CHAPTER II SUPER STRUCTURE

2.1. Introduction

Super structure consists of roof structure, beam, column, beam column joint, slab, and stair. This structure is located above the soil surface, with exception of tie beam that is located right on soil surface. Mainly, the material of super structure is reinforced concrete for beam, column, slab, and stairs. Meanwhile, the roof structure uses steel structure for purlin and truss.

The design for super structure will begin from site class determination to determine the structure system. Then, preliminary design by using modeling software like ETABS to know the internal forces from inputted various loading that has been calculated. Next, the internal forces output is analyzed by using several regulations and requirements to check the strength of structural design. The regulations that are used in this design are as follows:

- SNI 1726:2019 Perencanaan Ketahanan Gempa
- SNI 1727:2013 Beban Minimum untuk Perancangan Bangunan Gedung dan Struktur Lain
- SNI 1729:2015 Spesifikasi untuk Bangunan Gedung Baja Struktural
- SNI 2847:2019 Persyaratan Beton Struktural untung Bangunan Gedung
- Peraturan Beton Bertulang Indonesia (PBI) tahun 1971

The general procedure of super structure design is shown in Figure 2. 1.

2.2. Soil Interpretation Data and Site Class Determination

Figure 2. 2 Soil Interpretation Data Flowchart

The soil interpretation is based on the bore log of Standard Penetration Test that was given to represent the soil data of the site. To interpret the data, standard from SNI 1726:2019 is used. The procedure of soil data interpretation is shown in Figure 2. 2.

The risk category for building can be seen in SNI 1726:2019 table 3. There are 4 categories which are risk I, II, III, and IV. This structure is on risk category II which is an apartment. The earthquake priority factor is determined based on the building risk category. The earthquake priority factor (Ie) is presented in accordance with SNI 1726:2019 table 4. In this work, the structure of the residential house is included in building risk category II so the earthquake priority factor (Ie) is 1.00. Ground acceleration parameters (Ss and S1) are affected by soil properties at project location. The values of Ss and S1 are used to determine the spectral response the acceleration of the MCER earthquake at ground level, where Ss and S 1 are respectively the spectral response parameter of the mapped MCER earthquake acceleration for short periods and 1.0 second periods. The values of SS and S1 are based on the construction location and can be taken from the official website of Spectra Design Indonesia rsa.ciptakarga.pu.go.id which are 1.28 and 0.5457 for SS and S1 respectively. All these parameters can be seen in Table 2. 1.

Characteristics of the project site, especially those related to aspects geotechnical engineering, must be properly identified in the planning process through site investigation activities. The results of the investigation of the project site will be used as a basis for determining site classification. In SNI 1726:2019 table 5, sites are classified into 6 types, namely SA (hard rock), SB (rock), SC (hard soil), SD (medium soil), SE (soft soil), and SF (special site). The classification can use N SPT Value from Bore Log, where it shows that the site is classified as SD class because the $\bar{N}_{c h}$ value is in the range of 15 until 50 (Table 2. 2).

Table 2. 1 Site Parameter

Risk Category	II
Ie	1
Ss	1.28
S1	0.5457

Table 2. 2 Calculation of Class Site Classification

Depth (m)	Material	SPT N Value	Thickness (m)	Thickness/N
2	Medium Sand	23	2	0.08696
4	Medium Sand	34	2	0.05882
6	Medium Sand	36	2	0.05556
8	Medium Sand	36	2	0.05556
10	Medium Sand	38	2	0.05263
12	Medium Sand	40	2	0.05000
14	Medium Sand	42	2	0.04762
16	Rough Sand	44	2	0.04545
18	Rough Sand	45	2	0.04444
20	Rough Sand	50	2	0.04000
22	Rough Sand	52	2	0.03846
24	Rough Sand	52	2	0.03846
26	Rough Sand	54	- 2	0.03704
28	Rough Sand	55	2	0.03636
30	Rough Sand	55	2	0.03636
- 32	Rough Sand	57	2	0.03509
$\square 34$	Rough Sand	58	2	0.03448
- 36	Rough Sand	60	2	0.03333
38	Rough Sand	60	2	0.03333
40	Rough Sand	60	2	0.03333
42	Rough Sand	60	2	0.03333
44	Rough Sand	60	2	0.03333
45	Rough Sand	60	1	0.01667
Σ			45	0.97663
$N^{-} \mathrm{ch}=\Sigma \mathrm{T} / \Sigma(\mathrm{T} / \mathrm{N})$	46.07672191	-	Site Class SD	

2.3. Structure System Determination

The designed structure must be defined as belonging to the design category seismic (KDS) in accordance with SNI 1726:2019 table 8 and 9 based on the relationship SDS and SD1 with KDS. From that table, the seismic design for $S_{D S}$ and $S_{D 1}$ is D.

The seismic force resisting structural system is decided based on the seismic potential of location. In this case, location with high potential of earthquake is recommended to use earthquake-resistant special moment structural systems or SRPMK (Sistem Rangka Pemikul Momen Khusus) so the structure parameters are obtained is R equals 8 , Cd equals 5.5, and omega equals 3 (see Table 2. 3). Parameters R, Cd, and omega for each type of seismic force resisting structural system is can be seen in SNI 1726:2019 table 9.

Table 2. 3 Structure Parameters

Response Modification, R	8
System Overstrength, Ω	3
Deflection Amplification, Cd	5.5
Occupancy Importance, I	1

2.4. Structural Loading

Structural Loading is a weight or force that acts on structural system. It is divided into 5 types, which are dead load, additional dead load, live load, wind load, and earthquake load. This load must be resisted by the structure according to the design and strength. Therefore, the analysis of load is essential to check the maximum load that exerts on the structure. The load is regulated based on SNI 1727:2013.

2.4.1.Load Combination

Load combination is defined according to SNI 1727:2013 article 2.3.2. The load combinations are explained as follows:

Comb 1: 1.4D
Comb 2: $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$
Comb 3.1: 1.2D + 1.6Lr + L
Comb 3.2: $1.2 \mathrm{D}+1.6 \mathrm{Lr}+0.5 \mathrm{~W}$
Comb 3 Service: D + ADL + L
Comb 4: $1.2 \mathrm{D}+\mathrm{W}+\mathrm{L}+0.5 \mathrm{Lr}$
Comb 5: 0.9D + W
Comb 6: 1.2D + L + Ex + Ey
Comb 7: 0.9D - Ey + Ex

2.4.2.Dead Load (Self Weight)

The structure's own weight/dead load is the weight of each structural element in the form of floor slabs, beams, columns, etc. which are part of the main structure. The basic calculation of dead load is the dimension of object multiplied by the unit weight of it. In structural modeling using ETABS software, the self-weight of the structure will be calculated automatically by the software based on the data on the density of the material and the dimensions of the structural elements entered in the software.

2.4.3. Additional Dead Load

Additional dead load is an additional load due to the use of non-structural components (architectural) that are attached to and burden the main structure of the building. The additional dead load in this structure are roof, ceramics, and ceiling.

2.4.4.Live Load

Live load is the load that occurs as a result of the use of the building structure. The live load can come from people/goods that can move from place to place. Apartment is included in the category of residential according to SNI 1727:2013 table 4.1 , so the live load is $4.79 \mathrm{kN} / \mathrm{m} 2$.

2.4.5. Wind Load

Wind load is a type of load that must be resisted by the roof structure. It can act in two directions, in which windward and leeward. The procedure of wind load calculation is presented in SNI 1727:2013 chapter 26.

Table 2. 4 Wind Load Parameter

Parameter	Value	Unit	SNI 1727:2013
Building Width, B	96.0	m	
Building Length, L	28.0	m	
Wall Height	23.0	m	
Soil to Roof Height	25.2	m	
Effective Height, h	23.7	m	
L/B	0.29		
h/L	0.85		
Roof Angle, θ	15.0	${ }^{\circ}$	
Roof Type	Pitched		
Base Wind Velocity, V	32.00	$\mathrm{~m} / \mathrm{s}$	Chapter 26.5.1
Coefficient Factor of Wind Direction, Kd	0.85		Table 26.6.1
Exposure Category	B		Chapter 26.7
Coefficient Factor of Topography, Kzt	1.00		Table 26.6.1
Coefficient Factor of Wind Blow, G	0.85		Chapter 26.9
Coefficient of Internal Pressure, (GCpi)	0.18		Table 26.11-1
α	7		Table 26.9.1
Zg	365.76	m	Table 26.9.1
Zmin	9.14	m	Table 26.9.1

Coefficient Exposure of Velocity Pressure, Kz	0.92		Table 27.3.1
Velocity pressure, q_{z}	490.70319	$\mathrm{~N} / \mathrm{m} 2$	Eq. 27.3-1

The coefficient of external pressure Cp* is determine in SNI 1727:2013 figure 27.4-1. The coefficient is divided for wall and roof surface. Plus (+) sign shows the wind comes to the surface and minus (-) sign shows the wind goes off the surface.

Table 2. 5 Wind Load Coefficient Pressure

Pitched Roof
Figure 2. 3 Pitched Roof Wind Load (Source SNI 1727:2013 figure 27.4-1)

The wind pressure is calculated for roof using SNI 1727:2013 eq. 27.4-1 and is shown in Table 2. 6.

Table 2. 6 Wind Load on Roof Surface

Roof Pressure, P			
Roof Wind, Windward	-456	$\mathrm{~N} / \mathrm{mm} 2$	Chapter 27.4.2 \& Eq. 27.4.1
Roof Wind, Leeward	-322	$\mathrm{~N} / \mathrm{mm} 2$	Chapter 27.4.2 \& Eq. 27.4.1

$P=q G C_{p}-q_{i}\left(G C_{p i}\right)($ SNI 1727:2013 eq. 27.4-1)
Eq. 2.1

For $C p>0,\left(-G C_{P i}\right)$
For $C p<0,\left(G C_{p i}\right)$

2.4.6.Earthquake Load

Earthquake load is a dynamic load that moves in lateral motion in the form of vibration. As a dynamic load it can move in two directions, forward and backward. In SNI 1726:2019 table 16, the allowed analysis of earthquake is based on the irregularity of structure. It can be analyzed by three methods, which are static equivalent, response spectrum analysis, and time history analysis. Static equivalent analysis considers earthquake load in static form, meanwhile response spectrum analysis and time history analysis consider earthquake as dynamic load. In this project, the analysis use response spectrum and static equivalent that will be inputted to ETABS modeling as earthquake load.

a. Response Spectrum Analysis

To determine the spectral response of the MCER earthquake acceleration mapped on the soil surface, an amplification factor is required in the period of 0.2 seconds (Fa) and 1 seconds (Fv). The amplification factor is determined based on the site class and ground acceleration parameters. Amplification factor in 0.2 second period (Fa) determined by site class and earthquake acceleration spectral response parameters with value of 1 . The MCER is mapped for a 0.2 second (Ss) period. While the amplification factor at 1 second period (Fv) is determined by site class and spectral response earthquake acceleration is mapped for a period of 1 second (S1), the value is 1.7543. Determination of site coefficients (Fa and Fv) are based on SNI 1726:2019 table 6 and 7, respectively and can be calculated by linear interpolation.

Furthermore, the value of the Fa and Fv is used to determine the response spectrum parameters acceleration in short period (SMS) and 1 second period (SM1) which can be calculated using SNI 1726:2019 eq. 7 and 8.

$$
\begin{align*}
& S_{M S}=F a \times S s=1.28 g(\text { SNI 1726:2019 eq. } 7) \ldots . . \tag{Eq. 2.2}\\
& S_{M 1}=F v \times S 1=0.9573 g(\text { SNI 1726:2019 eq. } 8) \tag{Eq. 2.3}
\end{align*}
$$

Next based on the SMS and SM1 values, the design spectral acceleration parameters for short period 0.2 second (SDS) and period 1 second (SD1) need to be set 1 to construct the response spectrum curve. SDS and SD1 values are calculated1using SNI 1726:2019 eq. 9 and 10.

$$
\begin{aligned}
& S D S=\frac{2}{3} \times S M S=0.8533 g(\text { SNI 1726:2019 eq. 9) ..Eq. } 2.4 \\
& S D 1=\frac{2}{3} \times S M 1=0.6382 g(\text { SNI 1726:2019 eq. 10) ... } 2.5
\end{aligned}
$$

Based on the response spectra parameters calculated previously, the design of spectra response curve is based on response spectrum acceleration and (Sa) and period (T). The response spectrum acceleration is calculated using SNI 1726:2019 eq. 11, 12, and 13. The period is calculated using SNI 1726:2019 figure 3. T_{L} is a long transition period that the value can be taken from SNI 1726:2019 figure 20.

$$
\text { eq. } 2.6
$$

$$
\text { eq. } 2.7
$$

$$
\text { eq. } 2.8
$$

$$
\text { eq. } 2.9
$$

The response spectrum design calculation can be seen in Table 2.7 and response spectrum curve can be seen in Figure 2. 4. The calculation from Table 2.7 will be inputted to ETABS Model as seismic dynamic load.

Table 2. 7 Response Spectrum Design

T (s)	Note	Sa (g)	Note
0	0	0.341333	SDS*(0.4+0.6*T/T0)
0.1496	T 0	0.8533	SDS
0.748	Ts	0.8533	SDS
0.848	$\mathrm{Ts}+0.1$	0.7527	SD1/T
0.948	$\mathrm{Ts}+0.2$	0.6733	SD1/T
1.048	$\mathrm{Ts}+0.3$	0.6090	SD1/T
1.148	$\mathrm{Ts}+0.4$	0.5560	SD1/T
1.248	$\mathrm{Ts}+0.5$	0.5114	SD1/T
1.348	$\mathrm{Ts}+0.6$	0.4735	SD1/T
1.448	$\mathrm{Ts}+0.7$	0.4408	SD1/T
1.548	$\mathrm{Ts}+0.8$	0.4123	SD1/T
1.648	$\mathrm{Ts}+0.9$	0.3873	SD1/T
1.748	$\mathrm{Ts}+1$	0.3651	SD1/T
1.848	$\mathrm{Ts}+1.1$	0.3454	SD1/T
1.948	$\mathrm{Ts}+1.2$	0.3276	SD1/T
2.048	$\mathrm{Ts}+1.3$	0.3116	SD1/T
2.148	$\mathrm{Ts}+1.4$	0.2971	SD1/T
2.248	$\mathrm{Ts}+1.5$	0.2839	SD1/T

$$
\begin{align*}
& S_{a}=S_{D S}\left(0.4+0.6\left(\frac{T}{T_{0}}\right)\right) \text { (SNI 1726:2019 eq. 11) } \\
& S_{a}=\frac{S_{D 1}}{T} \text { (SNI 1726:2019 eq. 12) } \\
& S_{a}=\frac{S_{D 1} \times T_{L}}{T^{2}} \text { (SNI 1726:2019 eq. 13) } \\
& T_{0}=0.2 \times \frac{S_{D 1}}{S_{D S}}(\text { SNI 1726:2019 figure 3) } \\
& T_{S}=\frac{s_{D 1}}{s_{D S}}(\text { SNI 1726:2019 figure 3) } \\
& T_{L}=6 s \text { (SNI 1726:2019 figure 20) } \tag{eq. 2.10}
\end{align*}
$$

T (s)	Note	Sa (g)	Note
2.348	Ts +1.6	0.2718	SD1/T
2.448	Ts +1.7	0.2607	SD1/T
2.548	Ts +1.8	0.2505	SD1/T
2.648	Ts +1.9	0.2410	SD1/T
2.748	Ts +2	0.2323	SD1/T
2.848	Ts +2.1	0.2241	SD1/T
2.948	Ts +2.2	0.2165	SD1/T
3.048	Ts +2.3	0.2094	SD1/T
3.148	Ts +2.4	0.2027	SD1/T
3.248	Ts +2.5	0.1965	SD1/T
3.348	Ts +2.6	0.1906	SD1/T
3.448	Ts +2.7	0.1851	SD1/T
3.548	Ts +2.8	0.1799	SD1/T
3.648	Ts +2.9	0.1750	SD1/T
3.748	Ts +3	0.1703	SD1/T
3.848	Ts +3.1	0.1659	SD1/T
3.948	Ts +3.2	0.1617	SD1/T
4.048	Ts +3.3	0.1577	SD1/T
4.148	Ts +3.4	0.1539	SD1/T
4.248	Ts +3.5	0.1502	SD1/T
4.348	Ts + 3.6	0.1468	SD1/T
4.448	Ts +3.7	0.1435	SD1/T
4.548	Ts +3.8	0.1403	SD1/T
4.648	Ts +3.9	0.1373	SD1/T
4.748	Ts +4	0.1344	SD1/T

Response Spectrum Design

Figure 2. 4 Response Spectrum Curve

b. Static Equivalent Analysis

Static equivalent load is divided into two directions, which are X direction and Y Direction. This load considers earthquake as static load that acts differently on the height of building. The taller the height, the bigger the force and displacement as in Figure 2. 5. The parameter of earthquake static load in X direction and Y direction can be seen in Table 2.8 and Table 2. 9 , respectively. This parameter will be inputted to ETABS Model as static equivalent load.

Figure 2. 5 Static Equivalent Load (Source: SNI 1726:2019 figure 10)

Table 2. 8 Static Equivalent Parameter in X Direction

Description	Value
Direction and Eccentricity	X Dir, X Dir \pm Eccentricty
0.2 Sec Spectral Accel, S_{S}	1.28
1 Sec Spectral Accel, $S 1$	0.5457
Long-Period Transition Period, T_{L}	6
Site Class	D
Fa	1
Fv	1.7543
SDS	0.8533
SD1	0.6382
Response Modification, R	8
System Overstrength, Ω	3
Deflection Amplification, Cd	5.5
Occupancy Importance, I	1

Table 2. 9 Static Equivalent Load Parameter in Y Direction

Description	Value
Direction and Eccentricity	X Dir, X Dir \pm Eccentricty
0.2 Sec Spectral Accel, S_{S}	1.28
1 Sec Spectral Accel, $S 1$	0.5457

Description	Value
Long-Period Transition Period, T_{L}	6
Site Class	D
Fa	1
Fv	1.7543
SDS	0.8533
SD1	0.6382
Response Modification, R	8
System Overstrength, Ω	3
Deflection Amplification, Cd	5.5
Occupancy Importance, I	1

2.5. Structural Modelling

Figure 2. 6 Structural Modelling Flowchart

The procedure of structural modelling is shown in Figure 2. 6. The modeling uses ETABS Software to analyze the internal force and displacement of the building due to several loads that is put in combination. Structural modeling is helpful to determine the internal forces that occur in structural elements and the behavior of the structure due to the working load. The results of the structural modeling are used as the basis for designing the dimensions section of structural elements required.

The structure parts that are modeled in the software are beam, tie beam, column, and slab. The properties of this structure are presented in Table 2. 10 Material Properties

Table 2. 10 Material Properties

Materials	
Fc	
Fy	30 Mpa
Fu	400 Mpa
Width, B	550 MPa
Height, H	500 mm
Concrete Cover	500 mm
Beam	
Width, B	40 mm
Height, H	350 mm
Concrete Cover	350 mm
Width, B	40 mm
Height, H	
Concrete Cover	650 mm
Longitudinal Bar	650 mm
Confinement	40 mm
	16 D 25

Based on SNI 2847:2019 table 6.6.3.1.1(a) floor slabs are recommended as a shell, while beams and columns are recommended as frame elements. The structural modeling can accommodate the effects of steel damage when an earthquake occurs, namely by reducing the moment of inertia of the cross section of the structural elements. The moment of inertia in the slab is reduced to 25% of the moment initial inertia. In beam structural elements, the moment of inertia is reduced to 35% of the initial moment of inertia. In addition, the torque is also reduced to 25% to balance the reduction value against the inertia of the structural elements. While in the column, the moment of inertia is reduced to 70% of the initial moment of inertia. The comparation of SNI 2847:2019 table 6.6.3.1.1(a) and ETABS is presented in Table 2. 11. The left view, right view, front view, and plan view of building model can be seen in Figure 2. 7, Figure 2. 8, Figure 2. 9, and Figure 2. 10 respectively.

Table 2. 11 Comparation of SNI and ETABS

SNI 2847:2019 table 6.6.3.1.1(a)		ETABS		
Beams	Shear Effective Stiffness	0.4 EcAw	V22=V33	0.4
	Torsional Effective Stiffness	0.25	Torsional Constant	0.25

SNI 2847:2019 table 6.6.3.1.1(a)			ETABS	
	Flexure Effective Stiffness	0.35Ig	$\mathrm{I} 22=\mathrm{I} 33$	0.35
	Columns	0.71g	I22-133	0.7
Walls	Uncracked	0.7 Ig	shell - f11, f22	0.7
	Cracked	0.35Ig	shell - f11, f22	0.35
Slab	Flat Plates and Flat Slabs	$0.25 \mathrm{Ig}$	membrane	0.25
			shell-f11, f22, f12, m11, m22, m12	0.25

Figure 2. 7 Building Model Left View

Figure 2. 8 Building Model Right View

Figure 2. 10 Building Model Plan View

According to SNI 1726:2019 articles 7.7.2 the mass source must include the dead load, additional load, and at least 25% live load of the structures. This can be seen in Table 2. 12.

Table 2. 12 Mass Source

Load Pattern	Multiplier
Dead	1
ADL	1
Live	0.25

2.6. Evaluating Structural Systems Output and Structural Irregularities

2.6.1.Modal Mass Ratio Check

Based on the results of structural modeling, the capital participation mass ratio is presented in Table 2. 13. The number of modes (modes) required to determine the natural vibrational variation for the structure must be sufficient to reach a combined mass participation up to 100% of the actual mass of each x and y direction of the response considered by the model, in accordance with Article 7.9.1 of SNI 1726:2019. Based on the results of structural modeling, it is found that in both directions involving 60 modes of vibration the total mass participation mass ratio in both X and Y directions is very close to 100%.

