{\mathrm{n}}=\mathrm{M}_{\mathrm{n}} \times 10^{6} /\left(\mathrm{b} \times \mathrm{d}^{2}\right)$	1.450
-	$\mathrm{R}_{\text {max }}$	OK
Ratio of required reinforcement	$\begin{gathered} \rho=0.85 \times \mathrm{fc}^{\prime} / \mathrm{fy} \times[1-\mathrm{O} \times[1- \\ \left.2 \times \mathrm{Rn} /\left(0.85 \times \mathrm{fc}^{\prime}\right)\right] \end{gathered}$	0.0036
Minimum ratio of reinforcement	$\rho_{\min }=\frac{\sqrt{f_{c}^{\prime}}}{4 f_{y}}$	0.0033
Miximum ratio of reinforcement	$\rho_{\text {maks }}=0,75 \frac{0,85 f_{c}^{\prime} \beta_{1}}{f_{y}}\left(\frac{600}{600+f_{y}}\right)$	0.0228
Ratio of reinforcement used	ρ	0.0036
Area of reinforcement required	$\mathrm{A}_{\mathrm{s}}=\rho \times \mathrm{b} \times \mathrm{d}$	$254 \mathrm{~mm}^{2}$
Required Number of reinforcement,	$\mathrm{n}=\mathrm{A}_{\mathrm{s}} /\left(\mathrm{p} / 4 \times \mathrm{D}^{2}\right)$	$0.669 \approx 3$
Used reinforcement	$3 Ø 22$	
Area of reinforcement used	$\mathrm{A}_{\mathrm{s}}=\mathrm{n} \times \pi \times \mathrm{b} 3 \times \mathrm{D}^{2}$	$1140 \mathrm{~mm}^{2}$
Checking/Beam Analysis		
Equivalent concrete compressive stress block height	$\mathrm{a}=\mathrm{As} \times \mathrm{fy} /\left(0.85 \times \mathrm{fc}^{\prime} \times \mathrm{b}\right)$	75.132 mm
Nominal moment,	$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\mathrm{s}} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2) 10^{-6}$	118.992 kNm

Moment resistance of the beam	$\phi \mathrm{Mn}$	95.193 kNm
Check Requirement:	$\phi \mathrm{Mn} \geq \mathrm{Mu}+$	Safe (OK)
Check the width of Beam		
Thickness of concrete blanket:	2×40	80 mm
2 foot stirrups	2×12	26 mm
Number of reinforcement bars used	3×22	66 mm
Net distance between reinforcements	2×25	50 mm
		222 mm
Check Requirement:	Total < b beam	OK

3. Calculation of field Reinforcement

Table 2.43 Calculation of field Reinforcement
$\left.\begin{array}{|l|c|c|}\hline \begin{array}{l}\text { Nominal positive moment of } \\ \text { the plan }\end{array} & \mathrm{M}_{\mathrm{n}}=\mathrm{M}_{\mathrm{u}}{ }^{+} / \phi\end{array}\right] 17.936 \mathrm{kNm}$

required		
Required Number of reinforcement	$\mathrm{n}=\mathrm{A}_{\mathrm{s}} /\left(\pi / 4 \times \mathrm{D}^{2}\right)$	$0.613 \approx 3$
Used reinforcement	$3 \varnothing 22$	
Area of reinforcement used	$\mathrm{A}_{\mathrm{s}}=\mathrm{n} \times \pi / 3 \times \mathrm{D}^{2}$	$1140 \mathrm{~mm}^{2}$
Checking/Beam Analysis		
Equivalent concrete compressive stress block height	$\mathrm{a}=\mathrm{As} \times \mathrm{fy} /\left(0.85 \times \mathrm{fSc}^{\prime} \times \mathrm{b}\right)$	75.132 mm
Nominal moment	$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\mathrm{s}} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2) 10^{-6}$	118.992 kNm
Moment resistance of the beam,	$\phi \mathrm{Mn}$	95.193 kNm
Check Requirement:	$\phi \mathrm{Mn} \geq \mathrm{Mu}+$	Safe (OK)
Check the width of Beam		
Thickness of concrete blanket:	2×40	80 mm
2 foot stirrups:	2×12	26 mm
Number of reinforcement bars used	3×22	66 mm
Net distance between reinforcements	2×25	50 mm
TOTAL		222 mm
Check Requirement:	Total < b beam	OK