Table 2. 13 Modal Participation Mass Ratio

Mode	Period (sec)	UX	UY	SumUX	SumUY
1	1.461	0.2233	0.0034	0.2233	0.0034
2	1.435	0.011	0.7793	0.2343	0.7827
3	1.426	0.5733	0.025	0.8076	0.8076
4	0.516	0	0.0015	0.8076	0.8091
5	0.454	0.0206	0.0001	0.8282	0.8092
6	0.445	0.0613	0.0341	0.8896	0.8433
7	0.444	0.0294	0.0767	0.919	0.92
8	0.421	0.0004	0	0.9194	0.92
9	0.321	0.000002823	0.00001081	0.9194	0.92
10	0.246	0.000002931	0.00000363	0.9194	0.92
11	0.242	0.047	0.001	0.9664	0.921
12	0.241	0.0009	0.0461	0.9673	0.9671
13	0.221	0.0003	0.0000277	0.9676	0.9672
14	0.211	0	0.00001156	0.9676	0.9672
15	0.21	$7.423 \mathrm{E}-07$	0.0001	0.9676	0.9673
16	0.209	0	0.000004497	0.9676	0.9673
17	0.208	0	0.0013	0.9676	0.9686
18	0.202	0	0	0.9676	0.9686
19	0.202	0.000003573	0.000001848	0.9676	0.9686
20	0.186	0.0001	$5.868 \mathrm{E}-07$	0.9677	0.9686
21	0.182	0	0.000002376	0.9677	0.9686
22	0.167	0.005	0.00001138	0.9727	0.9686
23	0.162	0	0.00002054	0.9727	0.9686
24	0.16	0.0102	0.000002278	0.9829	0.9687
25	0.157	0.00002709	0.0218	0.9829	0.9905
26	0.156	0.004	0.0003	0.987	0.9908
27	0.154	0.003	0.00003246	0.9899	0.9908
28	0.154	0.0007	0.0007	0.9907	0.9915

29	0.139	0.000002203	0	0.9907	0.9915
30	0.138	0.0006	0	0.9913	0.9915
31	0.137	0.000002025	0	0.9913	0.9915
32	0.137	$5.383 \mathrm{E}-07$	$9.492 \mathrm{E}-07$	0.9913	0.9915
33	0.137	0.00001128	0	0.9913	0.9915
34	0.137	0	0	0.9913	0.9915
35	0.137	0.000007956	0	0.9913	0.9915
36	0.137	0.0001	0	0.9914	0.9915
37	0.136	0	0.0001	0.9914	0.9916
38	0.136	0	0	0.9914	0.9916
39	0.133	0	0.0001	0.9914	0.9917
40	0.133	0	0	0.9914	0.9917
41	0.132	0.000002845	4	0.9914	0.9917
42	0.13	0.00002224	0.000002183	0.9914	0.9918
43	0.129	0.0004	0.00000125	0.9919	0.9918
44	0.127	0.000004437	0	0.9919	0.9918
45	0.127	0	0.0002	0.9919	0.9919
46	0.127	0.000002086	$8.481 \mathrm{E}-07$	0.9919	0.9919
47	0.127	0	0.00004718	0.9919	0.992
48	0.125	0.00003059	0	0.9919	0.992
49	0.125	0.00004628	0	0.992	0.992
50	0.124	0.0006	0	0.9926	0.992
51	0.123	0.0016	0.00001888	0.9941	0.992
52	0.123	0.000006219	0	0.9942	0.992
53	0.122	0.0002	0.00001434	0.9944	0.992
54	0.121	0	0.0002	0.9944	0.9922
55	0.12	0.0001	0.0021	0.9945	0.9943
56	0.12	0.0001	0.0039	0.9946	0.9982
57	0.118	0.0037	0.0000108	0.9982	0.9982
58	0.115	0	0.0002	0.9982	0.9984
59	0.114	0.00003188	0	0.9983	0.9984
60	0.113	0	0.000001843	0.9983	0.9984

2.6.2.Load Combination Base Shear Check

In the seismic load analysis procedure of the variance response spectrum (RS), the base shear obtained must be compared with the base shear resulting from the equivalent lateral force (ELF) seismic load analysis procedure. The variance response spectrum (RS) bass shear shall be not less than 85% of the equivalent lateral force (ELF) base shear. If this is not met then the force scale factor on the variance response spectrum (RS) must be recalculated. In the following, the results of the calculation and checking of the base shear are presented to determine whether it is necessary to recalculate the force-
scale factor of the variance response spectrum (RS). The following is the base shear from ETABS.

Figure 2. 11 Old Base Reaction

From the result of base shear, the response spectrum variance is still less than 85%, so scaling is required. To scale the load is by dividing the equivalent lateral force in x direction by the response spectrum load in X direction and the same with the force in Y direction.

Table 2. 14 Base Reaction Scaling

Ex	12886.55	kN	Ey	12886.55	kN
Spec Ex	5777.736	kN	Spec Ey	5839.458	kN
Scale =Ex/Spec Ex	2.23038		Scale = Ey/Spec Ey	2.206806	

Where:

Ex $=$ earthquake load due to static equivalent load in X direction
$\mathrm{Ey}=$ earthquake load due to static equivalent load in Y direction
Spec Ex = earthquake load due to response spectrum in X direction
Spec Ey = earthquake load due to response spectrum in Y direction
The scale can be inputted in the load cases for response spectrum force by multiplying the old scale with the new scale. The old scale fact of Spec Ex and Spec Ey is presented in Figure 2. 12, the new scale fact of Spec Ex and Spec Ey is presented in Figure 2. 13, the new base shear can be seen in Figure 2. 14.

Figure 2. 12 Old Scale Factor

Figure 2. 13 New Scale Factor

Figure 2. 14 New Base Reaction

2.6.3. Structural Irregularity

In the design process, the structure should be classified as a regular structure or irregular by referring to Article 7.3.2 of SNI 1726:2019. Structural irregularities are divided into horizontal irregularities and vertical irregularities. Further types and explanations of horizontal and vertical irregularities respectively are presented in more detail in SNI 1726:2019 table 13 and table 14.

The following are the results of calculations and checking of horizontal irregularities of the structure:
1.a. Torsional Irregularity is defined to exist if the maximum story drift (calculated torque including unexpected torque) at an end of the structure transverse to the axis is more than
1.2 times the average story drift at both ends of the structure. The torsional irregularity requirements in the reference articles apply only to structures whose diaphragms are rigid (rigid) or semi-rigid (semi-rigid). The data of maximum drifts per average drifts in the considered story level is presented in Error! Reference source not found..

Table 2. 15 Torsional Irregularity Check

Level	X Direction		Y Direction	
	-max/Davg	Check	-max/Davg	Check
5	1.006	OK	1.002	OK
4	1.011	OK	1.002	OK
3	1.021	OK	1.005	OK
2	1.035	OK	1.018	OK
1	1.267	H.1a	1.035	OK
	Ex		Ey	

Based on checking the torsional irregularity, it is found that the maximum ratio story drift in the X direction for story level 1 is bigger than 1.2. Therefore, this structure has torsional irregularity 1.a.
1.b. Excessive Torsional Irregularity is defined to exist if the maximum story drift (calculated torque including unexpected torque) at an end of the structure transverse to the axis is more than 1.4 times the average story drift at both ends of the structure (see Figure 2. 15). The excessive torsional irregularity requirements in the reference articles apply only to structures whose diaphragms are rigid (rigid) or semi-rigid (semi-rigid). Based on checking for excessive torsional irregularities, it was found that the maximum floor deviation in the X and Y directions is less than 1.4 times the average floor deviation so that there is no type 1 b horizontal irregularity in the structure under review.

Figure 2. 15 Horizontal Irregularity 1. a and 1. B
2. Inner Angle Irregularity, defined to exist if both projections structural plan from the inside angle greater than 15% of the floor plan structure in the specified direction (see Figure 2. 16)

Figure 2. 16 Horizontal Irregularity 2

Based on checking the irregularity of the interior angle, the results obtain that the structural plan projections in x direction from the interior angle is larger than 15\% dimensions of the structure plan in the specified direction but in Y direction is less than 15%. In SNI, the type 2 irregularity is defined if both cases meet the condition. Horizontal irregularity type 2 check is presented in Table 2. 16 and the condition of model is presented in Figure 2. 17. So, there is no type 2 horizontal irregularity in the structure under consideration.

Table 2. 16 Horizontal Irregularity Type 2 Check

Figure 2. 17 Structure Horizontal Irregularity 2 Condition
3. Diaphragmatic discontinuity irregularities, defined as present if present diaphragm with sudden discontinuity or variation in stiffness, including those with truncated or exposed areas greater than 50% of the gross diaphragm area surrounding it, or changes in effective diaphragm stiffness of more than 50% from lower story to upper story (see Figure 2. 18).

Figure 2. 18 Horizontal Irregularity 3

Based on checking the irregularity of the interior angle, the results obtained are that there is no type 3 horizontal irregularity in the structure reviewed. As can be seen in Figure 2. 19 there are 4 opening of $6 \mathrm{~m} \times 3.5 \mathrm{~m}$ size and 2 openings of $8 \mathrm{~m} \times 15 \mathrm{~m}$. The whole area of building is $96 \mathrm{~m} \times 28 \mathrm{~m}$. The check of interior opening is presented in Table 2. 17. If the ratio is less than 50% of the building area, the condition is okay.

Table 2. 17 Structure Opening Check

Figure 2. 19 Structure Opening
4. The Transverse Displacement Irregularity with respect to the plane, defined to exist if there is a discontinuity in the path of the lateral resistance, such as transverse to the plane of the vertical element (see Figure 2. 20).

Figure 2. 20 Horizontal Irregularity 4

Based on checking the irregularity of the interior angle, the result is there is no type 4 horizontal irregularity in the structure reviewed.
5. Nonparallel system irregularities are defined to exist if the elements vertical lateral restraints are not parallel or symmetrical about the axes main orthogonal seismic resisting system.

Figure 2. 21 Horizontal Irregularity 5

Based on checking the irregularity of the interior angle, the results obtained are that there is no type 5 horizontal irregularity in the structure reviewed.

Following are the results of calculations and checking of vertical irregularity of the structure:
1.a. Soft-grade stiffness irregularity, defined to exist if any a grade where the lateral stiffness is less than 70% of the lateral stiffness story above or less than 80% of
the average stiffness of the 3 stories above (see Figure 2. 22). Based on irregularity checking stiffness of the soft level using ETABS, the result is that there is no vertical irregularity of type 1a in the structure under consideration.

```
Kx<0.7K(x+1)
```