4. Calculation Shear Reinforcement

Table 2.44 Calculation Shear Reinforcement

Ultimate plan shear force,	V_{u}	18.183 kNm
Shear strength reduction factor,	ϕ	0.75 kN
Yield stress of shear reinforcement	f_{y}	280
Shear strength of concrete	$V_{c}=\left(\sqrt{ } \mathrm{f}_{\mathrm{c}}{ }^{\prime}\right) / 6 \times \mathrm{b} \times \mathrm{d} \times 10^{-3}$	65.270 kN
Shear resistance of concrete	$\mathrm{f} \times \mathrm{V}_{\mathrm{c}}=$	48.953 kN
	\rightarrow	hear Reinforcment
Shear resistance of stirrups	$\mathrm{f} \times \mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{u}}-\mathrm{f} \times \mathrm{V}_{\mathrm{c}}=$	-
Shear strength of stirrups	V_{s}	18.183 kN
Cross-sectioned stirrups are used	\varnothing	13
Area of shear reinforcement per meter of beam length	$A_{v}=\mathrm{Vs} \times \mathrm{S} / \mathrm{fy} \times \mathrm{d}$	$0.227 \mathrm{~mm}^{2}$
\cdots	$\mathrm{A}_{\mathrm{v} / \mathrm{s} \text { need }}$	$0.227 \mathrm{~mm}^{2} / \mathrm{mm}$
Maximum spacing of stirrup	$\mathrm{s}_{\text {max }}=\mathrm{d} / 2$	143 mm
Taken stirrup spacing	S	150 mm
Area used for shear reinforcement	$\mathrm{A}_{\mathrm{v}}=2 \times 1 / 4 \times \mathrm{p} \times \emptyset^{2}$	$265 \mathrm{~mm}^{2}$
	$\mathrm{A}_{\mathrm{v} / \mathrm{s}}$ use	$1.769 \mathrm{~mm}^{2} / \mathrm{mm}$
A stirrup is used	13 Ø 150	
Check Requirement	$\mathrm{A}_{\mathrm{v} / \mathrm{s} \text { need }}>\mathrm{A}_{\mathrm{v} / \mathrm{s}}$ use	OK

Table 2.45 Recap of Reinforcement of Secondary Beam 25 x 35

B30x35		
	Pedestal	Field
Image		00 0 0 0
Main Reinforcement	3D25	3D25
Stirrup	1 2P13-150	2P13-150

2.9 Column Planning 600×600

In column planning, which begins with determining the preliminary design using a predetermined main beam size, followed by determining the size of the column to be used. Followed by an examination of the column portal type in the x and y directions. Checking the slenderness of columns on each floor starting with the calculation of top-down bridles, effective length factors in the x and y directions. Then calculate the longitudinal reinforcement of the column with structural analysis data based on ETABS followed by the calculation of flexural reinforcement using SPColumn which results in the number of reinforcement bars and reinforcement diameter. Furthermore, the calculation of column transverse reinforcement is based on SNI 2847-2019 SRPMK column.

2.9.1 Preliminary Design

In determining the preliminary design using the beam size to determine the appropriate column size.

Table 2.46 Preliminary Design Data

Column Height (l)	3000 mm
Column Net Height (lu)	3000 mm
L beam 1	4000 mm
L beam 2	6000 mm

2.9.2 Column 60×60

Table 2.47 Specification of 60×60 Main Column

Column Data	
Column width (b)	600 mm
Column height (h)	600 mm
Total span (l)	3000 mm
Concrete blanket (Cc)	40 mm
Concrete quality (fc)	30 MPa
Reinforcement Data	
Diameter of flexural reinforcement (D)	25 mm
Diameter of stirrup reinforcement (d)	13 mm
Flexural reinforcement quality (fy $)$	420 MPa
Shear reinforcement quality (f_{yt})	280 MPa
Modulus of Elasticity (E)	200000 MPa

Based on the structural analysis with the ETABS program, the forces in the column are obtained as in the following table.

Table 2.48 Inner force Main column 60×60

Force	Reaction	
	$-(\mathrm{kNm})$	$+(\mathrm{kNm})$
$\mathrm{M}_{2}(\mathrm{kNm})$	-507.051	14.3491
$\mathrm{M}_{3}(\mathrm{kNm})$	-776.632	782.046
$\mathrm{~V}_{2}(\mathrm{kNm})$	-195.8095	195.7748
$\mathrm{~V}_{3}(\mathrm{kNm})$	-163.4204	156.9172
$\mathrm{P}(\mathrm{kNm})$	-1395.3604	298.7161

1. Column Reinforcement Calculation

Table 2.49 Calculation of Reinforcement

Used reinforcement	8D25	
	$\mathrm{A}_{\mathrm{s}}=\mathrm{n} \times\left(1 / 4 \times \mathrm{p} \times \mathrm{D}^{2}\right)$	$3925 \mathrm{~mm}^{2}$
The distance between the column deform reinforcement	$\mathrm{x}=\mathrm{h}-2 \times \mathrm{ds}$	469
Maximal nominal axial force	$\begin{gathered} \phi \mathrm{Pn}=0.8 \times \phi^{\times}(0,85 \times \mathrm{fc} \times \\ (\mathrm{Ag}-\mathrm{As})+(\mathrm{fy} \times \mathrm{As})) \end{gathered}$	5578.775
Check Requirement:	$\phi \mathrm{Pn} \geq \mathrm{Pu}$	Safe(OK)
Check the width of Beam		
Thickness of concrete blanket:	2×40	80 mm
2 foot stirrups	2×13	26 mm
Number of reinforcement bars used	5×25	125 mm
Net distance between reinforcements	4×25	100 mm
TOTAL		331 mm
Check Requirement:	Total < b beam	OK