\qquad
$K x<0.8[K(x+1)+K(x+)+K(x+3)] / 3$ eq. 2.12

```

Table 2. 18 Soft-grade Stiffness Irregularity Check
\begin{tabular}{|c|r|c|c|c|}
\hline \multirow{3}{*}{ Story } & \multicolumn{2}{|c|}{ Direction X } & \multicolumn{2}{c|}{ Direction Y } \\
\cline { 2 - 4 } & Stiffness (K) & \multirow{2}{*}{ Check } & Stiffness (K) & \multirow{2}{*}{ Check } \\
\cline { 2 - 3 } & \(\mathrm{kN} / \mathrm{m}\) & & \(\mathrm{kN} / \mathrm{m}\) & \\
\hline 5 & 304434.1 & OK & 331177.8 & OK \\
\hline 4 & 320201.4 & OK & 336970.8 & OK \\
\hline 3 & 323407.6 & OK & 338394.8 & OK \\
\hline 2 & 339289.8 & OK & 352885.7 & OK \\
\hline 1 & 615684.6 & OK & 562611.2 & OK \\
\hline
\end{tabular}
1.b. Excessive soft level stiffness irregularity, defined to exist if1there is a level where the lateral stiffness in Table 2. 18 is less than \(60 \%\) of the stiffness lateral story level above or less than \(70 \%\) of the average stiffness 3 levels above it (see Figure 2. 22). Based on checking excessive soft level stiffness irregularity, the results obtained that there is no type 1 b vertical irregularity in the structure reviewed.
\[
\begin{align*}
& \mathrm{Kx}<0.6 \mathrm{~K}(\mathrm{x}+1)  \tag{eq. 2.13}\\
& K x<0.7[K(x+1)+K(x+)+K(x+3)] / 3 \\
& \text { eq. } 2.14
\end{align*}
\]


Figure 2. 22 Vertical Irregularity 1a and 1 b
2. Heavy (mass) irregularity, defined to exist if all levels are effective more than \(150 \%\) effective rate nearby. A roof that is lighter than the floor below does not need to be reviewed (see Figure 2. 23). Based on checking the weight (mass) irregularity in Table 2.

19 Mass Irregularity Check, it was found that there is no type 2 vertical irregularity in the structure under consideration.
\(\qquad\)
\[
\mathrm{Mx}>1.5 \mathrm{M}(\mathrm{x}+1)
\]
\[
\text { eq. } 2.15
\]
\(\mathrm{Mx}>1.5 \mathrm{M}(\mathrm{x}-1)\) eq. 2.16

Table 2. 19 Mass Irregularity Check


Figure 2. 23 Vertical Irregularity 2
3. A vertical geometric irregularity, defined to exist if the dimension1horizontal seismic resisting system at all levels more than \(130 \%\) the horizontal dimensions of the nearby level seismic restraint system (see Figure 2. 24). Based on geometric irregularity checking vertically in Table 2. 20, the result is that there is no vertical irregularity type 3 on the structure under review.
\(\mathrm{Lx}>1.3 \mathrm{~L}(\mathrm{x}+1)\)
eq. 2.16
\(\mathrm{Lx}>1.3 \mathrm{~L}(\mathrm{x}-1)\)
eq. 2.17

Table 2. 20 Vertical Geometric Irregularity Check
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ Story } & L & \multirow{2}{*}{ Check } \\
\cline { 2 - 3 } & \(\mathbf{m m}\) & \\
\hline 5 & 400 & OK \\
\hline 4 & 400 & OK \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ Story } & L & \multirow{2}{*}{ Check } \\
\cline { 2 - 2 } & \(\mathbf{m m}\) & \\
\hline 3 & 400 & OK \\
\hline 2 & 400 & OK \\
\hline 1 & 400 & OK \\
\hline
\end{tabular}


Figure 2. 24 Vertical Irregularity 3
4. Discontinuity of the plane direction in the irregularity of the force-resisting element vertical lateral, defined to exist if the shift in the direction of the element planellateral restraint is greater than the length of the element or there is a reduction1stiffness of the retaining elements in the story below (see Figure 2. 25). Based on checking the irregularity of the discontinuity of the direction of the planelin the irregularity of the vertical lateral force resisting element, we get 1 the result that there is no type 4 vertical irregularity in the structure reviewed.


Figure 2. 25 Vertical Irregularity 4
5.a. The discontinuity in the level lateral strength irregularity, defined to existlif the lateral strength of the story is less than \(80 \%\) of the lateral strength of the story above
it. Strong lateral level is the total lateral strength of all seismic resisting elements1share the level shear for the direction under consideration (see Figure 2. 26). Based on checking the irregularity of the discontinuities in the level lateral strength irregularities, the results show in Table 2. 21 that there is no vertical irregularity of type 5a in the structure under consideration.

Table 2. 21 Discontinuity Check
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ Story } & \multicolumn{2}{|c|}{ Direction X } & \multicolumn{2}{c|}{ Direction Y } \\
\cline { 2 - 4 } & Strength & \multirow{2}{*}{ Check } & Strength & \multirow{2}{*}{ Check } \\
\cline { 2 - 5 } & kN & & kN & \\
\hline 5 & 2734.059 & OK & 2734.059 & OK \\
\hline 4 & 4768.63 & OK & 4768.63 & OK \\
\hline 3 & 6283.111 & OK & 6283.111 & OK \\
\hline 2 & 7282.812 & OK & 7282.812 & OK \\
\hline 1 & 7796.597 & OK & 7796.597 & OK \\
\hline
\end{tabular}
5.b. Discontinuity in excessively graded lateral strength irregularity, defined to exist if the lateral strength level is less than \(65 \%\) lateral strength level above it. The lateral strength of the story is the total strength of all elements1seismic restraints sharing the story shear for the direction under consideration (see Figure 2.26). Based on discontinuity irregularity checking in excessive degree of lateral strength irregularity, obtained1the result that there is no type 5b vertical irregularity in the structure reviewed.


Figure 2. 26 Vertical Irregularity 5a and 5b

\subsection*{2.7. Consequence of Irregularity Horizontal Irregularity}

\subsection*{2.7.1. Consequence of Irregularity Horizontal Irregularity}

This structure has horizontal irregularity 1.a of torsional irregularity. As the consequence, in the article 11.3 .4 for torsional irregularity 1.a or 1.b, this structure must
consider the accidental eccentricity consisting of the assumed displacement of the centre of mass each from the actual location by a distance equal to \(5 \%\) of the diaphragm dimension from structure parallel to the direction of mass shift. The scale for eccentricity can inputted in the ETABS to the load cases of earthquake spectrum \(X\) and earthquake lateral force X as 0.05 . Even though, the structure does not have horizontal irregularity but in the seismic class C, D, E, and F it is better to consider the \(5 \%\) eccentricity for both X and Y direction.


Figure 2. 27 Consequence of Irregularity Horizontal Irregularity

\section*{a. Redundant Factor}

The redundant factor ( \(\rho\) ) for this structure is taken to be 1.0 because this structure as a seismic design category D structure does not have 1.b irregularity or moment resisting frame that loss of moment resistance at beam-to-column connection at moment at both ends of a single beam resulting in more of the strong reduction rate of \(33 \%\). Further information can be seen in table SNI 1726:2019 table 15.

Therefore, based on SNI 1726:2019 table 20 the permission displacement for all structure in risk category II for this structure is \(0.02 \times 20 \mathrm{~m}=0.4 \mathrm{~m}\).

\section*{b. Unexpected torque moment magnification factor}

Structures designed for seismic design category C, D, E, or F, where torsional irregularities of type 1a or 1 b occur as defined must have an effect calculated by multiplying Mta at each level with torque magnification factor (Ax and Ay) in 1726:019 chapter 7.8.4.31. The calculation of torque magnification factor in X direction and in Y direction is presented in Table 2. 22 and Table 2. 23.
\(A_{x}=\left(\frac{\delta m a x}{1.2 \delta_{\text {avg }}}\right)^{2}\)
\(\delta \max =\) maximum displacement in the \(\mathrm{x}(\mathrm{mm})\) level calculated assuming \(\mathrm{Ax}=1 \mathrm{~mm}\)
\(\delta \mathrm{avg}=\) average displacement at the furthest points of the structure at level x calculated assuming \(\mathrm{Ax}=1 \mathrm{~mm}\)

Table 2. 22 Torque Magnification Factor in X direction
\begin{tabular}{|c|c|c|c|c|c|}
\hline Story Level & UxA (mm) & UxB (mm) & Umax (mm) & Uavg (mm) & Ax = \(\frac{\text { Umax }^{2}}{U_{\text {avg }}}\) \\
\hline 5 & 0.07711 & 0.081955 & 0.081955 & 0.079534 & 0.74 \\
\hline 4 & 0.06809 & 0.072928 & 0.072928 & 0.070507 & 0.74 \\
\hline 3 & 0.05305 & 0.057903 & 0.057903 & 0.055475 & 0.76 \\
\hline 2 & 0.03324 & 0.038235 & 0.038235 & 0.035738 & 0.79 \\
\hline 1 & 0.01128 & 0.01604 & 0.01604 & 0.01366 & 0.96 \\
\hline
\end{tabular}

Table 2. 23 Torque Magnification Factor in Y Direction
\begin{tabular}{|c|c|c|c|c|c|}
\hline Story Level & UyA (mm) & UyB (mm) & Umax (mm) & Uavg (mm) & \(\mathbf{A y}=\frac{\mathrm{Umax}^{\text {a }}}{\mathrm{U}_{\text {avg }}}\) \\
\hline 5 & 75.672 & 75.639 & 0.081955 & 0.079534 & 0.74 \\
\hline 4 & 67.404 & 67.37 & 0.072928 & 0.070507 & 0.74 \\
\hline 3 & 53.237 & 53.198 & 0.057903 & 0.055475 & 0.76 \\
\hline 2 & 34.598 & 34.708 & 0.038235 & 0.035738 & 0.79 \\
\hline 1 & 13.791 & 14.307 & 0.01604 & 0.01366 & 0.96 \\
\hline
\end{tabular}

Because the horizontal irregularity 1.a happens, so the torque magnification factor is multiplied with the unexpected torque moment \(\left(M_{t a}\right)\) of first floor. In ETABS Model this can be calculated by multiplying eccentricity of 0.05 with the torque magnification factor.

As in SNI 1726:2019 table 16, the last consequence of horizontal irregularity 1.a is to determine the right analysis procedure of the structure characteristic based on the seismic design. From the table 16 can be seen that this structure cannot be analysed by lateral equivalent force. The analysis that is chosen for this structure is mode spectrum response analysis.

From SNI 1726:2019 article 17.9.1.11, the analysis should be carried out to determine the natural vibrational variance for the structure. For mode spectrum response analysis. analysis must include enough variance to obtain mass participation of variance combined by \(100 \%\) of the mass of the structure. In order to achieve this provision, for a variety of single rigid body with a period of 0.05 seconds, it is permitted to take all variances with periods under 0.05 seconds. From ETABS the modal mass ratio can be
checked. It is seen that up to mode number 60 the total mass participation ratio is very close to 1 or \(100 \%\).

\subsection*{2.8. Consequence of Vertical Irregularity}

Because this structure does not have any vertical irregularity, so there is no consequence of vertical irregularity.

\subsection*{2.9. Roof Structure Design}


Figure 2. 28 Roof Structure Design Flowchart

Roof design consists of purlin design, truss design, connection, and anchorage. The main procedure of roof structure design is first doing preliminary design, then calculate the loading that acts on the structure, next calculate the internal forces using ETABS Software, and last to check the strength and displacement of structure. The procedure of roof structure design is shown in Figure 2. 28.

\subsection*{2.9.1.Purlin}

The purlin uses steel C125x50x20x2. The dimension of steel can be seen in Table 2. 24 and the properties can be seen in Table 2. 25. Tributary area where the load acts on purlin is calculated in Table 2. 26 and shown in Figure 2. 29. Figure 2.29 shows the plan view of roof where purlin holds the loading than transferred by the roof cover.

Table 2. 24 Purlin Dimension
\begin{tabular}{|l|l|l|}
\hline Description & Value & Unit \\
\hline Purlin Type & C125x50x20x2 & \\
\hline H & 125 & mm \\
\hline B & 50 & mm \\
\hline C & 20 & mm \\
\hline t & 2 & mm \\
\hline L & 3.7 & m \\
\hline
\end{tabular}

Table 2. 25 Purlin Properties
\begin{tabular}{|l|l|l|l|}
\hline Description & Value & Unit & Note \\
\hline Purlin weight & 3.95 & \(\mathrm{~kg} / \mathrm{m}\) & \\
\hline Ix & 1200000.00 & mm 4 & Inertia of x \\
\hline Iy & 180000.00 & mm 4 & Inertia of y \\
\hline Sx & 19300.00 & mm 3 & elastic section modulus of x \\
\hline Sy & 5500.00 & mm 3 & elastic section modulus of y \\
\hline A & 504.00 & mm 2 & Gross Area \\
\hline Fy & 240.00 & mpa & Yield Strength \\
\hline Fu & 370.00 & mpa & Rupture Strength \\
\hline rx & 48.90 & mm & radius of gyration of x \\
\hline ry & 19.10 & mm & radius of gyration of y \\
\hline Cx & 16.90 & mm & Centroid of x \\
\hline xo & 41.50 & mm & Shear Center of x \\
\hline xy & 0.00 & mm & Shear Center of y \\
\hline J & 6720000.00 & mm 4 & Torsional Constant \\
\hline Cw & 675000000.00 & mm 6 & Warping Constant \\
\hline E & 200000.00 & mpa & Modulus of Elasticity \\
\hline Lb & 1850 & mm & Unbraced Length due to Sag Rod \\
\hline Zx & 22874.63813 & mm 3 & Plastic section modulus of y \\
\hline Zy & 7564.791813 & mm 3 & Plastic section modulus of x \\
\hline
\end{tabular}

Table 2. 26 Purlin Tributary Area
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Tributary Area } \\
\hline Description & Value & Unit & Note \\
\hline Tributary Length (Lt) & 2.07 & m & \\
\hline Top Purlin & 7.659 & m 2 & \(L t \times L\) \\
\hline Middle Purlin & 15.318 & m 2 & \(2 \times L t \times L\) \\
\hline Bottom Purlin & 7.659 & m 2 & \(L t \times L\) \\
\hline\(\alpha\) & 15 & \({ }^{\circ}\) & Truss Angle \\
\hline
\end{tabular}


Figure 2. 29 Purlin Tributary Area

\section*{a. Loading}

The loading of purlin for top and bottom can be seen in Table 2.27 and the loading for middle purlin can be seen in Table 2. 28.

Table 2. 27 Top and Bottom Purlin Load
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Top Purlin and Bottom Purlin } \\
\hline Description & Value & Unit & Note \\
\hline Roof Weight & 2.5 & \(\mathrm{~kg} / \mathrm{m} 2\) & Metal \\
\hline Ceiling Weight & 18 & \(\mathrm{~kg} / \mathrm{m} 2\) & \\
\hline Roof (ADL) & 0.1915 & kN & Roof Weight \(\times\) Tributary \\
\hline Ceiling (ADL) & 1.3786 & kN & Ceiling Weight \(\times\) Tributary \\
\hline Purlin (DL) & 0.1462 & kN & Purlin Weight \(\times\) Length \\
\hline Total Dead Load & 1.7162 & kN & Roof+Ceiling+Purlin \\
\hline Live Load (LL) & 1 & kN & SNI \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Top Purlin and Bottom Purlin } \\
\hline Description & Value & Unit & Note \\
\hline Windward Wind Load (Wt) & -0.456 & \(\mathrm{kN} / \mathrm{m} 2\) & \((+)\) comes to roof \((-)\) goes off roof \\
\hline Leeward Wind Load (Wh) & -0.322 & \(\mathrm{kN} / \mathrm{m} 2\) & \((+)\) comes to roof (-) goes off roof \\
\hline Windward Wind Load (Wt) & -3.4926 & kN & \((\mathrm{Wt}) \times\) Tributary \\
\hline Leeward Wind Load (Wh) & -2.4689 & kN & \((\mathrm{Wh}) \times\) Tributary \\
\hline Take Wind Load (WL) & -3.4926 & kN & Max from Wt and Wh \\
\hline
\end{tabular}

Table 2. 28 Middle Purlin Load
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Middle Purlin } \\
\hline Description & Value & Unit & Note \\
\hline Roof Weight & 2.5 & \(\mathrm{~kg} / \mathrm{m} 2\) & Metal \\
\hline Ceiling Weight & 18 & \(\mathrm{~kg} / \mathrm{m} 2\) & \\
\hline Roof (ADL) & 0.3830 & kN & Roof Weight \(\times\) Tributary \\
\hline Ceiling (ADL) & 2.7572 & kN & Ceiling Weight \(\times\) Tributary \\
\hline Purlin (DL) & 0.1462 & kN & Purlin Weight \(\times\) Length \\
\hline Total Dead Load & 3.2863 & kN & Roof+Ceiling+Purlin \\
\hline Live Load (LL) & 1 & kN & SNI \\
\hline Windward Wind Load (Wt) & -0.456 & \(\mathrm{kN} / \mathrm{m} 2\) & \((+)\) comes to roof (-) goes off roof \\
\hline Leeward Wind Load (Wh) & -0.322 & \(\mathrm{kN} / \mathrm{m} 2\) & \((+)\) comes to roof (-) goes off roof \\
\hline Windward Wind Load (Wt) & -6.9851 & kN & (Wt) \\
\hline Leewributary \\
\hline Take Wind Load (WL) & -6.9851 & kN & Max from Wt and Wh \\
\hline
\end{tabular}

The load in purlin can be projected into X and Y direction. Figure 2. 30 Load Projection of \(\mathrm{D}, \mathrm{ADL}\), and LLshows the load projection of dead load, additional dead load, and live load. Figure 2.31 shows the load projection of wind load.


Figure 2. 30 Load Projection of D, ADL, and LL


Figure 2. 31 Load Projection of WL

The load combination is taken from SNI 1727:2013 as follows
Combination 1: 1.4D
Combination 2: \(1.2 \mathrm{D}+0.5 \mathrm{Lr}\)
Combination 3: \(1.2 \mathrm{D}+1.6 \mathrm{Lr}+0.5 \mathrm{~W}\)
Combination 4: \(1.2 \mathrm{D}+\mathrm{W}+0.5 \mathrm{Lr}\)
Combination 5: 0.9D +W
The maximum loading and moment of top and bottom purlin is shown in Table 2. 29. For middle purlin is shown in Table 2.30

Table 2. 29 Maximum Loading and Moment of Top and Bottom Purlin
\begin{tabular}{|l|l|l|l|l|}
\hline Top and Bottom Purlin & \(\mathbf{X}\) & Comb. & Y & Comb. \\
\hline Load \((\mathrm{kN})\) & 0.6624 & 2 & 2.5595 & 2 \\
\hline Moment \((\mathrm{kNm})\) & 0.3064 & 2 & 1.1838 & 2 \\
\hline
\end{tabular}

Table 2. 30 Maximum Loading and Moment of Middle Purlin
\begin{tabular}{|l|l|l|l|l|}
\hline Middle Purlin & X & Comb. & Y & Comb. \\
\hline Load (kN) & 1.1908 & 1 & 4.6008 & 1 \\
\hline Moment \((\mathrm{kNm})\) & 0.5507 & 1 & 2.1279 & 1 \\
\hline
\end{tabular}

\section*{b. Profile Check}

Because the purlin uses steel material, the profile must be checked as compact, non-compact, or slender material. The calculation is presented in

Table 2.31. The flange is shown to be non-compact because \(\lambda_{p} \leq \lambda \leq \lambda_{r}\) and the web is compact because \(\lambda \leq \lambda_{p}\). Therefore, if one is compact and the other is noncompact, the profile is non-compact.

Table 2. 31 Profile Check for Compact, Non-Compact, and Slender
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\lambda\) & \(\lambda \mathbf{p}\) & \(\lambda \mathbf{r}\) & Note \\
\hline Flange & 25 & 10.9697 & 28.86751346 & Non-compact \\
\hline Web & 62.5 & 108.542 & 164.5448267 & Compact \\
\hline
\end{tabular}

Where the formula of \(\lambda, \lambda_{p}\), and \(\lambda_{r}\) is presented in Table 2. 32 .

Table 2. 32 Formula for \(\lambda, \lambda_{p}\), and \(\lambda_{r}\)
\begin{tabular}{|l|c|c|c|}
\hline Element & \(\lambda\) & \(\lambda_{p}\) & \(\lambda_{r}\) \\
\hline Flange & \(\frac{b_{f}}{2 t_{f}}\) (I shape) & \(0.38 \sqrt{\frac{E}{F_{y}}}\) & \(1.0 \sqrt{\frac{E}{F y}}\) \\
\hline Web & \(\frac{h}{t_{f}}(\) Channels \()\) & \(3.76 \sqrt{\frac{E}{t_{w}}}\) & \(5.7 \sqrt{\frac{E}{F_{y}}}\) \\
\hline
\end{tabular}

The profile must also be checked for lateral torsional buckling. This can be checked from the value of length Lb, Lp, and Lr (see Table 2. 33 and Table 2. 34). In Y direction load, the profile is inelastic lateral torsional buckling and in X direction load, the profile has no lateral torsional buckling. Therefore, the moment strength is different based on this condition.

Table 2. 33 Purlin Lb, Lp, and Lr for Y Direction
\begin{tabular}{|l|l|l|}
\hline Lb & 1850 & mm \\
\hline Lp & 2484.453678 & mm \\
\hline Lr & 745917.3565 & mm \\
\hline
\end{tabular}

Table 2. 34 Purlin Lb, Lp, and Lr for X Direction
\begin{tabular}{|c|c|c|}
\hline Lb & 1850 & mm \\
\hline Lp & 2484.453678 & mm \\
\hline Lr & 745917.3565 & mm \\
\hline
\end{tabular}

Where:
\(\mathrm{Lb}=\) Unbraced length \(=\mathrm{L} / 2\).
eq. 2.19
\[
\begin{equation*}
\mathrm{Lp}=1.76 \mathrm{r}_{\mathrm{y}} \sqrt{\frac{\mathrm{E}}{\mathrm{~F}_{\mathrm{y}}}} \ldots \tag{eq. 2.20}
\end{equation*}
\]
\(\operatorname{Lr}=1,95 r_{\text {ts }} \frac{\mathrm{E}}{0,7 \mathrm{FF}_{\mathrm{y}}} \sqrt{\frac{\mathrm{Jc}}{S_{\mathrm{x}} \mathrm{h}_{0}}+\sqrt{\left(\frac{\mathrm{Jc}}{S_{x} \mathrm{~h}_{0}}\right)^{2}+6,76\left(\frac{0,7 \mathrm{~F}_{\mathrm{y}}}{\mathrm{E}}\right)^{2}}}\)

\section*{c. Moment Strength}

Moment strength of purlin as steel beam is determined by the condition of lateral torsional buckling. It can be inelastic, elastic, or no torsional buckling. The moment calculation shows in Table 2. 35 and Table 2. 36 for Y direction and X direction, respectively. It shows the factored moment strength ( \(\varphi \mathrm{Mn}\) ) is bigger than the maximum moment \((\mathrm{Mu})\) that acts in the purlin.

Table 2. 35 Moment Design Calculation for Y Direction Load
\begin{tabular}{|c|c|c|c|}
\hline Description & Mn & Unit & Note \\
\hline- & - & & \\
\hline Inelastic LTB & 7117316.489 & Nmm & \(L_{p}<L_{b} \leq L_{r}\) \\
\hline The flange is non-compact & 3728060.753 & Nmm & \\
\hline Take \(\varphi \mathrm{Mn}\) & 3.355254678 & kNm & \(0.9 \times\) smallest Mn \\
\hline Mu for Top and Bottom Purlin & 1.183758365 & kNm & \(\varphi \mathrm{Mn}>\mathrm{Mu}\) Safe \\
\hline Mu for Middle Purlin & 2.1279 & kNm & \(\varphi \mathrm{Mn}>\mathrm{Mu}\) Safe \\
\hline
\end{tabular}

Where:
Mn for Inelastic LTB \(=C_{b}\left[M_{p}-\left(M_{p}-0.7 F_{y} S_{x}\right)\left(\frac{L_{b}-L_{p}}{L_{r}-L_{p}}\right)\right] \leq M_{p} ; \mathrm{Cb}=1.3\) (lateral bracing in the middle)
eq. 2.22
\(\mathrm{Mp}=F_{y} \cdot Z_{x}\)
eq. 2.23

Table 2. 36 Moment Design Calculation for X Direction Load
\begin{tabular}{|c|c|c|c|}
\hline Description & Mn & Unit & Note \\
\hline- & - & & \\
\hline No LTB & 1815550.035 & Nmm & \(L_{b} \leq L_{p}\) \\
\hline The flange is non-compact & 1116653.316 & Nmm & \\
\hline Take \(\varphi\) Mn & 1.004987984 & kNm & \(0.9 \times\) smallest Mn \\
\hline Mu for Top and Bottom Purlin & 0.306381179 & kNm & \(\varphi \mathrm{Mn}>\mathrm{Mu}\) Safe \\
\hline Mu for Middle Purlin & 0.5507 & kNm & \(\varphi \mathrm{Mn}>\mathrm{Mu}\) Safe \\
\hline
\end{tabular}

Where:
Mn for No LTB \(=F_{y} . Z_{x}\)

\section*{d. Shear Strength}

Besides moment, shear strength must be checked. The shear strength is determined by the value of depth-thickess ratio (h/tw), ratio of critical web stress to shear yield stress \(\left(\mathrm{C}_{\mathrm{v} 1}\right)\), resistance factor \((\varphi \mathrm{v})\), safety factor \((\Omega \mathrm{v})\), and shear factor \(\left(\mathrm{k}_{\mathrm{v}}\right)\). The calculation of shear design is presented in Table 2.37 Purlin Shear Design Calculation

Table 2. 37 Purlin Shear Design Calculation
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline \(\mathrm{h} / \mathrm{tw}\) & 62.5 & & (a) \\
\hline \(\mathrm{k}_{\mathrm{v}}\) & 5.34 & & (b) \\
\hline \(1.1^{*} \sqrt{ }(\mathrm{kv} / \mathrm{Fy})\) & 73.37915235 & & (a)<=(b) \\
\hline Conclusion & \multicolumn{3}{|c|}{} \\
\hline \(\mathrm{C}_{\mathrm{v} 1}\) & 1 & & \\
\hline\(\varphi \mathrm{v}\) & 0.9 & & \(\mathrm{H} \times \mathrm{t}\) \\
\hline\(\Omega \mathrm{v}\) & 1.67 & & \\
\hline Aw & 250 & mm 2 & \\
\hline Vn & 36000 & N & \(0.6 \mathrm{Fy} \times \mathrm{Aw} \times \mathrm{Cv} 1\) \\
\hline\(\varphi \mathrm{Vn}\) & 32.4 & kN & \\
\hline Vu of Top and Bottom Purlin & 0.591879183 & kN & \(\varphi \mathrm{Vn}>\mathrm{Vu}\) Safe \\
\hline Vu of Middle Purlin & 1.063927497 & kN & \(\varphi \mathrm{Vn}>\mathrm{Vu}\) Safe \\
\hline
\end{tabular}

\section*{e. Displacement Check}

Purlin acts like steel beam, so due to the loading it is subjected to displacement. According to Segui (2015), the maximum deflection that is still appropriate for steel beam can be taken as 1 inch or 25.5 mm . The deflection calculation is presented in Table 2. 38 and Table 2. 39 for Y direction and X direction, respectively.

Table 2. 38 Deflection at Y Direction
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline\(\delta\) max of Top and Bottom Purin & 11.25392502 & mm & Safe \\
\hline\(\delta\) max of Middle Purlin & 20.22939922 & mm & Safe \\
\hline סallowed & 25.5 & mm & 1 inch \\
\hline
\end{tabular}

Table 2. 39 Deflection at X Direction
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline Smax of Top and Bottom Purlin & 2.91274885 & mm & Safe \\
\hline\(\delta\) max of Middle Purlin & 5.2358772 & mm & Safe \\
\hline סallowed & 25.5 & mm & 1 inch \\
\hline
\end{tabular}

Where:
\(\delta\) Max for Point Load acts on Beam \(=\frac{P L^{3}}{48 E I}\)

\subsection*{2.9.2.Sag Rod}

To provide alignment and lateral support for purlin, sag rod is used. Sag rod can help purlin from sagging due to lateral load and moment. On the top of truss, the most to purlin is attached with tie rod that has the same function. The calculation of sag rod and tie rod is presented in

Table 2. 40. The sag rod and tie rod will use the smallest diameter that is allowed in SNI 1729:2015 which is 12.7 mm .

Table 2. 40 Sag Rod and Tie Rod Calculation
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Sag Rod Calculation } \\
\hline T & 0.662445793 & kN & \\
\hline Ab required & 3.182922729 & mm 2 & \(\mathrm{~T} /(0.75 \times 0.75 \times \mathrm{Fu})\) \\
\hline Diam. Required & 2.013112785 & mm & \\
\hline Use Thread Rod diameter & 12.7 & mm & SNI 1729:2015 J3.4 \\
\hline Ab & 126.6768698 & mm 2 & \\
\hline \multicolumn{4}{|c|}{ Tie Rod at Ridge } \\
\hline P & 0.662450051 & kN & \\
\hline Ab required & 3.18294319 & mm 2 & \(\mathrm{P} /(0.75 \times 0.75 \times \mathrm{Fu})\) \\
\hline Diam. Required & 2.013119256 & mm & \\
\hline Use Thread Rod diameter & 12.7 & mm & \(\mathrm{SNI} \mathrm{1729:2015} \mathrm{J3.4}\) \\
\hline Ab & 126.6768698 & mm 2 & \\
\hline
\end{tabular}

\subsection*{2.9.3.Truss}

The truss uses steel profile 2Lx90x90x7. The properties of steel truss can be seen in Table 2. 41. The load on truss is the recap from load of purlin and the self-weight of truss itself. It is shown in Table 2. 42. Figure 2.33 shows the truss model in ETABS, with

Figure 2. 34, Figure 2. 35, and Figure 2.36 show the load act on truss for super dead load, live load, and wind load, respectively.

Table 2. 41 Truss Profile
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ 2L \(\mathbf{x 9 0} \mathbf{9 0 7}\)} \\
\hline Steel Type & BJ37 & & \\
\hline Fy & 240 & Mpa & \\
\hline Fu & 370 & Mpa & \\
\hline Ag for 1 angle & 1222 & mm 2 & \\
\hline Ag for 2 angles & 2444 & mm 2 & \\
\hline b & 90 & mm & \\
\hline h & 90 & mm & \\
\hline t & 7 & mm & \\
\hline E & 200000 & Mpa & \\
\hline r (radius of gyration & 27.6 & cm & \\
\hline dbolt & 16.00 & mm & \\
\hline dhole & 18 & mm & SNI 1729:2015 Table J3.3M \\
\hline nbolt at edge for 1 column & 1 & & \\
\hline Cx & 24.6 & mm & \\
\hline Cx (eccentricity center of gravity) & 49.2 & mm & \\
\hline
\end{tabular}

Table 2. 42 Load Recap on Truss
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Load Recap on Truss } \\
\hline SDLmid & 3.29 & kN \\
\hline SDLcorner & 1.72 & kN \\
\hline L & 1.00 & kN \\
\hline Wmid & -6.99 & kN \\
\hline Wcorner & -3.49 & kN \\
\hline
\end{tabular}


Figure 2. 32 Truss Preliminary Design


Figure 2. 33 Truss Model in ETABS


Figure 2. 35 Live Load on Truss


Figure 2. 36 Wind Load on Truss

\section*{a. ETABS Model Output}

From ETABS, the output of axial force and displacement are analysed to check the requirement of truss strength. The axial force output is shown in Table 2. 43 and the displacement of each joint is shown in Table 2. 44.

Table 2. 43 Truss Axial Force Output
\begin{tabular}{|c|c|c|}
\hline Member & Axial Force (kN) & Combination \\
\hline 1 & -56.4922 & Comb1 \\
\hline 2 & -51.7206 & Comb1 \\
\hline 3 & -44.4211 & Comb1 \\
\hline 4 & -37.8958 & Comb1 \\
\hline 5 & -37.8958 & Comb1 \\
\hline 6 & -44.4211 & Comb1 \\
\hline 7 & -51.7206 & Comb1 \\
\hline 8 & -56.4922 & Comb1 \\
\hline 9 & -1.669 & Comb1 \\
\hline 10 & -1.3069 & Comb1 \\
\hline 11 & -4.0039 & Comb1 \\
\hline 12 & 8.0794 & Comb1 \\
\hline 13 & -1.4298 & Comb1 \\
\hline 14 & -1.3069 & Comb1 \\
\hline 15 & -1.669 & Comb1 \\
\hline 16 & 56.4922 & Comb1 \\
\hline 17 & 56.4922 & Comb1 \\
\hline Maximum & 56.4922 & \\
\hline
\end{tabular}

Table 2. 44 Truss Displacement
\begin{tabular}{|c|c|c|}
\hline Joints & Displacement (mm) & Combination \\
\hline J1 & 0 & \\
\hline J2 & -14.279 & Comb1 \\
\hline J3 & -20.004 & Comb1 \\
\hline J4 & -15.302 & Comb1 \\
\hline J5 & -5.935 & Comb1 \\
\hline J6 & -15.302 & Comb1 \\
\hline J7 & -20.004 & Comb1 \\
\hline J8 & -14.279 & Comb1 \\
\hline J9 & 0 & \\
\hline J10 & -14.884 & Comb1 \\
\hline J11 & 20.007 & Comb1 \\
\hline J12 & 15.307 & Comb1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Joints & Displacement (mm) & Combination \\
\hline J13 & -5.899 & Comb1 \\
\hline J14 & -15.307 & Comb1 \\
\hline J15 & -20.007 & Comb1 \\
\hline J16 & -14.281 & Comb1 \\
\hline Maximum & 20.007 & \\
\hline
\end{tabular}

The maximum displacement shows to be smaller than 1 inch or 25.5 mm , so the truss is safe.

\section*{b. Tension Member Check}

Truss consists of tension and compression member. These two members must be checked differently. For tension member, the tension strength is determined by effective length factor (K), net area (An), reduction factor for shear lag (Ue), effective area (Ae), and safety factor \((\varphi)\). The member with maximum tension load is checked and safe from yield and rupture (see

Table 2. 45).

Table 2. 45 Tension Member Check
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Check for Tension Member } \\
\hline Pu max & 56.4922 & kN & \\
\hline L & 8000 & mm 2 & \\
\hline K & 1 & & \\
\hline Slenderness & 289.8550725 & & \(\mathrm{KL} / \mathrm{r}\) \\
\hline & \(\mathrm{KL} / \mathrm{r}<300 \mathrm{OK}\) & & \\
\hline An & 2192 & mm 2 & Ag-n \(\times \mathrm{dh} \times \mathrm{t} \times 2(2\) for double angle \()\) \\
\hline Ue & 0.99385 & & \(\mathrm{SNI} 1729: 2015\) Table D3.1 \\
\hline Ae & 2178.5192 & mm 2 & An \(\times\) Ue \\
\hline Yield Strenth \(\varphi \operatorname{Pn}\) & 527.904 & kN & \(0.9 \times\) Fy \(\times \mathrm{Ag}\) \\
\hline & Safe & & \\
\hline Rupture Strenth \(\varphi \mathrm{Pn}\) & 604.539078 & kN & \(0.75 \times\) Fu \(\times \mathrm{Ae}\) \\
\hline & Safe & & \\
\hline
\end{tabular}

\section*{c. Compression Member Check}

For compression member, every member is checked. Th member compression strength is determined by effective length factor (K), steel modulus elasticity (E), steel
yield strength (Fy), critical elastic buckling stress (Fe), critical compressive stress (Fcr), and safety factor \((\varphi)\). All members show to be safe from compression load (see Table 2. 46).

Table 2. 46 Compression Member Check
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Check for Compression Member} \\
\hline Member & Axial Force (kN) & Lengt h (mm) & \(\frac{K L}{r}\) & \(4.71 \sqrt{\frac{E}{F y}}\) & Fe & Fcr & \(\varphi P \mathrm{n}\) & Note \\
\hline 1 & \[
\begin{gathered}
56.492 \\
2
\end{gathered}
\] & 2070 & \[
\begin{gathered}
75.0 \\
0
\end{gathered}
\] & 135.966 & 350.919 & 180.257 & \[
\begin{gathered}
396.49 \\
4
\end{gathered}
\] & Safe \\
\hline 2 & 51.720
6 & 2070 & \[
\begin{gathered}
75.0 \\
0
\end{gathered}
\] & 135.966 & 350.919 & 180.257 & 396.49
4 & Safe \\
\hline 3 & \begin{tabular}{c}
44.421 \\
\hline 1
\end{tabular} & 2070 & 75.0
0 & 135.966 & 350.919 & 180.257 & 396.49
4 & Safe \\
\hline 4 & \[
\begin{gathered}
37.895 \\
8
\end{gathered}
\] & 2070 & 75 & 135.966 & 350.919 & 180.257 & 396.49
4 & Safe \\
\hline \(5 \longrightarrow\) & \[
\begin{gathered}
37.895 \\
8
\end{gathered}
\] & 2070 & 75 & 135.966 & 350.919 & 180.257 & 396.49
4 & Safe \\
\hline 6 & 44.421
1 & 2070 & 75 & 135.966 & 350.919 & 180.257 & \[
\begin{gathered}
396.49 \\
4
\end{gathered}
\] & Safe \\
\hline 7 & \[
\begin{gathered}
51.720 \\
6
\end{gathered}
\] & 2070 & 75 & 135.966 & 350.919 & 180.257 & 396.49
4 & Safe \\
\hline 8 & \[
\begin{gathered}
56.492 \\
2
\end{gathered}
\] & 2070 & 75 & 135.966 & 350.919 & 180.257 & \[
\begin{gathered}
396.49 \\
4
\end{gathered}
\] & Safe \\
\hline 9 & 1.669 & 610 & 22 & 135.966 & 4040.99 & 234.108 & \[
\begin{gathered}
514.94 \\
3
\end{gathered}
\] & Safe \\
\hline 10 & 1.3069 & 1160 & 42 & 135.966 & 1117.46 & 219.367 & 482.51
9 & Safe \\
\hline 11 & 4.0039 & 1710 & 62 & 135.966 & 514.228 & 197.412 & \[
\begin{gathered}
434.22 \\
8
\end{gathered}
\] & Safe \\
\hline 13 & 1.4298 & 1710 & 63 & 135.966 & 514.228 & 197.412 & \[
\begin{gathered}
434.22 \\
8
\end{gathered}
\] & Safe \\
\hline 14 & 1.3069 & 1160 & 42 & 135.966 & 1117.46 & 219.367 & \[
\begin{gathered}
482.51 \\
9
\end{gathered}
\] & Safe \\
\hline 15 & 1.669 & 610 & 22.1 & 135.966 & 4040.99 & 234.108 & \[
\begin{gathered}
514.94 \\
3
\end{gathered}
\] & Safe \\
\hline
\end{tabular}

Where:
\(\mathrm{Fe}=\frac{\pi^{2} E}{\frac{K L^{2}}{r}}\)
\(\mathrm{Fcr}\left\{\begin{array}{l}\frac{\mathrm{KL}}{\mathrm{r}}<4.71 \sqrt{\frac{\mathrm{E}}{\mathrm{Fy}}}, \mathrm{Fcr}=0.658 \mathrm{Fy} \frac{\mathrm{Fy}}{\mathrm{Fe}} \\ \frac{\mathrm{KL}}{\mathrm{r}}>4.71 \sqrt{\frac{\mathrm{E}}{\mathrm{Fy}}}, \mathrm{Fcr}=0.877 \mathrm{Fe}\end{array}\right.\)

\section*{d. Slenderness Check}

The last is to check the slenderness of truss. Since the truss is not slender, no more checking is required (see Table 2. 47).

Table 2. 47 Slenderness Check
\begin{tabular}{|c|c|c|}
\hline\(\lambda\) & 12.85714286 & \\
\hline\(\lambda \mathrm{r}\) & 12.99038106 & SNI 1279:2015 Table B4.1.a \\
\hline\(\lambda<\lambda \mathrm{r}\) Not Slender & & \\
\hline
\end{tabular}

Where:
\[
\begin{align*}
& \lambda=\frac{\mathrm{h}}{\mathrm{tw}} \ldots \ldots . . . . . . . \\
& \lambda_{\mathrm{r}}=0.45 \sqrt{\frac{\mathrm{E}}{\mathrm{Fy}}} . \tag{eq. 2.28}
\end{align*}
\]
\[
\text { eq. } 2.27
\]

\subsection*{2.9.4. Connection}

Connection of truss will use bolt connection. The checking uses member with biggest axial force, which in joint J1 (see Figure 2. 37 and Table 2. 48 Joint with Maximum Axial Force). The properties of bolt can be seen in Table 2. 49 Bolt Properties.


Figure 2. 37 Joint with Maximum Axial Force

Table 2. 48 Joint with Maximum Axial Force
\begin{tabular}{|c|c|c|}
\hline Joint: & \multicolumn{2}{|c|}{ J1 } \\
\hline Member & \multicolumn{2}{|c|}{ Axial Force } \\
\hline 1 & -56.4922 & kN \\
\hline 16 & 56.4922 & kN \\
\hline
\end{tabular}

Table 2. 49 Bolt Properties
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline Bolt Type & Group A (A325) & & \\
\hline nbolt at edge for 1 column & 1 & & \\
\hline nbolt at other holes & 1 & & \\
\hline Total number of Bolt (n) & 2 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline db & 16.00 & mm & \\
\hline dh & 18 & mm & \\
\hline Gusset Plate Type & BJ37 & & \\
\hline Gusset Plate Thickness & 12 & mm & \\
\hline Fy of Gusset Plate & 240 & Mpa & \\
\hline Fu of Gusset Plate & 370 & Mpa & \\
\hline Member thickness & 7 & mm & \\
\hline Fy of Member & 240 & Mpa & \\
\hline Fu of Member & 370 & Mpa & \\
\hline Fu of Bolt & 830 & Mpa & \\
\hline Aominal bolt shear strength, Fnv & 372 & Mpa & SNI 1729:2015 Table J3.2 \\
\hline Nominal bolt tensile strength, Fnt & 620 & Mpa & SNI 1729:2015 Table J3.2 \\
\hline
\end{tabular}

\section*{a. Connection Strength}

Bolt connection strength must be checked for shear strength, slip critical strength, bearing strength, yielding and rupture, and block shear strength. The total bolt that is preliminary designed is 2 bolts. The checking for 2 bolts strength to resist shear, slip critical, bearing force, yielding and rupture, and block shear are presented in table Table 2. 50, Table 2. 51, Table 2. 52, Table 2. 53, and Table 2. 54, respectively. The calculation shows that 2 bolts is enough to hold the member axial forces. Therefore 2 bolts are used as connection.

Table 2. 50 Double Shear Strength
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Double Shear Strength for 1 bolt } \\
\hline Ab & 201.0619298 & mm 2 & \\
\hline Rn & 149.5900758 & kN & Fnv \(\times \mathrm{Ab} \times 2\) for double shear, Fnv \(\times \mathrm{Ab}\) for one shear \\
\hline \multicolumn{4}{|c|}{ Threads not in the shear plane } \\
\hline \(\mathrm{Fnv}(\mathrm{X})\) & 466.875 & Mpa & \(0.625 \times\) Fu \(\times 0.9\) \\
\hline Rn & 93.87078849 & kN & \\
\hline \multicolumn{4}{|c|}{Threads in the shear plane } \\
\hline Fnv(N) & 373.5 & Mpa & \(0.8 \times \mathrm{Fnv}(\mathrm{X})\) \\
\hline Rn & 75.09663079 & kN & \\
\hline \multicolumn{4}{|c|}{ Used Shear Strength for 1 bolt } \\
\hline Smallest Rn & 75.09663079 & kN & \\
\hline\(\varphi\) & 0.75 & & \\
\hline\(\varphi \mathrm{Rn}\) & 56.32247309 & kN & \\
\hline\(\varphi \mathrm{Rn} * \mathrm{n}\) & 112.6449462 & kN & \\
\hline
\end{tabular}

Table 2. 51 Slip Critical Strength
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Slip Critical Strength for 1 Bolt } \\
\hline\(\mu\) & 0.3 & & coefficient of static friction for class A \\
\hline Du & 1.13 & & ratio of mean actual bolt pretension to minimum pretension \\
\hline hf & 1 & & 1 filler=1.0, 2 fillers=0.85 \\
\hline Tb & 91 & Table J3.1M \\
\hline ns & 1 & number of shear plane \\
\hline\(\varphi\) & 1 & & \\
\hline\(\varphi \mathrm{Rn}\) & 30.849 & kN & \(\varphi \times \mu \times\) Du \(\times \mathrm{hf} \times \mathrm{Tb} \times \mathrm{ns}\) (Eq. J3.4) \\
\hline\(\varphi \mathrm{Rn} * \mathrm{n}\) & 61.698 & kN & \(\varphi \mathrm{Rn} \times \mathrm{n}>\) Pu Safe \\
\hline
\end{tabular}

Table 2. 52 Bearing Strength
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & C. Note \\
\hline \multicolumn{4}{|c|}{Bearing Strength} \\