2. Calculation of Shear Reinforcement

Table 2.50 Calculation Shear Reinforcement

Ultimate plan shear force,	V_{u}	195.775 kNm
Shear strength reduction factor,	ϕ	0.75 kN
Yield stress of shear reinforcement	f_{y}	280
Shear strength of concrete	$\mathrm{V}_{\mathrm{c}}=\left(\mathrm{V}_{\mathrm{c}}{ }^{\prime}\right) / 6 \times \mathrm{b} \times \mathrm{d} \times 10^{-3}$	292.758 kN
Shear resistance of concrete	$\mathrm{f} \times \mathrm{V}_{\mathrm{c}}=$	219.568 kN

\rightarrow Need Shear Reinforcment		
Shear resistance of stirrups	$\mathrm{f} \times \mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{u}}-\mathrm{f} \times \mathrm{V}_{\mathrm{c}}=$	-
Shear strength of stirrups	$\mathrm{V}_{\text {s }}$	18.183 kN
Cross-sectioned stirrups are used	\emptyset	13
Area of shear reinforcement per meter of beam length	$A_{v}=V s \times S / f y \times d$	$714.286 \mathrm{~mm}^{2}$
	$\mathrm{A}_{\mathrm{V} / \mathrm{s} \text { need }}$	$0.714 \mathrm{~mm}^{2} / \mathrm{mm}$
Maximum spacing of stirrup	$\mathrm{s}_{\text {max }}=\mathrm{d} / 2$	267 mm
Taken stirrup spacing	S	150 mm
Area used for shear reinforcement	$\mathrm{A}_{\mathrm{v}}=2 \times 1 / 4 \times \mathrm{p} \times \emptyset^{2}$	$265 \mathrm{~mm}^{2}$
	$\mathrm{A}_{\mathrm{v} / \mathrm{s} \text { use }}$	$1.769 \mathrm{~mm}^{2} / \mathrm{mm}$
A stirrup is used	13 Ø15	
Check Requirement	$A_{V / \text { need }}>A_{V / \text { use }}$	OK

Table 2. 51 Recap of Reinforcement of Structural Column 60×60

C60x60		
Image	Pedestal	Field
	0	0 prrr
Side Reinforcement	8D25	8D25
Sengkang	2P13-150	2P13-150

Figure 2.22 Result SPColumn of Structural Column 60×60

2.10
 Conclusion

In the design of the roof, the purlin used is a C $200 \times 75 \times 20$ profile, the sag-rod used has a diameter of 10 mm , the trusses use the IWF profile 600×600 x 6×10 and $650 \times 650 \times 6 \times 10$. The roof profile is safe against deflection and stress.

The Stair for $1^{\text {st }}$ and $2^{\text {nd }}$ building with a size of $1980 \times 4500 \mathrm{~mm}$ and a height of 3 m . The steps have a height (Optrede) of 180 mm and a width (Antrede) of 290, with thickness 150 mm . The stair consists of Pedestal reinforcement D16-300, and Field reinforcement D13-200.

The $1^{\text {st }}$ and $2^{\text {nd }}$ Building have 4 types which are divided into type A, type B, type C, and type D which differ in the size of the slab itself. Floor slab reinforcement includes field and support reinforcement that has complied with the safety requirements for floor slabs. Field reinforcement for the entire floor uses reinforcement with size D13 with a spacing of 300 , as well as reinforcement for all floors using reinforcement with the same size, using reinforcement D10 with a spacing of 300 .

The beam consists of a main beam 40×55 and main beam 40×50, which has main pedestal reinforcement 5D25 with 2P13-150 as stirrups, and main field reinforcement 6D25 with 2P13-150 as stirrups as support reinforcement. For Secondary beam measuring 25×35 which has main pedestal reinforcement 3D25 with 2P13-150 as stirrups, and main field reinforcement 3D25 with 2P13150 as stirrups as support reinforcement.

Columns on $1^{\text {st }}$ and $2^{\text {nd }}$ Building with a size of $60 \times 60 \mathrm{~cm}$ with a bending diameter of 25 mm with a shear reinforcement diameter of 8 mm and a concrete cover of 40 mm with a concrete quality of 25 Mpa and Fy 420. Use Main reinforcement 8D25, with stirrups 2P13-150.