\hline minimum spacing & 42.6667 & mm & SNI 1729:2015 Section J3.3 \\
\hline actual spacing & 45 & mm & \% \\
\hline le minimum edge & 22 & mm & SNI 1729:2015 Table J3.4M \\
\hline Actual le minimum edge & 25 & mm & - \\
\hline \multicolumn{4}{|c|}{Tension Member for 1 bolt} \\
\hline t & 7 & mm & Member thickness \\
\hline Fu & 370 & Mpa & Ultimate Strength \\
\hline Rn for All holes & 99.456 & kN & \(2.4 \times \mathrm{d} \times \mathrm{t} \times \mathrm{Fu}\) (member) \\
\hline dh & 18 & mm & \\
\hline \(\ell\) enear edge & 16 & mm & le-h/2 \\
\hline Rn for edge holes & 49.728 & kN & \(1.2 \times \ell\) cxt \(\times \mathrm{Fu}\) \\
\hline \(\ell \mathrm{c}\) for other holes & 27 & mm & s-h \\
\hline Rn for other holes & 83.916 & kN & \(1.2 \times \ell \mathrm{c} \times \mathrm{t} \times \mathrm{Fu}\) \\
\hline Used Rn for edge hole & 49.728 & kN & \\
\hline Used Rn for other hole & 83.916 & kN & \\
\hline nbolt at edge for 1 column & 1 & & \\
\hline nbolt at other holes & 1 & & \\
\hline Rn & 133.644 & kN & \(\mathrm{n}(\) edge \() \times \mathrm{Rn}(\) edge \()+\mathrm{n}(\) other \() \times \mathrm{Rn}(\) other \()\) \\
\hline \(\varphi\) & 0.75 & & \\
\hline \(\varphi \mathrm{Rn}\) & 100.233 & kN & \\
\hline \(\varphi\) Rn*n & 200.466 & kN & \(\varphi \mathrm{Rn} \times \mathrm{n}>\mathrm{Pu}\) Safe \\
\hline \multicolumn{4}{|c|}{Gusset Plate for 1 bolt} \\
\hline t & 12 & mm & \multirow[t]{2}{*}{} \\
\hline Fu & 370 & Mpa & \\
\hline Rn for All holes & 170.496 & kN & \(2.4 \times \mathrm{d} \times \mathrm{t} \times \mathrm{Fu}\) (member) \\
\hline dh & 18 & mm & \\
\hline \(\ell c\) near edge & 16 & mm & \(\ell \mathrm{e}-\mathrm{h} / 2\) \\
\hline Rn for edge holes & 85.248 & kN & \(1.2 \times \ell \mathrm{c} \times \mathrm{t} \times \mathrm{Fu}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline\(\ell \mathrm{c}\) for other holes & 27 & mm & s -h \\
\hline Rn for other holes & 143.856 & kN & \(1.2 \times \ell \mathrm{c} \times \mathrm{t} \times \mathrm{Fu}\) \\
\hline Used Rn for edge hole & 85.248 & kN & \\
\hline Used Rn for other hole & 143.856 & kN & \\
\hline nbolt at edge for 1 column & 1 & & \\
\hline nbolt at other holes & 1 & & \\
\hline Rn & 229.104 & kN & \(\mathrm{n}(\) edge \() \times \mathrm{Rn}(\) edge \()+\mathrm{n}(\) other \() \times \mathrm{Rn}\) (other) \\
\hline\(\varphi\) & 0.75 & & \\
\hline\(\varphi \mathrm{Rn}\) & 171.828 & kN & \\
\hline\(\varphi \mathrm{Rn} * \mathrm{n}\) & 343.656 & kN & \(\varphi \mathrm{Rn} \times \mathrm{n}>\mathrm{Pu}\) Safe \\
\hline
\end{tabular}

Table 2. 53 Yielding and Rupture Bolt Strength


Table 2. 54 Block Shear Strength
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline \multicolumn{4}{|r|}{Block Shear Strength} \\
\hline \multicolumn{4}{|r|}{For Tension Member} \\
\hline t & 7 & mm & \\
\hline bolt rows number & 1 & & \\
\hline Lgv & 70 & mm & \((\ell \mathrm{c}(\) edge \()+\mathrm{s}) \times\) bolt row \(=\) Gross shear length \\
\hline Agv & 490 & mm2 & Lgvxt \(=\) Gross shear area \\
\hline Lgn & 25 & mm & Gross net length \\
\hline Agn & 175 & mm2 & Lgnxt = Gross tension area \\
\hline Lnv & 43 & mm & 4 Net Shear Length \\
\hline Anv & 301 & mm2 & Lnvxt = Net shear area \\
\hline Lnt & 16 & mm & Net Tension area \\
\hline Ant & 112 & mm2 & Net Tension area \\
\hline Fu & 370 & Mpa & Pr \\
\hline Fy & 240 & Mpa & - \\
\hline Ubs & 1 & & For uniform tension stress in angles, gusset plates, and coped beams \\
\hline Rn & 108.262 & kN & \(0.6 \times\) Fu \(\times\) Anv + Ubs \(\times\) Fu \(\times\) Ant \\
\hline Rn upper & 112 & kN & \(0.6 \times \mathrm{Fy} \times \mathrm{Agv}+\mathrm{Ubs} \times \mathrm{Fu} \times \mathrm{Ant}\) \\
\hline Used Rn & 108.262 & kN & - \({ }^{\text {a }}\) \\
\hline \(\varphi R \mathrm{R}^{*} \mathrm{n}\) & 216.524 & kN & \(\varphi \mathrm{Rn} \times \mathrm{n}>\mathrm{Pu}\) Safe \\
\hline \multicolumn{4}{|r|}{For Gusset Plate} \\
\hline t & 12 & mm & \\
\hline bolt rows number & 1 & &  \\
\hline Lgv & 70 & mm & \((\ell c(\) edge \()+\mathrm{s}) \times\) bolt row \(=\) Gross shear length \\
\hline Agv & 840 & mm2 & Lgvxt \(=\) Gross shear area \\
\hline Lgn & 25 & mm & Gross net length \\
\hline Agn & 300 & mm2 & Lgnxt \(=\) Gross tension area \\
\hline Lnv & 43 & mm & Net Shear Length \\
\hline Anv & 516 & mm2 & Lnvxt = Net shear area \\
\hline Lnt & 16 & mm & Net Tension area \\
\hline Ant & 192 & mm2 & Net Tension area \\
\hline Fu & 112.645 & Mpa & \\
\hline Fy & 56.322 & Mpa & \\
\hline Ubs & 1 & & For uniform tension stress in angles, gusset plates, and coped beams \\
\hline Rn & 56.503 & kN & \(0.6 \times\) Fu \(\times\) Anv + Ubs \(\times\) Fu \(\times\) Ant \\
\hline Rn upper limit & 50.014 & kN & \(0.6 \times \mathrm{Fy} \times \mathrm{Agv}+\mathrm{Ubs} \times \mathrm{Fu} \times \mathrm{Ant}\) \\
\hline Used Rn & 50.014 & kN & \\
\hline \(\varphi R n *\) n & 100.029 & kN & \(\varphi R \mathrm{n} \times \mathrm{n}>\mathrm{Pu}\) Safe \\
\hline
\end{tabular}

\subsection*{2.9.5. Anchor}

An anchor is a connection between steel and concrete. This connection is used to connect steel truss to the ring balk. The load from truss will be transferred to concrete beam from anchor. Therefore, anchor must be checked from several failure. This check will focus on compressive strength and shear strength of anchor. The anchor strength for shear strength is 68.7 kN , compression strength is 1740.375 kN , spalling shear strength is 70.04 kN , pry out strength is 113.49 kN , and breakout strength is 28.37 kN . The calculations are presented in Table 2. 57, Table 2. 58, Table 2. 60, Table 2. 61, and Table 2. 62 , respectively.

Table 2. 55 Anchor Properties
\begin{tabular}{|c|c|c|c|c|}
\hline Type & \multicolumn{3}{|c|}{} & \multicolumn{2}{c|}{ Steel Headed Stud } \\
\hline Dmn & 17.5 & mm & \(>2.5 * \mathrm{t}\) (member) & SNI 1729:2015 Section I8.1 \\
\hline Actual D & 18 & mm & & \\
\hline Lmin & 70 & mm & \(>4 * \mathrm{D}\) & SNI 1729:2015 Section I8.2 \\
\hline Actual L & 144 & mm & \(\mathrm{~h} / \mathrm{d}>8=>\mathrm{h}=8 * \mathrm{D}\) & Section I8.3 when subjected to shear and tension \\
\hline
\end{tabular}

Table 2. 56 Reaction and Maximum Load of Truss
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Load } \\
\hline Ru & 18.83 & kN & Reaction \\
\hline Pu & 56.4922 & kN & Member Load \\
\hline
\end{tabular}

Table 2. 57 Anchor Shear Strength
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline \multicolumn{4}{|c|}{ Shear Strength } \\
\hline Asa & 240.5281875 & mm 2 & \(0.25 \pi D^{2}\) \\
\hline fc & 30 & Mpa & \\
\hline Ec & 25742.9602 & Mpa & \(4700 \times \sqrt{ }\left(\mathrm{fc}^{\prime}\right)\) \\
\hline Rg & 1 & & \\
\hline Rp & 1 & & \\
\hline Fu & 448 & Mpa & Minimum fu (65 ksi) \\
\hline \(0.5 \times \mathrm{Asa} \times \sqrt{ }(\mathrm{fc} \times \mathrm{Ec})\) & 105688.0422 & N & \\
\hline Rg \(\times \mathrm{Rp} \times \mathrm{Asa} \times \mathrm{Fu}\) & 107756.628 & N & \\
\hline Qnv & 105.6880422 & kN & SNI 1729:2015 Eq I8.1 \\
\hline\(\varphi\) & 0.65 & & \\
\hline\(\varphi \mathrm{Qnv}\) & 68.69722745 & kN & \\
\hline
\end{tabular}

Table 2. 58 Anchor Compressive Strength
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline \multicolumn{3}{|c|}{ Failure due to Compression on Concrete } \\
\hline \(\mathrm{fc}^{\prime}\) & 30 & Mpa & \\
\hline Ac & 105000 & mm 2 & \\
\hline Pc & 2677.5 & kN & SNI 2847:2019 Table 17.3.1.1 \\
\hline\(\varphi\) & 0.65 & & \\
\hline\(\varphi \mathrm{Pc}\) & 1740.375 & kN & \(\varphi \mathrm{Pc}>\mathrm{Ru}\) Safe \\
\hline
\end{tabular}

Table 2. 59 Anchor Dimension Properties for Shear Checking
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline \multicolumn{4}{|c|}{ Failure due to Shear on Concrete } \\
\hline ha \(=1.5 \mathrm{ca1}\) & 150 & mm & SNI 2847:2019 Sec 17.5.2.4 \\
\hline ca1 & 100 & mm & \\
\hline ca2 & 45 & mm & \\
\hline maximum s & 300 & mm & SNI 2847:2019 Sec 17.2.1.1 \\
\hline take s & 100 & mm & \\
\hline hef & 144 & mm & SNI 2847:2019 Fig R2.2 \\
\hline
\end{tabular}

Table 2. 60 Anchor Spalling Shear Strength in Concrete
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline \multicolumn{4}{|c|}{ Concrete spalling } \\
\hline Asa & 240.5281875 & & \(0.25 \pi D^{2}\) \\
\hline Fu & 448 & Mpa & \\
\hline Vsa & 107756.628 & N & \\
\hline\(\varphi\) & 0.65 & & SNI 2847:2019 Sec 17.3.3 \\
\hline\(\varphi \mathrm{Vsa}\) & 70.04180821 & kN & \\
\hline
\end{tabular}

Table 2. 61 Anchor Pry Out Shear Strength in Concrete
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline \multicolumn{4}{|c|}{ Concrete pry out } \\
\hline kcp & 2 & & Sec 17.5.3.1 \\
\hline\(\Psi e c, \mathrm{~N}\) & 1 & & Sec 17.4.2.4 \\
\hline Yed,N & 0.8389 & & Sec 17.4.2.5 \\
\hline Yc,N & 1.25 & & Sec 17.4.2.6 \\
\hline Ycp,N & 1 & & Sec 17.4.2.7 (Cast in type) \\
\hline Anc & 150176 & mm 2 & Fig R17.4.2.1b \\
\hline Anco & 196992 & mm 2 & Fig R17.4.2.1a \\
\hline kc & 10 & & \\
\hline\(\lambda\) & 1 & normal & Sec 17.2.6 \& 19.2.4 \\
\hline fc' & 30 & Mpa & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline Nb & 94646.458 & N & Eq. 17.4.2.2 \\
\hline Ncpg & 75660.771 & N & \(\mathrm{Ncpg}=\mathrm{Ncbg}\) Sec 17.5.3.1b \\
\hline Vcpg & 151321.542 & N & \\
\hline\(\phi\) & 0.75 & & Sec 17.3.3 Cond. A \\
\hline\(\phi \mathrm{Vcpg}\) & 113.491 & kN & \\
\hline
\end{tabular}

Table 2. 62 Anchor Breakout Strength in Concrete
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline \multicolumn{4}{|c|}{ Concrete breakout } \\
\hline\(\Psi\) ec, V & \(1 /\) & & Sec. 17.5.2.5 \\
\hline\(\Psi \mathrm{ed}, \mathrm{V}\) & 1 & & Sec. 17.5.2.6 \\
\hline Yc,V & 1.4 & & Sec. 17.5.2.7 \\
\hline Yh,V & 1 & & Sec. 17.5.2.8 \\
\hline Avc & 60000 & mm 2 & Case 3 Fig R17.5.2.1.b \\
\hline Avco & 45000 & mm 2 & \\
\hline L & 144 & mm & anchor length \\
\hline D & 18 & mm & anchor diameter \\
\hline fc & 30 & Mpa & \\
\hline \(\mathrm{ca1}\) & 100 & mm & \\
\hline\(\lambda\) & 1 & normal & Sec 17.2.6 \& 19.2.4 \\
\hline \(\mathrm{Vb1}\) & 21133.24207 & & Eq. 17.5.2.2a \\
\hline \(\mathrm{Vb2}\) & 20265.73463 & & Eq. 17.5.2.2b \\
\hline Take Vb & 20265.73463 & & \\
\hline Vcb & 37.82937131 & kN & Eq 17.5.2.1.b \\
\hline\(\phi\) & 0.75 & & Sec 17.3.3 Cond. A \\
\hline\(\phi \mathrm{Vcb}\) & 28.37202848 & kN & \\
\hline
\end{tabular}

\section*{a. Number of Anchor}

The total number of anchors is calculated by comparing the smallest strength of anchor and the maximum load. It is shown that the smallest shear strength is 28.37 kN that holds the anchor from breakout and the maximum load is 56.49 kN . Therefore, the required anchor are 2 anchors for one side. Since the truss use double angle profile, for two sides the total anchor are 4.

Table 2. 63 Anchor Number
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Recap Shear Strength } \\
\hline\(\varphi \mathrm{Vsa}\) & 70.04180821 & kN \\
\hline\(\phi \mathrm{V} \mathrm{cpg}\) & 113.4911568 & kN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Recap Shear Strength } \\
\hline\(\phi \mathrm{Vcb}\) & 28.37202848 & kN \\
\hline Smallest \(\phi \mathrm{V}\) & 28.37202848 & kN \\
\hline n anchor & 1.991123054 & \\
\hline n use & 2 & 1 side \\
\hline & 4 & 2 sides \\
\hline
\end{tabular}

\subsection*{2.9.6. Conclusion}

The purlin that is used here is steel C125x150x150x2 with length of 3.7 meter. Between the purlin lengths, a sag rod of diameter 12.7 mm is used to prevent purlin from sagging. The truss uses steel \(2 \mathrm{Lx} 90 \times 90 \times 7\). The connection uses 2 bolts to connect each member on truss. The anchors use 4 anchors to connect steel truss and concrete ring balk.

\subsection*{2.10. Beam Design}


Figure 2. 38 Beam Design Flowchart

Beam uses reinforced concrete with dimension and properties is shown in Table 2. 64 According to SNI 2847:2019 table R18.2, beam for building with earthquakeresistant special moment structural system (SRPMK) must be designed as in SNI

2847:2019 article 18.6. In designing beam, the dimension of column beside the beam must be considered to calculate the clear length of beam. The dimension of column is presented in Table 2. 65. This calculation shows the beam with the longest length 5.5 meter and use normal concrete beam with \(\lambda\) is 1 . The procedure of beam design is shown in Figure 2. 38.

Table 2. 64 Beam Properties
\begin{tabular}{|c|c|c|c|}
\hline Beam & AB & Unit & Note \\
\hline \(\mathrm{fc}^{\prime}\) & 30 & Mpa & \\
\hline fy & 400 & Mpa & \\
\hline bw & 500 & mm & beam width \\
\hline hb & 500 & mm & beam height \\
\hline Lb & 5500 & mm & beam length \\
\hline cc & 40 & mm & cover \\
\hline \(\mathrm{d}_{\mathrm{b}}\) & 25 & mm & longitudinal rebar diameter \\
\hline \(\mathrm{d}_{\mathrm{bt}}\) & 25 & mm & middle longitudinal rebar diameter \\
\hline \(\mathrm{d}_{\mathrm{c}}\) & 13 & mm & confinement diameter \\
\hline lo & 1000 & mm & plastic hinge region/support \\
\hline non lo & 3400 & mm & non plastic hinge region/span \\
\hline
\end{tabular}

Table 2. 65 Column Dimension
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Left Column } \\
\hline bcl & 650 & mm & left column width \\
\hline hcl & 650 & mm & left column height \\
\hline Lcl & 4000 & mm & left column length \\
\hline \multicolumn{4}{|c|}{ Right Column } \\
\hline bcr & 650 & mm & right column width \\
\hline hcr & 650 & mm & right column height \\
\hline Lcr & 4000 & mm & right column length \\
\hline
\end{tabular}

\subsection*{2.10.1. Loading}

The beam loading is obtained from ETABS output from the internal forces of preliminary design model. The maximum axial load ( Pu ), negative moment at support, positive moment at support, and maximum moment at span are presented in Table 2. 66.

Table 2. 66 Beam Load
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline Pu & 283.8319 & kN & ETABS Output \\
\hline \multirow{2}{*}{ Mu at Support } & -224.0967 & kNm & ETABS Output \\
\cline { 2 - 4 } & 199.6064 & kNm & ETABS Output \\
\hline Mu at Span & 165.3817 & kNm & ETABS Output \\
\hline
\end{tabular}

\subsection*{2.10.2. Dimension Requirement}

According to SNI 2847:2019 the beam for SRPMK must meet several dimension requirements. This dimension requirement is calculated in Table 2. 67. The beam with \(500 \times 500 \mathrm{~mm} 2\) has meet the dimension requirement.

Table 2. 67 Dimension Requirements
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ Dimension Requirements } \\
\hline d & 434.5 & mm & clear distance \(=\mathrm{hb}-\mathrm{cc}-\mathrm{dc}-\mathrm{db} / 2\) \\
\hline ln & 4850 & mm & clear length \\
\hline Check \(\ln >=4 \mathrm{~d}\) & OK & & SNI 2847:2019 chapter 18.6.2.1a \\
\hline bw & 500 & mm & \\
\hline 0.3 hb & 150 & mm & \\
\hline Check bw \(>=0.3 \mathrm{~h}\) & OK & & SNI 2847:2019 chapter 18.6.2.1b \\
\hline Check bw \(>=250 \mathrm{~mm}\) & OK & & SNI 2847:2019 chapter 18.6.2.1b \\
\hline bc & 650 & mm & \\
\hline \(3 / 4 \mathrm{hc}\) & 487.5 & mm & \\
\hline \(\min [\mathrm{bc} ; 3 / 4 \mathrm{hc}]\) & 487.5 & mm & Minimum between bc or 3/4hc \\
\hline Check if bw<=bc+2(min[bc;3/4hc]) & OK & & SNI 2847:2019 chapter 18.6.2.1c \\
\hline
\end{tabular}

\subsection*{2.10.3. Moment Strength and Longitudinal Reinforcement}

Beam must hold bending moment from load. In order to increase the moment strength, longitudinal reinforcement is required. The condition must be checked for support area where it is two times beam height from column surface for negative moment and positive moment. Then, in the span area beam must be checked from ultimate moment. The maximum ratio of steel must meet the SNI 2847:2019 chapter 18.6.3.1. The calculation of moment strength is presented in Table 2.68

Table 2. 68 Moment Strength and Flexural Reinforcement
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline \multicolumn{4}{|c|}{\(\rho=\frac{0.85 \mathrm{fc}^{\prime}}{\mathrm{fy}}\left[1-\sqrt{1-\frac{4 \mathrm{Mu}}{1.7 \phi \mathrm{fc}^{\prime} \mathrm{bd}^{2}}}\right]\)} \\
\hline \multicolumn{4}{|c|}{At Support with Negative Moment} \\
\hline Mu & 224.0967 & kNm & \\
\hline \(\varphi\) & 0.9 & & \\
\hline 0.85fc'/fy & 0.06375 & & \\
\hline 4Mu/(1.7×¢fc'bd^2) & 0.206887 & & \\
\hline \(\rho\) & 0.006976231 & & \\
\hline \(\rho\) max & 0.025 & \(\%\) & SNI 2847:2019 chapter 18.6.3.1 \\
\hline \(\rho \mathrm{min}\) & 0.0035 & & SNI 2847:2019 chapter 9.6.1.2 \\
\hline \(\rho \min <\rho<\rho \max\) & OK & & (1) \\
\hline puse & 0.006976231 & & \(\cdots\) \\
\hline As & 1515.586267 & mm2 & pbd \\
\hline req in steel & 3.08752699 & & \(\mathrm{As} /\left(0.25 \pi \mathrm{db}^{\wedge} 2\right)\) \\
\hline Use nlong steel & 4 & & - \\
\hline As use & 1963.495408 & mm2 & V \\
\hline a & 61.59985595 & mm 2 & (Asfy)/(0.85fc'b) \\
\hline Mn & 317065295.1 & & (Asfy)(d-a/2) \\
\hline \(\varphi \mathrm{Mn}\) & 285.3587656 & kNm & \\
\hline Check \(\varphi\) Mn \(>\mathrm{Mu}\) & Safe & & \\
\hline \multicolumn{4}{|c|}{At Support with Positive Moment} \\
\hline Mu & 199.6064 & kNm & \\
\hline \(\varphi\) & 0.9 & & \\
\hline \(0.85 \mathrm{fc} / \mathrm{fy}\) & 0.06375 & & \\
\hline 4Mu/(1.7* ffc \(^{\text {chd }}\) ^2) & 0.184277453 & & \\
\hline \(\rho\) & 0.006172683 & & \\
\hline \(\rho\) max & 0.025 & & SNI 2847:2019 chapter 18.6.3.1 \\
\hline \(\rho \mathrm{min}\) & 0.0035 & & SNI 2847:2019 chapter 9.6.1.2 \\
\hline \(\rho \min <\rho<\rho \max\) & OK & & \\
\hline puse & 0.006172683 & & \\
\hline As & 1341.015421 & mm2 & pbd \\
\hline req n steel & 2.731894183 & & \(\mathrm{As} /\left(0.25 \pi \mathrm{db}^{\wedge} 2\right)\) \\
\hline Use nlong steel & 3 & & \\
\hline As use & 1472.621556 & mm2 & \\
\hline a & 46.19989196 & mm2 & (Asfy)/(0.85fc'b) \\
\hline Mn & 242334635.1 & & (Asfy)(d-a/2) \\
\hline \(\varphi \mathrm{Mn}\) & 218.1011716 & kNm & \\
\hline Check \(\varphi \mathrm{Mn}>\mathrm{Mu}\) & Safe & & \\
\hline \multicolumn{4}{|c|}{At Support with Positive Moment} \\
\hline Mu & 199.6064 & kNm & \\
\hline
\end{tabular}


Table 2. 69 Check Requirements
\begin{tabular}{|c|c|c|}
\hline Requirements & Note & Reference \\
\hline 1. At least 2 longitudinal reinforcement steel & OK & SNI 2847:2019 chapter 18.6 \\
\hline \(2 . \varphi \mathrm{Mn}(+)_{\text {left }}>=0.5 \varphi \mathrm{Mn}(-)_{\text {left }}\) & OK & SNI 2847:2019 chapter 18.6 \\
\hline\(\varphi \mathrm{Mn}(+)_{\text {right }}>=0.5 \varphi \mathrm{Mn}(-)_{\text {right }}\) & OK & SNI 2847:2019 chapter 18.6 \\
\hline \(3 . \varphi \mathrm{Mn}(+)\) or \(\varphi \mathrm{Mn}(-)>=1 / 4 * \operatorname{Max}(\varphi \mathrm{Mn})\) & OK & SNI 2847:2019 chapter 18.6 \\
\hline
\end{tabular}

\subsection*{2.10.4. Shear Strength and Transversal Reinforcement}

According to SNI 2847:2019 chapter 18.6.1.1, beam in SRPMK must be designed for moment and shear. According to SNI 2847:2019 chapter 18.6.5.2, SRPMK beam's shear strength ( Vc ) must assumed to 0 if shear force due to earthquake load (Veq) is bigger than \(50 \%\) beam shear strength (Vu) due to beam's probability moment (Mpr). In this condition, transversal reinforcement must be placed in order to increase the shear strength of the reinforced beam. Probability moment (Mpr) according to SNI 2847:2019 chapter 18.6.5.1 is a maximum moment that works at joint's face and beam. The moment must be considered with the increase of yield stress that is not least than 1.25 fy according to SNI 2847:2019 R18.6.5. The calculation of shear strength and transversal reinforcement is presented in Table 2. 70.

Table 2. 70 Beam Shear Strength and Transversal Reinforcement
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline \multicolumn{4}{|l|}{Transversal Reinforcement} \\
\hline \multicolumn{4}{|c|}{At support} \\
\hline \multicolumn{4}{|c|}{For 4D25} \\
\hline a & 76.9999 & mm & As \(\times 1.25 \mathrm{fy} /(0.85 \mathrm{fc}\) 'b) \\
\hline Mpr(-) & 388.7722 & kNm & As \(\times 1.25 \mathrm{fy}(\mathrm{d}-\mathrm{a} / 2)\) \\
\hline \multicolumn{4}{|c|}{For 3D25} \\
\hline a & 57.7499 & mm & As \(\times 1.25 \mathrm{fy} /(0.85 \mathrm{fc}\) 'b) \\
\hline Mpr(+) & 298.6661 & kNm & As \(\times 1.25 \mathrm{fy}(\mathrm{d}-\mathrm{a} / 2)\) \\
\hline \multicolumn{4}{|c|}{Shear Strength} \\
\hline qu & 51.6058 & kN/m & \\
\hline Vleft & 266.8839 & kN & \((\mathrm{Mpr}(-)+\mathrm{Mpr}(+)) / \mathrm{ln}+\mathrm{qu} \times 1 \mathrm{ln} / 2\) \\
\hline Vright & 16.5958 & kN & \((\mathrm{Mpr}(+)+\mathrm{Mpr}(-)) / \mathrm{ln}-\mathrm{qux} \ln / 2\) \\
\hline Take Vu & 266.8839 & kN & Max Vleft or Vright \\
\hline V due to earthquake only & 141.7399 & kN & \\
\hline 50\% Total V & 133.4420 & kN & \\
\hline Vc & 0.0000 & kN & \(\mathrm{Veq}>0.5 \mathrm{Vu}\), then \(\mathrm{Vc}=0\) \\
\hline \(\varphi\) & 0.7500 & & \\
\hline Vs & 355.8452 & kN & \(\mathrm{Vu} / \varphi\) \\
\hline \(0.66 \times \sqrt{ }(\mathrm{fc}\) ')bw.d & 785.3520 & kN & \\
\hline Check if Vs \(<0.66 \sqrt{ }\) (fc').bw.d & OK & & \\
\hline Confinement legs & 2 & & \\
\hline Av use of dc= 13 mm & 132.7323 & mm2 & \\
\hline s & 129.6568 & mm & legs \(\times\) As \(\times\) fy \(\times \mathrm{d} / \mathrm{Vs}\) \\
\hline & 125 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline d/4 & 108.625 & mm & \\
\hline 6 db & 150 & mm & \\
\hline \(\max 150 \mathrm{~mm}\) & 150 & mm & \\
\hline Ma× confinement spacing at \(2 \mathrm{~h}=1000 \mathrm{~mm}<\) & 108.625 & mm & min from d/4,6db, and 150mm \\
\hline s use & 100 & mm & \\
\hline L of confinement & 900 & mm & \\
\hline Transversal Reinforcement use & D13-100 & mm & Along 900 mm from support \\
\hline First confinement with \(\mathrm{s}=50\) mm from support & 50 & mm & \\
\hline \multicolumn{4}{|c|}{At span} \\
\hline Vu & 220.4387 & kN & \\
\hline \(\lambda\) & 1 & & \\
\hline Vc & 202.2876 & kN & - \\
\hline \(\varphi\) & 0.75 & & - \\
\hline Vs & 91.6306 & kN & \(\mathrm{Vu} / \varphi-\mathrm{Vc}\) \\
\hline \(0.33 \times \sqrt{(f c ') b w . d ~}\) & 392.6760 & kN & - \\
\hline - legs & 2 & & V \\
\hline Av use of dc= 10 mm & 132.7323 & mm2 & \\
\hline s1 & 503.5188 & mm & legs \(\times\) As \(\times\) fy \(\times \mathrm{d} / \mathrm{Vs}\) \\
\hline s2 & 217.2500 & mm & d/2 \\
\hline s3 & 606.7762 & mm & legs \(\times\) Avxfy/(0.35bw) \\
\hline s4 & 600 & mm & \\
\hline min s & 217.2500 & mm & \\
\hline s use & 200 & mm & \\
\hline Check s & OK & & \\
\hline Transversal Reinforcement use & D13-200 & mm & \\
\hline
\end{tabular}

\subsection*{2.10.5. Torsion Check and Shrinkage Reinforcement}

Beside moment and shear, beam can be subjected to torsion. In this check, shrinkage reinforcement or middle reinforcement is added to prevent the beam from shrinkage and torsion. As stated in PBI 1971 N.I.-2 chapter 8.16.2 that the maximum vertical spacing of concrete without longitudinal bar is 300 mm , so a middle reinforcement must be added if it is larger than 300 mm . The beam torsion check is in Table 2. 71, the torsion transversal reinforcement is presented in Table 2. 72, and the torsion longitudinal reinforcement is presented in Table 2. 73.

Table 2. 71 Torsion Check
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline Acp & 250000 & mm2 & \\
\hline pcp & 2000 & mm2 & \\
\hline \(\varphi\) & 0.75 & & Table 21.2.1 \\
\hline Tcr & 10.6977062 & kNm & \(\varphi^{*} \mathrm{~V}_{\mathrm{fc}} / 12^{*}(\mathrm{Acp} 2 / \mathrm{pcp})\) \\
\hline Tu & 16.9776 & kNm & \\
\hline \[
\begin{gathered}
\text { Check } \\
\mathrm{Tu}>\varphi \times \sqrt{\mathrm{fc}^{\prime}} / 12 \times\left(\frac{\mathrm{Acp} 2}{\mathrm{pcp}}\right)
\end{gathered}
\] & Torsion must be checked & & Table 22.7.4.1 \\
\hline bb clear & 407 & mm & \\
\hline hb clear & 407 / 4 & mm & \\
\hline Aoh & 165649 & mm2 & \\
\hline ph & 1628 & mm & A \\
\hline Vu & 266.8839 & kN & 8 \\
\hline \(\left(\frac{\mathrm{Vu}}{\mathrm{bw} \times \mathrm{d}}\right)^{2}\) & 1.5091 & & \[
\sqrt{2}
\] \\
\hline \(\left(\frac{\mathrm{Tu} \times \mathrm{ph}}{1.7 \mathrm{Aoh}^{2}}\right)^{2}\) & 0.3511 & & - \\
\hline Ultimate Shear + Torsion & 1.3639 & Mpa & \[
\begin{gathered}
\sqrt{\left((\mathrm{Vu} /(\mathrm{bw} * \mathrm{~d}))^{2}+\left((\mathrm{Tu} * \mathrm{ph}) /\left(1.7 \mathrm{Aoh}^{2}\right)\right.\right.} \\
\left.\sqrt{\left(\left(\frac{\mathrm{Vu}}{\mathrm{bw} * \mathrm{~d}}\right)^{2}+\left(\frac{\mathrm{Tu} \times \mathrm{ph}}{1.7 \mathrm{Aoh}}{ }^{2}\right.\right.}\right)^{2}
\end{gathered}
\] \\
\hline Torsion Capacity & 3.4096 & Mpa & \(\varphi\left(0.17 \times \sqrt{ } \mathrm{fc}^{\prime}+0.66 \times \sqrt{ } \mathrm{fc}^{\prime}\right)\) \\
\hline Check beam torsion strength & Safe & & \\
\hline
\end{tabular}

Table 2. 72 Torsion Transversal Reinforcement
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Value & Unit & Note & Reference \\
\hline \multicolumn{5}{|c|}{\(\phi\left(\frac{2 A_{o} A_{t} f_{y v} \cot \theta}{s}\right) \geq T u\)} \\
\hline Ao & \[
\begin{gathered}
\hline 140801.6 \\
5 \\
\hline
\end{gathered}
\] & mm2 & & \\
\hline \(\Theta\) & 45 & \(\bigcirc\) & & SNI 2847:2019 chapter
22.7.6.1.2 \\
\hline \(\varphi 2 \mathrm{Ao} \times \mathrm{fyv} \times \cot \theta\) & 84480990 & & & \\
\hline At/s & \[
\begin{gathered}
0.200963 \\
554 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mm} 2 / \mathrm{m} \\
\mathrm{~m}
\end{gathered}
\] & \[
\frac{\mathrm{Tu}}{\varphi 2 \mathrm{Ao} \times \mathrm{fyv} \times \cot \theta}
\] & SNI 2847:2019 chapter
22.7.6.1 \\
\hline s max 1 & 203.5 & mm & ph/8 & SNI 2847:2019 chapter
9.7.6.3.3 \\
\hline s max 2 & 300 & mm & 300 mm & SNI 2847:2019 chapter
9.7.6.3.3 \\
\hline s support & 100 & mm & & \\
\hline s span & 200 & mm & & \\
\hline check s suport & OK & & \[
\begin{gathered}
\mathrm{s} \text { support }>=\mathrm{s} \\
\text { max? }
\end{gathered}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Value & Unit & Note & Reference \\
\hline check s span & OK & & \[
\begin{gathered}
\mathrm{s} \text { span }>=\mathrm{s} \\
\text { max? }
\end{gathered}
\] & \\
\hline \(\mathrm{A}_{\mathrm{v}+\mathrm{t}} / \mathrm{s}\) Support Use & 2.6546 & \[
\begin{array}{|c}
\hline \mathrm{mm} 2 / \mathrm{m} \\
\mathrm{~m} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{n} \times \pi / 4 \times \mathrm{dc}^{2} / \\
\mathrm{s} \\
\hline
\end{gathered}
\] & \\
\hline \(\mathrm{A}_{\mathrm{v}+\mathrm{t}} / \mathrm{s}\) Span Use & 1.3273 & \[
\underset{\mathrm{m}}{\mathrm{~mm} 2 / \mathrm{m}}
\] & \[
\begin{gathered}
\mathrm{n} \times \pi / 4 \times \mathrm{dc}^{2} / \\
\mathrm{s}
\end{gathered}
\] & \\
\hline Av/s Support Need & 2.0474 & \[
\underset{\mathrm{m}}{\mathrm{~mm} 2 / \mathrm{m}}
\] & \[
\begin{gathered}
\left(\mathrm{V}_{\mathrm{u}}\right. \text { Support / } \\
\left.\varphi-\mathrm{V}_{\mathrm{c}}\right) /\left(\mathrm{f}_{\mathrm{y}} \times\right. \\
\mathrm{d})
\end{gathered}
\] & \\
\hline \(\mathrm{A}_{v} / \mathrm{s}\) Span Need & 0.5272 & \[
\begin{gathered}
\mathrm{mm} 2 / \mathrm{m} \\
\mathrm{~m}
\end{gathered}
\] & \[
\begin{gathered}
\left(\mathrm{V}_{\mathrm{u}} \operatorname{Span} / \varphi-\right. \\
\left.\mathrm{V}_{\mathrm{c}}\right) /\left(\mathrm{f}_{\mathrm{y}} \times \mathrm{d}\right)
\end{gathered}
\] & \\
\hline \(\mathrm{A}_{v+t} / \mathrm{s}\) Support Need & 2.4494 & \[
\begin{gathered}
\mathrm{mm} 2 / \mathrm{m} \\
\mathrm{~m} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2 \times \mathrm{A}_{\mathrm{t}} / \mathrm{s}+ \\
\mathrm{A}_{\mathrm{v}} / \mathrm{s} \\
\hline
\end{gathered}
\] & SNI 2847:2019 figure.
R9.5.4.3 \\
\hline \(\mathrm{A}_{\mathrm{v}+\mathrm{t}} / \mathrm{s}\) Span Need & 0.9291 & \[
\begin{gathered}
\mathrm{mm} 2 / \mathrm{m} \\
\mathrm{~m}
\end{gathered}
\] & \[
\begin{gathered}
2 \times \mathrm{A}_{\mathrm{t}} / \mathrm{s}+ \\
\mathrm{A}_{\mathrm{v}} / \mathrm{s}
\end{gathered}
\] & \begin{tabular}{l}
SNI 2847:2019 figure. \\
R9.5.4.3
\end{tabular} \\
\hline \(\mathrm{A}_{v+1} / \mathrm{s}\) min 1 & 0.4245 & \[
\begin{gathered}
\mathrm{mm} 2 / \mathrm{m} \\
\mathrm{~m}
\end{gathered}
\] & \[
\begin{gathered}
0.062 \times\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5} \\
\times \mathrm{b} / \mathrm{f}_{\mathrm{y}}
\end{gathered}
\] & \[
\begin{gathered}
\text { SNI 2847:2019 chapter } \\
9.6 .4 .2 \\
\hline
\end{gathered}
\] \\
\hline \(\mathrm{A}_{\mathrm{v}+1} / \mathrm{s}\) min 2 & 0.4375 & \[
\begin{gathered}
\mathrm{mm} 2 / \mathrm{m} \\
\mathrm{~m} \\
\hline
\end{gathered}
\] & \(0.35 \times \mathrm{b} / \mathrm{f}_{\mathrm{y}}\) & SNI 2847:2019 chapter
9.6 .4 .2 \\
\hline Check Shear+Torsion Support & OK & & \(\mathrm{A}_{\mathrm{v}+\mathrm{t}} / \mathrm{s}\) Support Use \(>=\mathrm{A}_{\mathrm{v+1}} / \mathrm{s}\) Need and Min? & \[
3
\] \\
\hline Check Shear+Torsion Span & OK & & \[
\begin{gathered}
\hline \mathrm{A}_{v+1} / \mathrm{s} \text { Span } \\
\text { Use> } \mathrm{A} \mathrm{~A}_{v++} / \mathrm{s} \\
\text { Need and } \\
\text { Min? } \\
\hline
\end{gathered}
\] & \\
\hline
\end{tabular}

Table 2. 73 Torsion Longitudinal Reinforcement
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Value & Unit & Note & Reference \\
\hline \(\mathrm{d}_{\mathrm{b}}\) & 25 & mm & & \\
\hline \(\mathrm{~d}_{\mathrm{b}}\), min & 8 & mm & 0.042 s & \begin{tabular}{c} 
SNI 2847:2019 chapter \\
9.7 .5 .2
\end{tabular} \\
\hline Chek \(\mathrm{d}_{\mathrm{b}}\) \\
\hline \begin{tabular}{c} 
As Support Top \\
Need
\end{tabular} & \begin{tabular}{c}
1963.495 \\
4
\end{tabular} & mm 2 & & \\
\hline \begin{tabular}{c} 
As Support Bottom \\
Need
\end{tabular} & \begin{tabular}{c}
1341.015 \\
4
\end{tabular} & mm 2 & & \\
\hline As Span Top Need & \begin{tabular}{c}
1101.060 \\
1
\end{tabular} & mm 2 & & \\
\hline As Span Bottom & \begin{tabular}{c}
1101.060 \\
Need
\end{tabular} & mm 2 & & \\
\hline \(\mathrm{~A}_{\mathrm{l}}\) & \begin{tabular}{c}
327.1687
\end{tabular} & mm 2 & \(\mathrm{~A}_{\mathrm{t}} / \mathrm{s} \times \mathrm{P}_{\mathrm{h}}\) & \begin{tabular}{c} 
SNI 2847:2019 chapter \\
22.7 .6 .1
\end{tabular} \\
\hline \(\mathrm{~A}_{\mathrm{l}} \mathrm{min}\) & \begin{tabular}{c}
1110.603 \\
0
\end{tabular} & mm 2 & \begin{tabular}{c}
\(0.42 \times\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5} \times \mathrm{A}_{\mathrm{cp}}\) \\
\(/ \mathrm{f}_{\mathrm{y}}-\left(\mathrm{A}_{\mathrm{t}} / \mathrm{s}\right) \times \mathrm{P}_{\mathrm{h}}\)
\end{tabular} & \begin{tabular}{c} 
SNI 2847:2019 chapter \\
9.6 .4 .3
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Value & Unit & Note & Reference \\
\hline \(\mathrm{A}_{\mathrm{s}}+\mathrm{A}_{1}\) Support need & \[
\begin{gathered}
4415.113 \\
9
\end{gathered}
\] & mm2 & & \\
\hline \(\mathrm{A}_{\text {s }}+\mathrm{A}_{1}\) Span need & \[
\begin{gathered}
3312.723 \\
2
\end{gathered}
\] & & & \\
\hline n Support Top & 4 & & & \\
\hline n Support Middle & 2 & & multiply of 2 & \\
\hline n Support Bottom & 3 & & & \\
\hline n Support Vertical & 3 & & \(2+\mathrm{n}\) Middle / 2 & \\
\hline n Span Top & 3 & & & \\
\hline n Span Middle & 2 & & multiply of 2 & \\
\hline n Span Bottom & 3 & & & \\
\hline n Span Vertical & 3 & & \(2+\mathrm{n}\) Middle / 2 & \\
\hline Horizontal Support s & 123 & mm & \[
\begin{aligned}
& \left(\mathrm{b}-2 \mathrm{c}_{\mathrm{c}}-2 \mathrm{~d}_{\mathrm{s}}-\mathrm{d}_{\mathrm{b}}\right) / \\
& {[\mathrm{min}(\mathrm{n} \text { top, } \mathrm{n} \text { bot })} \\
& -11
\end{aligned}
\] & \\
\hline Vertical Support s & 184.5 & mm & \[
\begin{gathered}
\left(\mathrm{h}-2 \mathrm{c}_{\mathrm{c}}-2 \mathrm{~d}_{\mathrm{s}}-\mathrm{d}_{\mathrm{b}}\right) / \\
(\mathrm{n} \text { Vertical }-1) \\
\hline
\end{gathered}
\] & | \\
\hline Horizontal Span s & 123 & mm & (b-2c \(\mathrm{c}_{\mathrm{c}}-2 \mathrm{~d}_{\mathrm{s}}-\mathrm{d}_{\mathrm{b}}\) )/ \([\min (\mathrm{n}\) top, n bot) -1] & \[
3
\] \\
\hline Vertical Span s & 184.5 & mm & \[
\begin{gathered}
\left(\mathrm{h}-2 \mathrm{c}_{\mathrm{c}}-2 \mathrm{~d}_{\mathrm{s}}-\mathrm{d}_{\mathrm{b}}\right) / \\
(\mathrm{n} \text { Vertical }-1)
\end{gathered}
\] & \\
\hline Check Longitudinal Spacing Support & OK & & \(\mathrm{s}<=300 \mathrm{~mm}\) ? & \\
\hline Check Longitudinal Spacing Span & OK & & \(\mathrm{s}<=300 \mathrm{~mm}\) ? & \\
\hline \(\mathrm{A}_{\mathrm{s}}+\mathrm{A}_{1}\) Suport Use & \[
\begin{gathered}
4417.864 \\
669
\end{gathered}
\] & mm2 & ( n top+n bot) \(\times 0.25 \times \pi \times \mathrm{d}_{\mathrm{b}}{ }^{2}+\mathrm{n}\) \(\operatorname{mid} \times 0.25 \times \pi \times \mathrm{d}_{b t}{ }^{2}\) & \\
\hline \(\mathrm{A}_{\mathrm{s}}+\mathrm{A}_{1}\) Span Use & \[
\begin{gathered}
3926.990 \\
817
\end{gathered}
\] & mm2 & \[
\begin{gathered}
\text { (n top }+\mathrm{n} \text { bot) } \\
\times 0.25 \times \pi \times \mathrm{d}_{\mathrm{b}}{ }^{2}+\mathrm{n} \\
\operatorname{mid} \times 0.25 \times \pi \times \mathrm{d}_{\mathrm{bt}}{ }^{2}
\end{gathered}
\] & \\
\hline Check Flexure + Torsion Support & OK & & \[
\begin{gathered}
\mathrm{A}_{\mathrm{s}}+\mathrm{A}_{\mathrm{l}} \text { Use>=} \begin{array}{c} 
\\
\\
+\mathrm{A}_{\mathrm{s}} \text { Need? }
\end{array} \\
\hline
\end{gathered}
\] & \\
\hline Check Flexure + Torsion Span & OK & & \[
\begin{gathered}
\mathrm{A}_{\mathrm{s}}+\mathrm{A}_{\mathrm{l}} \text { Use>= } \mathrm{A}_{\mathrm{s}} \\
\\
+\mathrm{A}_{1} \text { Need? } \\
\hline
\end{gathered}
\] & \\
\hline
\end{tabular}

\subsection*{2.10.6. Conclusion}

In conclusion the beam is \(500 \times 500 \mathrm{~mm} 2\) with a length of 5.5 meter. The concrete strength is fc' 30 MPa and steel fy 400 MPa . The concrete cover is 40 mm . The recap for reinforcement is presented in Table 2. 74. With hook use \(135^{\circ}\) and length of 78 mm .

Table 2. 74 All Beam Reinforcement Recap
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Reinforcement Recap} \\
\hline \multirow{4}{*}{At support} & Top & 4D25 & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & Middle & 2D25 & & \\
\hline & Bottom & 3D25 & & \\
\hline & Confinement & D13-100 & & \\
\hline \multirow{4}{*}{At} & Top \(/\) A & 3D25 & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & Middle & 2D25 & & \\
\hline & Bottom & 3D25 & & \\
\hline & Confinement & D13-200 & & \\
\hline \multicolumn{5}{|c|}{Transversal Hook Length} \\
\hline Hook Type & 135 & & 。 & \\
\hline \(1_{\text {ext }}\) & 78 & & mm & \\
\hline
\end{tabular}

\subsection*{2.11. Tie Beam}


Figure 2. 39 Tie Beam Design Flowchart

Tie beam is a beam that is placed on the ground to transfer the load from column to foundation. The properties of tie beam can be seen in Table 2. 75. The procedure of tie beam design is shown in Figure 2. 39.

Table 2. 75 Tie Beam Properties
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Value & Unit & Eq. & Reference \\
\hline NET Length of the Tie Beam, Ln & 3000 & mm & & \\
\hline Tie Beam Width, b & 350 & mm & & \\
\hline Tie Beam Height, h & 350 & mm & \[
4-\sqrt{4} 12
\] & \\
\hline Diameter of Longitudinal Reinforcement, db & 19 & mm &  &  \\
\hline Diameter of Stirrup Reinforcement, ds & 10 & mm & & \[
\frac{8}{8}
\] \\
\hline Concrete Cover, cc & 40 & mm & & \\
\hline Effective Tie Beam Height, d & 290.5 & mm & & \\
\hline Concrete Compressive Strength, fc' & 30 & MPa & & \\
\hline Yield Strength of Longitudinal Reinforcement, fy & 400 & MPa &  & \\
\hline Yield Strength of Transverse Reinforcement, fyv & 400 & MPa & & \\
\hline \(\beta 1\) & 0.8357 & & \[
\begin{gathered}
0.65<=0.85-0.05 * \\
\left(\mathrm{fc}^{\prime}-28\right) / 7<=0.85 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { SNI 2847:2019 Table } \\
22.2 .2 .4 .3
\end{gathered}
\] \\
\hline \(\lambda\) & 1 & & Assuming not using lightweight concrete & \\
\hline Minimum Width Requirements & OK & & \[
\begin{gathered}
\mathrm{b}>=\min (\mathrm{Ln} / 20,450 \\
\mathrm{mm}) ?
\end{gathered}
\] & SNI 2847:2019 Article
18.13.3.2 \\
\hline
\end{tabular}

\subsection*{2.11.1. Loading}

The axial force that works on tie beam is in Table 2. 76. The loads that work on tie beam are from column, different settlement of foundation, and gravitational load. Because the axial force \((\mathrm{Pu})\) is smaller than \(10 \%\) of cross-sectional area times
compressive strength, the axial strength does not need to be calculated but rather the flexural reinforcement must be considered.

Table 2. 76 Calculation of Axial Force
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Value & Unit & Eq. & Reference \\
\hline Column Axial Force Due to Factored Gravity Load, Pg & \[
\begin{gathered}
\hline 1916.424 \\
5 \\
\hline
\end{gathered}
\] & kN & \[
\begin{gathered}
\hline \text { Combination } 1.2 \mathrm{D}+ \\
1.6 \mathrm{~L} \\
\hline
\end{gathered}
\] & \\
\hline Parameter of Spectral Response Acceleration in Short Period, SDS & 1.5000 & g & Input & \\
\hline Tie Beam Axial Force, Pu & 287.4637 & kN & \(10 \%\) * SDS * Pg & \begin{tabular}{l}
SNI 1726:2019 \\
Article 7.13.6.2
\end{tabular} \\
\hline Axial Forces Should Be Calculated? & \[
\begin{gathered}
\text { Not } \\
\text { Required }
\end{gathered}
\] & & \(\mathrm{Pu}>0.1 \mathrm{Ag} \mathrm{fc} ' ?\) & \\
\hline \multicolumn{5}{|c|}{Calculation of Internal Force Due to Differential Settlement} \\
\hline Concrete Modulus of Elasticity, Ec & \[
\begin{gathered}
29725.41 \\
00 \\
\hline
\end{gathered}
\] & MPa & \(4700 \mathrm{Vfc}^{\prime}\) & \[
\begin{gathered}
\hline \text { SNI 2847:2019 } \\
\text { Article 19.2.2 } \\
\hline
\end{gathered}
\] \\
\hline Cross-Section Inertia, Ig & \[
\begin{aligned}
& 12505208 \\
& 33.3333 \\
& \hline
\end{aligned}
\] & mm4 & \(1 / 12 \mathrm{~b} \mathrm{~h} 3\) & \\
\hline Differential Settlement, \(\Delta\) & 5.4000 & mm & Input (Ln/300 can be used if there is no data) & SNI 8460:2017 Article 9.2.4.3 \\
\hline Suppport Moment Due to Differential Settlement, Mdiff & 133.8201 & kNm & 6*Ec * Ig * \(\Delta / \mathrm{Ln} 2\) & Hibbeler, R.C. "Structural Analysis" \\
\hline Support Shear Force Due to Differential Settlement, Vdiff & 89.2134 & kN & \[
\begin{gathered}
\mathrm{dM} / \mathrm{dx}(\mathrm{x}=\mathrm{L})=12 \mathrm{Ec} \\
\mathrm{Ig} \Delta / \mathrm{Ln} 3
\end{gathered}
\] & \\
\hline \multicolumn{5}{|c|}{Calculation of Internal Force Due to Gravitational Loads} \\
\hline Reinforced Concrete Specific Gravity, BJc & 23.5360 & \[
\begin{gathered}
\mathrm{kN} / \mathrm{m} \\
3
\end{gathered}
\] & Input & \\
\hline Uniform Load Due to SelfWeight, qDL & 2.8832 & kN/m & BJc * b \% h & \\
\hline Level Height, hn & 4.0000 & m & Input & \\
\hline Partition Wall Load per m2, qA, partition wall & 2.5000 & \[
\begin{gathered}
\hline \mathrm{kN} / \mathrm{m} \\
2 \\
\hline
\end{gathered}
\] & & \\
\hline Uniform Weight Due to Partition Wall Load, qSIDL & 10.0000 & kN/m & \[
\begin{gathered}
\text { qA,partition wall * } \\
\text { hn }
\end{gathered}
\] & \\
\hline Ultimate Uniform Load Due to Gravitational Loads, qD & 18.0364 & kN/m & 1.4 (qDL + qSIDL) & \\
\hline Support Ultimate Moment Due to Gravitational Loads, MD,sup & -13.5273 & kNm & \(-1 / 12\) * qD * Ln 2 & \\
\hline Span Ultimate Moment Due to Gravitational Loads, MD,spa & 6.7637 & kNm & 1/24*qD * Ln2 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Value & Unit & Eq. & Reference \\
\hline \begin{tabular}{c} 
Support Ultimate Shear \\
Force Due to Gravitational \\
Loads, VD,sup
\end{tabular} & 27.0546 & kN & \(\mathrm{qD} * \mathrm{Ln} / 2\) & \\
\hline \begin{tabular}{c} 
Span Ultimate Shear Force \\
Due to Gravitational Loads, \\
VD,spa
\end{tabular} & 13.5273 & kN & \(\mathrm{qD} * \mathrm{Ln} / 4\) & \\
\hline
\end{tabular}

\subsection*{2.11.2. Longitudinal Reinforcement}

Since the axial load that works on tie beam is smaller than 0.1 Agfc ', the longitudinal reinforcement for flexure must be considered. The check will be determined by the moment at negative support, positive support, negative span, and positive span. The calculation of longitudinal reinforcement is presented in Table 2. 77.

Table 2. 77 Tie Beam Flexural Reinforcement
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Value & Unit & Eq. & Reference \\
\hline \multicolumn{5}{|c|}{Negative Support} \\
\hline \begin{tabular}{l}
Amount of Support \\
Negative \\
Reinforcement, n
\end{tabular} & 6.0000 & & & \\
\hline db & \[
\begin{gathered}
19.000 \\
0
\end{gathered}
\] & mm & & \\
\hline Net Spacing for Each Reinforcement & \[
\begin{gathered}
46.200 \\
0 \\
\hline
\end{gathered}
\] & mm & \[
\begin{gathered}
(\mathrm{b}-2 \mathrm{cc}-2 \mathrm{ds}-\mathrm{db}) /(\mathrm{n}- \\
1) \\
\hline
\end{gathered}
\] & \\
\hline Net Distance Check & OK & & Net Spacing >= db and 25 mm ? & \begin{tabular}{l}
SNI 2847:2019 \\
Article 25.2.1
\end{tabular} \\
\hline Number of Layers & 2.0000 & & & \\
\hline As use & \[
\begin{gathered}
1701.1 \\
724
\end{gathered}
\] & mm2 & \(\mathrm{n} * \pi / 4 * \mathrm{db} 2\) & \\
\hline As min, 1 & \[
\begin{gathered}
348.06 \\
06
\end{gathered}
\] & mm2 & (fc')0.5 / (4 * fy) * b * d & SNI 2847:2019 Article 9.6.1.2 \\
\hline As min, 2 & \[
\begin{gathered}
355.86 \\
25
\end{gathered}
\] & mm2 & \(1.4 /(4 \times \mathrm{fy}) \times \mathrm{b} \times \mathrm{d}\) & \begin{tabular}{l}
SNI 2847:2019 \\
Article 9.6.1.2
\end{tabular} \\
\hline Check As min & OK & & As Use >= As min? & \\
\hline a & \[
\begin{gathered}
76.243 \\
0 \\
\hline
\end{gathered}
\] & mm & As \(\times \mathrm{fy} /\left(0.85 \times \mathrm{fc}^{\prime} \times \mathrm{b}\right)\) & \begin{tabular}{l}
SNI 2847:2019 \\
Article 22.2.2.4.1
\end{tabular} \\
\hline Mn & \[
\begin{gathered}
171.73 \\
57
\end{gathered}
\] & kN-m & As \(\times\) fy \(\times(\mathrm{d}-\mathrm{a} / 2)\) & \[
\begin{gathered}
\text { SNI 2847:2019 } \\
\text { Article 22.2.2.4.1 }
\end{gathered}
\] \\
\hline c & \[
\begin{gathered}
91.231 \\
0
\end{gathered}
\] & mm & \(\mathrm{a} / \beta 1\) & \begin{tabular}{l}
SNI 2847:2019 \\
Article 22.2.2.4.1
\end{tabular} \\
\hline £S & 0.0066 & & \((\mathrm{d}-\mathrm{c}) / \mathrm{c} \times 0.003\) & SNI 2847:2019 Article 22.2.1.2, 22.2.2.1 \\
\hline \(\phi\) & 0.9000 & & \[
\begin{gathered}
0.65<=0.65+(\varepsilon s-0.002) \\
/ 0.003 \times 0.25<=0.9
\end{gathered}
\] & SNI 2847:2019 Table 21.2.2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Value & Unit & Eq. & Reference \\
\hline \(\phi \mathrm{Mn}\) & \[
\begin{gathered}
154.56 \\
22
\end{gathered}
\] & \(\mathrm{kN}-\mathrm{m}\) & \(\phi \times \mathrm{Mn}\) & \\
\hline Mu,support (-) & \[
\begin{array}{|c|}
\hline 147.34 \\
74
\end{array}
\] & \(\mathrm{kN}-\mathrm{m}\) & 0.0000 & \\
\hline Check Capacity & OK & & \(\phi \mathrm{Mn}>\mathrm{Mu}\) ? & \\
\hline \multicolumn{5}{|c|}{Positive Support} \\
\hline n & 6.0000 & & & \\
\hline db & \[
\begin{array}{|c|}
\hline 19.000 \\
0
\end{array}
\] & mm & & \\
\hline Net Spacing for Each Reinforcement & \[
\begin{gathered}
46.200 \\
0
\end{gathered}
\] & mm & \begin{tabular}{l}
\[
(\mathrm{b}-2 \mathrm{cc}-2 \mathrm{ds}-\mathrm{db}) /(\mathrm{n}-
\] \\
1)
\end{tabular} & \\
\hline Net Distance Check & OK & & Net Spacing >= db and 25 mm ? & \begin{tabular}{l}
SNI 2847:2019 \\
Article 25.2.1
\end{tabular} \\
\hline Number of Layers & 2.0000 & & (2) & \\
\hline As use & \[
\begin{gathered}
1701.1 \\
724
\end{gathered}
\] & mm2 & \(\mathrm{n} \times \pi / 4 \times \mathrm{db} 2\) & \\
\hline As min, 1 & \[
\begin{gathered}
348.06 \\
06 \\
\hline
\end{gathered}
\] & mm2 & \(\left(\mathrm{fc}^{\prime}\right) 0.5 /(4 \times \mathrm{fy}) \times \mathrm{b} \times \mathrm{d}\) & \begin{tabular}{l}
SNI 2847:2019 \\
Article 9.6.1.2
\end{tabular} \\
\hline As min, 2 & \[
\begin{array}{|c|}
\hline 355.86 \\
25 \\
\hline
\end{array}
\] & mm2 & \(1.4 /(4 \times f y) \times b \times d\) & \begin{tabular}{l}
SNI 2847:2019 \\
Article 9.6.1.2
\end{tabular} \\
\hline Check As min & OK & , & As Use \(>=\) As min? & \\
\hline a & \[
\begin{array}{|c|}
\hline 76.243 \\
0 \\
\hline
\end{array}
\] & \[
\mathrm{mm}
\] & As \(\times \mathrm{fy} /\left(0.85 \times \mathrm{fc}^{\prime} \times \mathrm{b}\right)\) & \[
\begin{gathered}
\text { SNI 2847:2019 } \\
\text { Article 22.2.2.4.1 } \\
\hline
\end{gathered}
\] \\
\hline Mn & \[
\begin{gathered}
171.73 \\
57
\end{gathered}
\] & \(\mathrm{kN}-\mathrm{m}\) & As \(\times\) fy \(\times(\mathrm{d}-\mathrm{a} / 2)\) & \[
\begin{gathered}
\text { SNI 2847:2019 } \\
\text { Article 22.2.2.4.1 }
\end{gathered}
\] \\
\hline c & \[
\begin{gathered}
91.231 \\
0
\end{gathered}
\] & mm & a/ \(\beta 1\) & \[
\begin{gathered}
\text { SNI 2847:2019 } \\
\text { Article 22.2.2.4.1 }
\end{gathered}
\] \\
\hline ES & 0.0066 &  & \((\mathrm{d}-\mathrm{c}) / \mathrm{c} \times 0.003\) & SNI 2847:2019 Article 22.2.1.2, 22.2.2.1 \\
\hline \(\phi\) & 0.9000 & & \[
\begin{gathered}
0.65<=0.65+(\varepsilon s-0.002) \\
10.003 \times 0.25<=0.9
\end{gathered}
\] & \[
\begin{array}{|c}
\hline \text { SNI 2847:2019 Table } \\
21.2 .2 \\
\hline
\end{array}
\] \\
\hline \(\phi \mathrm{Mn}\) & \[
\begin{gathered}
154.56 \\
22
\end{gathered}
\] & kN-m & \(\phi \times \mathrm{Mn}\) & \\
\hline Mu & \[
\begin{gathered}
133.82 \\
01 \\
\hline
\end{gathered}
\] & kN-m & & \\
\hline Check \(\phi \mathrm{Mn}>\mathrm{Mu}\) & OK & & \(\phi \mathrm{Mn}>\mathrm{Mu}\) ? & \\
\hline \multicolumn{5}{|c|}{Negative Span} \\
\hline n & 3.0000 & & & \\
\hline db & \[
\begin{array}{|c|}
\hline 19.000 \\
0
\end{array}
\] & mm & & \\
\hline Net Spacing for Each Reinforcement & \[
\begin{gathered}
115.50 \\
00 \\
\hline
\end{gathered}
\] & mm & \[
\begin{gathered}
(\mathrm{b}-2 \mathrm{cc}-2 \mathrm{ds}-\mathrm{db}) /(\mathrm{n}- \\
1) \\
\hline
\end{gathered}
\] & \\
\hline Net Distance Check & OK & & Net Spacing \(>=\mathrm{db}\) and 25 mm ? & \begin{tabular}{l}
SNI 2847:2019 \\
Article 25.2.1
\end{tabular} \\
\hline Number of Layers & 2.0000 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Value & Unit & Eq. & Reference \\
\hline As use & \[
\begin{array}{|c|}
\hline 850.58 \\
62 \\
\hline
\end{array}
\] & mm2 & \(\mathrm{n} \times \pi / 4 \times \mathrm{db} 2\) & \\
\hline As min, 1 & \[
\begin{gathered}
348.06 \\
06
\end{gathered}
\] & mm2 & \((\mathrm{fc}\) ') \(0.5 /(4 \times \mathrm{fy}) \times \mathrm{b} \times \mathrm{d}\) & SNI 2847:2019
Article 9.6.1.2 \\
\hline As min, 2 & \[
\begin{gathered}
355.86 \\
25 \\
\hline
\end{gathered}
\] & mm2 & \(1.4 /(4 \times \mathrm{fy}) \times \mathrm{b} \times \mathrm{d}\) & \[
\begin{gathered}
\text { SNI 2847:2019 } \\
\text { Article 9.6.1.2 } \\
\hline
\end{gathered}
\] \\
\hline Check As min & OK & & As Use \(>=\) As min? & \\
\hline \multicolumn{5}{|c|}{Positive Span} \\
\hline n & 3.0000 & & & \\
\hline db & \[
\begin{gathered}
19.000 \\
0
\end{gathered}
\] & mm & /4-7 & \\
\hline Net Spacing for Each Reinforcement & \[
\begin{gathered}
115.50 \\
00 \\
\hline
\end{gathered}
\] & mm & \begin{tabular}{l}
\[
(b-2 c c-2 d s-d b) /(n-
\] \\
1)
\end{tabular} & \\
\hline Net Distance Check & OK & & Net Spacing >= db and 25 mm ? & SNI 2847:2019 Article 25.2.1 \\
\hline Number of Layers & 2.0000 & & & \\
\hline As use & \[
\begin{gathered}
850.58 \\
62
\end{gathered}
\] & mm2 & \(\mathrm{n} \times \pi / 4 \times \mathrm{db} 2\) & \\
\hline As min, 1 & \[
\begin{gathered}
348.06 \\
06
\end{gathered}
\] & mm2 & \((\mathrm{fc}\) ') \(0.5 /(4 \times \mathrm{fy}) \times \mathrm{b} \times \mathrm{d}\) & \begin{tabular}{l}
SNI 2847:2019 \\
Article 9.6.1.2
\end{tabular} \\
\hline As min, 2 & \[
\begin{gathered}
355.86 \\
25 \\
\hline
\end{gathered}
\] & mm2 & \(1.4 /(4 \times \mathrm{fy}) \times \mathrm{b} \times \mathrm{d}\) & SNI 2847:2019 Article 9.6.1.2 \\
\hline Check As min & OK & & As Use \(>=\) As min? & \\
\hline a & \[
\begin{gathered}
38.121 \\
5 \\
\hline
\end{gathered}
\] & mm & As \(\times \mathrm{fy} /\left(0.85 \times \mathrm{fc}^{\prime} \times \mathrm{b}\right)\) & \[
\begin{gathered}
\text { SNI 2847:2019 } \\
\text { Article 22.2.2.4.1 }
\end{gathered}
\] \\
\hline Mn & \[
\begin{gathered}
92.353 \\
0
\end{gathered}
\] & kN-m & As \(\times\) fy \(\times(\mathrm{d}-\mathrm{a} / 2)\) & \begin{tabular}{l}
SNI 2847:2019 \\
Article 22.2.2.4.1
\end{tabular} \\
\hline & \[
\begin{gathered}
45.615 \\
5
\end{gathered}
\] & mm & a/ \(\beta 1\) & \[
\begin{gathered}
\hline \text { SNI 2847:2019 } \\
\text { Article 22.2.2.4.1 }
\end{gathered}
\] \\
\hline \(\varepsilon S\) & 0.0161 & & \((\mathrm{d}-\mathrm{c}) / \mathrm{c} \times 0.003\) & \begin{tabular}{l}
SNI 2847:2019 \\
Article 22.2.1.2, 22.2.2.1
\end{tabular} \\
\hline \(\phi\) & 0.9000 & & \[
\begin{gathered}
0.65<=0.65+(\varepsilon s-0.002) \\
/ 0.003 \times 0.25<=0.9
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { SNI 2847:2019 Table } \\
21.2 .2 \\
\hline
\end{array}
\] \\
\hline \(\phi \mathrm{Mn}\) & \[
\begin{gathered}
83.117 \\
7 \\
\hline
\end{gathered}
\] & kN-m & \(\phi \times \mathrm{Mn}\) & \\
\hline Mu & 6.7637 & kN-m & & \\
\hline Check \(\phi \mathrm{Mn}>\mathrm{Mu}\) & OK & & \(\phi \mathrm{Mn}>\mathrm{Mu}\) ? & \\
\hline
\end{tabular}

\subsection*{2.11.3. Transversal Reinforcement}

The total shear strength of beam is determined by the shear strength of concrete itself ( Vc ) and the shear strength of steel (Vs). The shear strength will be checked at support and span. The calculation of shear strength and transversal reinforcement is presented in Table 2. 78.

Table 2. 78 Shear Strength and Transversal Reinforcement
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Value & Unit & Eq. & Reference \\
\hline \multicolumn{5}{|c|}{Support} \\
\hline Amount of Footing & 2.0000 & & & \\
\hline Av & \[
\begin{gathered}
157.079 \\
6 \\
\hline
\end{gathered}
\] & mm2 & \(\mathrm{n} \times \pi / 4 \times \mathrm{ds} 2\) & \\
\hline Spacing & 75.0000 & mm & Input & \\
\hline Vu & \[
\begin{gathered}
116.268 \\
0 \\
\hline
\end{gathered}
\] & kN & \[
\sqrt{4} 12
\] & \\
\hline \(\phi\) & 0.7500 & & \[
8
\] & \[
\begin{gathered}
\hline \text { SNI 2847:2019 Article } \\
\text { 12.5.3.2, 21.2.4 } \\
\hline
\end{gathered}
\] \\
\hline \(\mathrm{Vu} / \phi\) & \[
\begin{gathered}
155.024 \\
0
\end{gathered}
\] & kN & & \\
\hline Maximum
Spacing
Specifier Limit & \[
\begin{gathered}
183.776 \\
0
\end{gathered}
\] & kN & \(0.33 \times(\mathrm{fc}) 0.5 \times \mathrm{b} \times \mathrm{d}\) & SNI 2847:2019 Article 9.7.6.2.2 \\
\hline Max Spacing 1 & \[
\begin{gathered}
145.250 \\
0 \\
\hline
\end{gathered}
\] & mm & d/4 ord/2 & \[
\begin{gathered}
\hline \text { SNI 2847:2019 Article } \\
\text { 9.7.6.2.2 } \\
\hline
\end{gathered}
\] \\
\hline Max Spacing 2 & \[
\begin{gathered}
\hline 600.000 \\
0 \\
\hline
\end{gathered}
\] & mm & 300 mm or 600 mm & \[
\begin{gathered}
\hline \text { SNI 2847:2019 Article } \\
9.7 .6 .2 .2 \\
\hline
\end{gathered}
\] \\
\hline Check Spacing & OK & & & \\
\hline Vs & \[
\begin{gathered}
243.368 \\
7 \\
\hline
\end{gathered}
\] & kN & Av \(\times \mathrm{fy} \times \mathrm{d} / \mathrm{s}\) & \[
\begin{gathered}
\text { SNI 2847:2019 Article } \\
22.5 .10 .5 .3 \\
\hline
\end{gathered}
\] \\
\hline Boundary Vs & \[
\begin{gathered}
367.552 \\
0
\end{gathered}
\] & kN & \(0.66 \times(\mathrm{fc}) 0.5 \times \mathrm{b} \times \mathrm{d}\) & \[
\begin{gathered}
\text { SNI 2847:2019 Article } \\
\text { 22.5.1.2 }
\end{gathered}
\] \\
\hline Vc & 94.6725 & kN & \(0.17 \times(\mathrm{fc}) 0.5 \times \mathrm{b} \times \mathrm{d}\) & \[
\begin{gathered}
\text { SNI 2847:2019 Article } \\
\text { 22.5.5.1 } \\
\hline
\end{gathered}
\] \\
\hline Vn & \[
\begin{gathered}
338.041 \\
2 \\
\hline
\end{gathered}
\] & kN & \(\mathrm{Vc}+\mathrm{Vs}\) & \\
\hline \(\phi \mathrm{Vn}\) & \[
\begin{gathered}
253.530 \\
9 \\
\hline
\end{gathered}
\] & & & \\
\hline Check Capacity & OK & & \(\phi \mathrm{Vn}>=\mathrm{Vu}\) ? & \\
\hline \multicolumn{5}{|c|}{Span} \\
\hline Amount of Footing & 2.0000 & & & \\
\hline Av & \[
\begin{gathered}
157.079 \\
6 \\
\hline
\end{gathered}
\] & mm2 & \(\mathrm{n} \times \pi / 4 \times \mathrm{ds} 2\) & \\
\hline Spacing & \[
\begin{gathered}
100.000 \\
0 \\
\hline
\end{gathered}
\] & mm & & \\
\hline Vu & 13.5273 & kN & & \\
\hline \(\phi\) & 0.7500 & & & \[
\begin{gathered}
\hline \text { SNI 2847:2019 Article } \\
\text { 12.5.3.2, 21.2.4 } \\
\hline
\end{gathered}
\] \\
\hline \(\mathrm{Vu} / \phi\) & 18.0364 & kN & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Value & Unit & Eq. & Reference \\
\hline \[
\begin{gathered}
\text { Maximum } \\
\text { Spacing } \\
\text { Specifier Limit }
\end{gathered}
\] & \[
\begin{gathered}
183.776 \\
0
\end{gathered}
\] & kN & \(0.33 \times(\mathrm{fc}\) ' \() 0.5 \times \mathrm{b} \times \mathrm{d}\) & SNI 2847:2019 Article
9.7.6.2.2 \\
\hline Max Spacing 1 & \[
\begin{gathered}
145.250 \\
0 \\
\hline
\end{gathered}
\] & mm & d/4 atau d/2 & SNI 2847:2019 Article 9.7.6.2.2 \\
\hline Max Spacing 2 & \[
\begin{gathered}
600.000 \\
0
\end{gathered}
\] & mm & 300 mm or 600 mm & SNI 2847:2019 Article
9.7.6.2.2 \\
\hline Check Spacing & OK & & & \\
\hline Vs & \[
\begin{gathered}
182.526 \\
5
\end{gathered}
\] & kN & Av \(\times \mathrm{fy} \times \mathrm{d} / \mathrm{s}\) & SNI 2847:2019 Article
22.5.10.5.3 \\
\hline Boundary Vs & \[
\begin{gathered}
367.552 \\
0 \\
\hline
\end{gathered}
\] & kN & \(0.66 \times\left(\mathrm{fc}^{\prime}\right) 0.5 \times \mathrm{b} \times \mathrm{d}\) & SNI 2847:2019 Article
22.5.1.2 \\
\hline Vc & 94.6725 & kN & \(0.17 \times\left(\mathrm{fc}^{\prime}\right) 0.5 \times \mathrm{b} \times \mathrm{d}\) & \[
\begin{gathered}
\hline \text { SNI 2847:2019 Article } \\
\text { 22.5.5.1 }
\end{gathered}
\] \\
\hline Vn & \[
\begin{gathered}
277.199 \\
0 \\
\hline
\end{gathered}
\] & kN & \(\mathrm{Vc}+\mathrm{Vs}\) & \\
\hline \(\phi \mathrm{Vn}\) & \[
\begin{gathered}
207.899 \\
3 \\
\hline
\end{gathered}
\] & & & \\
\hline Check Capacity & OK & & \(\phi \mathrm{Vn}^{\prime}>=\mathrm{Vu}\) ? & 0 \\
\hline
\end{tabular}

\subsection*{2.11.4. Conclusion}

The tie beam will use reinforced concrete \(350 \times 350 \mathrm{~mm} 2\) and the recap for tie beam is presented in Table 2. 79. The hook length is 75 mm using \(135^{\circ}\) bending.

Table 2. 79 Tie Beam Reinforcement Recap
\begin{tabular}{|c|c|cc|}
\hline \multicolumn{3}{|c|}{ Reinforcement Recap } \\
\hline Support Top & 6D19 & & \\
\hline Support Bottom & 6D19 & & \\
\hline Confinement & 1D10-75 & \\
\hline Span Top & 3D19 & \\
\hline Span Bottom & 3D19 & \\
\hline
\end{tabular}


\subsection*{2.12. Column Design}


Figure 2. 40 Column Design Flowchart

The column for SRPMK building must meet the requirement from SNI 28147:2019 chapter 18.7. The preliminary design of column dimension is presented in Table 2. 80. The procedure to design a column is shown in Figure 2. 40.

Table 2. 80 Column Dimension and Properties
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline Column & BC & & \\
\hline b & 650 & mm & \\
\hline h & 650 & mm & \\
\hline Longitudinal rebar & 16 & D & 25 \\
\hline n of y rebar & 5 & & number of rebar in y direction \\
\hline n of x rebar & 5 & & number of rebar in x direction \\
\hline transversal rebar & 10 & mm & \\
\hline L & 4000 & mm & \\
\hline fc' & 30 & Mpa & \\
\hline fy & 400 & Mpa & \\
\hline cover & 40 & mm & \\
\hline lo & 650 & mm & plastic hinge region/support \\
\hline non lo & 2600 & mm & non plastic hinge region/span \\
\hline
\end{tabular}

\subsection*{2.12.1. Loading}

The loadings of column are from dead load, live load, and earthquake load. These loads come from ETABS Output for upper column, designed column, and lower column. For moment calculation the moment is only from designed column at top edge column and bottom edge column. The shear load comes from maximum earthquake that happen in X or Y direction. The loading is presented in Table 2. 81. The load combination of column can be seen in Table 2. 82.

Table 2. 81 Column Loading
\begin{tabular}{|c|c|c|c|}
\hline Loading & D & L & Qe \\
\hline Axial Load (kN) & & & \\
\hline Upper Col & 1466.6924 & 1322.5082 & 1089.2903 \\
\hline Designed Col & 1938.3739 & 1752.583 & 1469.1948 \\
\hline Lower Col & 2411.3515 & 2183.9467 & 1804.4163 \\
\hline Moment (kNm) & & & \\
\hline Top edge col & 96.8718 & 95.9499 & 659.7767 \\
\hline Bottom edge col & 96.8718 & 95.9499 & 659.7767 \\
\hline Shear (kN) & 0 & 0 & 280.9338 \\
\hline
\end{tabular}

Table 2. 82 Load Combination of Column
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Load Combination} \\
\hline Column & Axial (kN) & Top Moment (kNm) & Bottom Moment (kNm) & \begin{tabular}{l}
Shear \\
(kN)
\end{tabular} \\
\hline \multicolumn{5}{|c|}{Upper column} \\
\hline 1.4D & \[
\begin{gathered}
2053.3693 \\
6 \\
\hline
\end{gathered}
\] & - & - & - \\
\hline 1.2D+1.6L & 3876.044 & - & - & - \\
\hline \[
\begin{gathered}
1.2 \mathrm{D}+1 \mathrm{E}+0.5 \\
\mathrm{~L}
\end{gathered}
\] & \[
\begin{gathered}
3510.5752 \\
8 \\
\hline
\end{gathered}
\] & - & - & - \\
\hline \(0.9 \mathrm{D}+1 \mathrm{E}\) & \[
\begin{gathered}
2409.3134 \\
6
\end{gathered}
\] & - & - & - \\
\hline \multicolumn{5}{|c|}{Designed Column} \\
\hline 1.4D & \[
\begin{gathered}
\hline 2713.7234 \\
6 \\
\hline
\end{gathered}
\] & 135.62052 & 135.62052 & 0 \\
\hline \(1.2 \mathrm{D}+1.6 \mathrm{~L}\) & \[
\begin{gathered}
5130.1814 \\
8 \\
\hline
\end{gathered}
\] & 269.766 & 269.766 & 0 \\
\hline \[
\frac{1.2 \mathrm{D}+1 \mathrm{E}+0.5}{\mathrm{~L}}
\] & \[
\begin{gathered}
4671.5349 \\
8 \\
\hline
\end{gathered}
\] & 823.99781 & 823.99781 & \\
\hline 1.2D-1E+0.5L & \[
\begin{gathered}
1733.1453 \\
8
\end{gathered}
\] & -495.55559 & -495.55559 & 280.9338 \\
\hline \(0.9 \mathrm{D}+1 \mathrm{E}\) & \[
\begin{gathered}
3213.7313 \\
1
\end{gathered}
\] & 746.96132 & 746.96132 & 280.9338 \\
\hline \(0.9 \mathrm{D}-1 \mathrm{E}\) & 275.34171 & -572.59208 & -572.59208 & \\
\hline \multicolumn{5}{|c|}{Lower column} \\
\hline 1.4D & 3375.8921 & & - & - \\
\hline \(1.2 \mathrm{D}+1.6 \mathrm{~L}\) & \[
\begin{gathered}
6387.9365 \\
2
\end{gathered}
\] & & & \\
\hline \[
1.2 \mathrm{D}+1 \mathrm{E}+0.5
\] & \[
\begin{gathered}
5790.0114 \\
5 \\
\hline
\end{gathered}
\] & & & - \\
\hline \(0.9 \mathrm{D}+1 \mathrm{E}\) & \[
\begin{gathered}
3974.6326 \\
5 \\
\hline
\end{gathered}
\] & & - & - \\
\hline
\end{tabular}

\subsection*{2.12.2. Dimension Check}

The dimension of column must be checked to meet the requirements in SNI 2847:2019. The variables that must be considered is width-height ratio (b/h), steel area (Ast), column section area ( Ag ), axial force ( Pu ), concrete compressive strength ( fc '). If the axial load that works on column is larger than \(30 \%\) of column cross-section area times compressive strength, than the axial load must be considered and analyzed using SNI 2847:2019 Table 18.7.5.4. Since the maximum axial load in this column 5130.18 kN is larger than \(0.3 \mathrm{Agfc}{ }^{\prime} 3802.5 \mathrm{kN}\), so the axial load is considered.

Table 2. 83 Column Dimension Check
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Check Dimension } \\
\hline Description & Value & Unit & Note \\
\hline Smallest dimension & 650 & mm & \\
\hline Check if \(>300 \mathrm{~mm}\) & OK & & SNI 2847:2019 chapter 8.7.2.1a \\
\hline \(\mathrm{b} / \mathrm{h}\) & 1 & & \\
\hline Check b/h>0.4 & OK & & SNI 2847:2019 chapter 8.7.2.1b \\
\hline Ast & 7853.981634 & mm 2 & \\
\hline Ag & 422500 & mm 2 & \\
\hline 0.01 Ag & 4225 & mm 2 & \\
\hline 0.06 Ag & 25350 & mm 2 & \\
\hline Check \(0.01 \mathrm{Ag}<\mathrm{Ast}<0.06 \mathrm{Ag}\) & OK & & SNI 2847:2019 chapter 18.7.4.1 \\
\hline Pu & 5130.18148 & kN & \\
\hline 0.3 Agfc & 3802.5 & kN & \\
\hline Check Pu>0.3Agfc' & OK & & SNI 2847:2019 table 18.7.5.4 \\
\hline\(\rho \mathrm{Pg}\) & 0.018589306 & & \(16 \times \pi \times 0.25 \times 25^{\wedge} 2 / \mathrm{Ag}\) \\
\hline
\end{tabular}

\subsection*{2.12.3. Longitudinal Reinforcement}

One of the requirements in SRPMK building for column in SNI 2847:2019 chapter 18.7.3.2 is that the column must be strong, and the beam must be weaker. This is to ensure that the resistance of building to withstand earthquake from strong to weak start from foundation->beam-column joint->column->beam. This condition achieves if \(\sum \mathrm{Mnc} \geq(1.2) \sum \mathrm{Mnb}\). If this condition is achieved, the first possible failure is beam, which is less dangerous than the failure of column, beam-column joint, or foundation. The longitudinal reinforcement of column must be checked from the beam negative moment \(\left(\mathrm{Mnb}_{\text {left }}\right)\), beam positive moment ( \(\mathrm{Mnb}_{\text {right }}\) ), column top edge moment \(\left(\mathrm{Mnc}_{\mathrm{a}}\right)\), and column bottom edge moment ( \(\mathrm{Mnc}_{\mathrm{b}}\) ) as in Figure 2. 41 Moments act on Column. The calculation of bending moment strength is presented in Table 2. 84.


Figure 2. 41 Moments act on Column (Source: Setiawan. 2016)

Table 2. 84 Column Minimum Bending Strength
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Check Minimum Bending Strength } \\
\hline Description & Value & Unit & Note \\
\hline fc' & 30 & Mpa & \\
\hline fy & 400 & Mpa & \\
\hline b & 500 & mm & \\
\hline h & 500 & mm & \\
\hline cover & 40 & mm & \\
\hline db & 25 & mm & longitudinal rebar \\
\hline dc & 13 & mm & confinement rebar \\
\hline d for beam & 434.5 & mm & clear distance \\
\hline top long. Rebar & 4 & D & \\
\hline As & 1963.495408 & mm 2 & \\
\hline a & 61.59985595 & mm 2 & \\
\hline Mnb & \\
\hline boftt & 317.0652951 & kNm & beam negative moment \\
\hline bottom long. Rebar & 3 & D & \\
\hline As & 1472.621556 & mm 2 & \\
\hline a & 46.19989196 & mm 2 & \\
\hline Mnb & \\
\hline & 242.3346351 & kNm & beam positive moment \\
\hline
\end{tabular}

The moment on column is obtained using SPColumn Software to check the P-M Interaction Diagram of column (see Figure 2. 42 Column P-M Interaction Diagram). The output of SPColumn is shown in Figure 2. 43.


Figure 2. 42 Column P-M Interaction Diagram

\section*{Factored Loads and Moments with Corresponding Capacities}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No & Pu & Mux & \(\phi M n \mathbf{x}\) & \(\phi M n / M u\) & NA Depth & dt Depth & zt & \(\phi\) \\
\hline & kN & kNm & kNm & & mm & mm & & \\
\hline 1 & 3876.04 & \(\square 0.00\) & 890.40 & - 999.999 & 396 & 588 & 0.00145 & 0.650 \\
\hline 2 & 6387.94 & 0.00 & 607.13 & 999.999 & 589 & 588 & -0.00001 & 0.650 \\
\hline
\end{tabular}

Figure 2. 43 Factored Loads and Moments of Column

Table 2. 85 Column Top and Bottom Moment
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Column} \\
\hline Description & Value & Unit & Note \\
\hline \(\varphi\) & 0.65 & & \\
\hline Pu upper col. & 3876.044 & kN & \\
\hline \(\varphi \mathrm{Mnc}_{\mathrm{a}}\) & 890.4 & kNm & \begin{tabular}{l}
SPColumn Software \\
P-M Diagram
\end{tabular} \\
\hline \(\mathrm{Mnc}_{\mathrm{a}}\) & 1369.85 & kNm & \\
\hline \(\Phi\) & 0.65 & & \\
\hline Pu lower col. & 6387.93652 & kN & \\
\hline \(\varphi \mathrm{Mnc}_{\mathrm{b}}\) & 607.13 & kNm & \begin{tabular}{l}
SPColumn Software \\
P-M Diagram
\end{tabular} \\
\hline Mncb & 934.0461538 & kNm & \\
\hline Strong columnweak beam & OK Strong ColumnWeak Beam & \[
\begin{gathered}
\left(\mathrm{Mnc}_{\mathrm{a}}+\mathrm{Mnc}_{\mathrm{b}}\right)>= \\
1.2\left(\mathrm{Mnb}_{\text {left }}+\mathrm{Mnb}_{\mathrm{r} \text { ight }}\right) ?
\end{gathered}
\] & \begin{tabular}{l}
SNI 2847:2019 \\
chapter 18.7.3.2
\end{tabular} \\
\hline
\end{tabular}

From the calculation, it shows that the column and beam relationship is strong column-weak beam because \(\sum \mathrm{Mnc}=2303.89 \mathrm{kNm}\) and \((1.2) \sum \mathrm{Mnb}=559.4 \mathrm{kNm}\).

\subsection*{2.12.4. Transversal Reinforcement}

According to SNI 2846:2019 figure R18.7.5.2, all longitudinal rebar must be confined with cross tie reinforcement for SRPMK Column. The parameter of transversal reinforcement is presented in Table 2. 86 Transversal Reinforcement Parameters.

Table 2. 86 Transversal Reinforcement Parameters
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ Transversal Reinforcement } \\
\hline \(\begin{array}{c}\text { Check } \\
\text { Pu>0.3Agfc' is } \\
\text { OK }\end{array}\) & \(\begin{array}{c}\text { All long. Rebar must be } \\
\text { confined with cross tie } \\
135^{\circ} \text { and } 90^{\circ}\end{array}\) & & SNI 2847:2019 figure R18.7.5.2 f \\
\hline bc & 570 & mm & clear width of confinement \\
\hline hc & 570 & mm & clear height of confinement \\
\hline Ach & 324900 & mm 2 & \(\begin{array}{c}\text { Area of column without cover }= \\
\text { bcxhc }\end{array}\) \\
\hline Ag & 422500 & mm 2 & \\
\hline xi at y & 131.25 & mm & \(\begin{array}{c}\text { Distance of } \mathrm{x} \text { long. Rebar with } \\
\text { confinement }\end{array}\) \\
\hline xi at x & 131.25 & mm & Distance of y long. Rebar with \\
confinement
\end{tabular}\(]\)

Table 2. 87 Calculation of Confinement Steel Area
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Ash/s.bc } \\
\hline kf & 1 & \(>=1\) & \(\mathrm{fc} / 175+0.6\) \\
\hline kn & 1.142857143 & & \(\mathrm{nl} /(\mathrm{nl}-2)\) \\
\hline \(0.3(\mathrm{Ag} / \mathrm{Ach}-1) \mathrm{fc} / \mathrm{fyt}\) & 0.006759003 & & \\
\hline \(0.09 \mathrm{fc} / \mathrm{fyt}\) & 0.00675 & & \\
\hline \(0.2 \mathrm{kf} \times \mathrm{knn} \times \mathrm{Pu} /(\mathrm{fytAch})\) & 0.009022876 & & \\
\hline Take Ash\(/ \mathrm{s} . \mathrm{bc}\) & 0.009022876 & & SNI 2847:2019 table 18.7.5.4 \\
\hline
\end{tabular}

According to SNI 2847:2019 chapter 18.7.5.3 the maximum spacing must be decided from \(1 / 4\) of smallest dimension of column, 6 times of longitudinal bar, and 150 mm . The spacing is chosen to be rounded down to 100 mm for safety reasons. Therefore, the required confinement steel area (Ash req) can be calculated as in Table 2. 88 Minimum Transversal Reinforcement Spacing. The confinement is chosen to have 5 legs
and diameter of 13 mm with steel area (Ash use) bigger than required confinement steel area.

Table 2. 88 Minimum Transversal Reinforcement Spacing
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline 1/4 of smallest dimension & 162.5 & mm & \\
\hline 6 db & 150 & mm & \\
\hline s 0 & 150 & mm & SNI 2847:2019 eq. 18.7.5.3 \\
\hline maximum spacing & 150 & mm & \\
\hline Take spacing & 100 & mm & \\
\hline Ash/s & 5.143039078 & \(\mathrm{~mm} 2 / \mathrm{m}\) & bc \(\times\) Ash/s.bc \\
\hline Ash required & 514.3039078 & mm & \\
\hline v legs & 5 & & \\
\hline dc new & 13 & mm & \\
\hline Ash use & 530.9291585 & \(\mathrm{~mm} 2 / \mathrm{m}\) & Confinement steel area \\
\hline Check Ash & OK & & \\
\hline
\end{tabular}

The shear strength for SRPMK Column must be checked when the yield stress increase to \(1.25 f y\). The new probability column moment ( \(\mathrm{Mprc}_{\text {top }}\) and \(\mathrm{Mprc}_{\mathrm{bot}}\) ) is calculated from P-M Interaction Diagram when fy increase \(25 \%\) and maximum moment at the edge of diagram (see Figure 2. 44 New P-M Interaction Diagram when 1.25Fy). The calculation for transversal reinforcement at support is shown in Table 2. 89 Transversal Reinforcement Support.


Figure 2. 44 New P-M Interaction Diagram when 1.25 Fy

Table 2. 89 Transversal Reinforcement Support
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ Transversal Reinforcement Support } \\
\hline Description & Value & Unit & \\
\hline 1.25 fy & 500 & Mpa & \\
\hline\(\varphi\) & 1 & & Note \\
\hline Mprc_top & 1555 & kNm & \begin{tabular}{c} 
SPColumn Software P-M Diagram (Maximum \\
Moment when 1.25fy)
\end{tabular} \\
\hline Mprc_bot & 1555 & kNm & \begin{tabular}{c} 
SPColumn Software P-M Diagram (Maximum \\
Moment when 1.25fy)
\end{tabular} \\
\hline lu & 4 & m & \begin{tabular}{c} 
Column length
\end{tabular} \\
\hline Ve & 777.5 & kN & \begin{tabular}{c} 
Mprc_top+Mprc_bot)/lu \\
SNI 2847:2019 chapter 18.7.6.1.1.1
\end{tabular} \\
\hline DFTop & 0.5 & & \begin{tabular}{c} 
Distribution factor = 0.5 if top and bottom section \\
shape is the same
\end{tabular} \\
\hline Dfbot & 0.5 & & \\
\hline Mprb_top & 388.7722 & kN & \\
\hline Mprb_bot & 298.6661 & kN & \\
\hline Max Ve & 171.8596 & kN & SNI 2847:2019 chapter 18.7.6.1.1.2 \\
\hline \begin{tabular}{c} 
Max Ve must be \\
bigger than
\end{tabular} & 280.9338 & kN & SNI 2847:2019 chapter 18.7.6.1.1.3 \\
\hline Ve use & 280.9338 & kN & \\
\hline\(\varphi\) & 0.75 & & \\
\hline Vs & 374.5784 & kN & \\
\hline d for column & 587.5 & mm & \\
\hline Av/s & 1.5940 & mm & new clear distance \\
\hline Av & 159.3951 & mm & \\
\hline
\end{tabular}

\section*{Transversal Reinforcement Support}
\begin{tabular}{|c|c|c|c|}
\hline Description & Value & Unit & Note \\
\hline \begin{tabular}{c} 
Check confinement \\
Ash
\end{tabular} & \begin{tabular}{c} 
OK \\
Ash>Av
\end{tabular} & & \\
\hline
\end{tabular}

Transversal support at span must check the shear strength of concrete first using SNI 2847:2019 eq. 22.5.6.1. Since concrete strength (Vc) is bigger than ultimate shear strength (Vu) the spacing can use half of clear distance (d). However, in SNI 2847:2019 chapter 18.7.5.5 the maximum spacing for confinement in span is 150 mm . The calculation of transversal reinforcement at span is presented in Table 2. 90 Transversal Reinforcement Span

Table 2. 90 Transversal Reinforcement Span
\begin{tabular}{|c|c|c|c|}
\hline - & \multicolumn{3}{|l|}{Transversal Reinforcement Span} \\
\hline 10 & 1200 & mm & 0 \\
\hline Nu & 275.3417 & kN & smallest axial load on column \\
\hline Ag & 422500 & mm2 & , \\
\hline \(\lambda\) & 1 & & \\
\hline Vc & 372.12654 & kN & \[
\begin{gathered}
V c=0.17\left(1+\frac{N u}{14 A g}\right) \lambda \sqrt{f c^{\prime}} b_{w} d \\
\text { SNI 2847:2019 eq. 22.5.6.1 }
\end{gathered}
\] \\
\hline Check Vc>Vu & OK & & \\
\hline 6 db & 150 & mm2 & \\
\hline s=d/2 & 293.75 & mm & \\
\hline - & 250 & mm & - \\
\hline Confinement s span & 150 & mm & SNI 2847:2019 chapter 18.7.5.5 \\
\hline
\end{tabular}

\subsection*{2.12.5. Conclusion}

The column will be use \(650 \times 650 \mathrm{~mm} 2\) with fc' 30 MPa and fy 400 MPa . The recap for reinforcement is presented in Table 2.91 Recap for Column Reinforcement The hook will use cross tie where one part is bent \(90^{\circ}\) and the other bent \(135^{\circ}\).

Table 2. 91 Recap for Column Reinforcement

2.13. Beam-Column Joint Design


Figure 2. 45 Beam-Column Joint Design Flowchart

In SRPMK building, beam-column joint must be designed to have transversal reinforcement and development length of longitudinal rebar. The properties of beam column that have been decided in previous preliminary design is presented in Table 2. 92 Beam-Column Properties. Beam-column joint effective area is shown in Figure 2.46 and Table 2. 93. The procedure of beam-column joint design is presented in Figure 2. 45.

Table 2. 92 Beam-Column Properties


Figure 2. 46 Beam-Column Joint Effective Dimension

Table 2. 93 Beam-Column Joint Effective Dimension
\begin{tabular}{|c|c|c|l|}
\hline \multicolumn{4}{|c|}{ Beam-Column Joint } \\
\hline b & 500 & mm & SNI 2847:2019 chapter 18.8.4.3 \\
\hline x & 75 & mm & \\
\hline hj & 650 & mm & \\
\hline \(\mathrm{~b}+\mathrm{h}\) & 1150 & mm & \\
\hline \(\mathrm{~b}+2 \mathrm{x}\) & 650 & mm & \\
\hline bj & 650 & mm & \\
\hline Aj & 422500 & mm 2 & SNI 2847:2019 figure 18.8.4 \\
\hline
\end{tabular}

The beam is enough to restraint column if the beam width is larger than \(3 / 4\) of column width. The confinement uses 3 legs so the steel area (Av) larger than required steel area (Ash).

\subsection*{2.13.1. Reinforcement}

The reinforcement for beam-column joint is mainly designed for confinement, while the longitudinal reinforcement just the extension from column longitudinal reinforcement. However, both of transversal and longitudinal reinforcement must be checked. The calculation of reinforcement strength is presented in Table 2. 94.

Table 2. 94 Check Transversal Requirement
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Check Transversal Requirement } \\
\hline Description & Value & Unit & Note \\
\hline lo & 650 & mm & SNI 2847:2019 figure 18.9.2.2 \\
\hline \begin{tabular}{c} 
Confined by \(\ldots\) \\
beams
\end{tabular} & 4 & beams & \\
\hline bb>=3/4bc & OK & & \\
\hline Ash/s & 2.5715 & \(\mathrm{~mm} 2 / \mathrm{mm}\) & SNI 2847:2019 chapter 18.8.3.2 at plastic hinge \\
\hline s use & 100 & mm & SNI 2847:2019 chapter 18.8.3.2 \\
\hline Ash required & 257.1519 & mm 2 & \\
\hline n legs & 3 & & \\
\hline dc & 13 & mm & \\
\hline Av & 398.1969 & mm 2 & \\
\hline Check Av>Ash & OK & & \\
\hline
\end{tabular}

The shear force of beam-column joint \(\left(\mathrm{V}_{\text {sway }}\right)\) is the product of probability beam moment and column moment.


Figure 2. 47 Shear Force on Column due to Probability Moment of Beam and Column


Figure 2. 48 Tension (T) and Compression on Beam-Column Joint

Table 2. 95 Shear Strength Check
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Check Shear Strength } \\
\hline Mprb \(_{\text {top }}\) & 388.7722 & kNm & \\
\hline Mprb bot & 298.6661 & kNm & \\
\hline DF & 0.5 & & Distribution Factor \\
\hline Mc & 343.7191 & kNm & \\
\hline \(\mathrm{V}_{\text {sway }}\) & 171.8596 & kN & \\
\hline fy & 400 & Mpa & \\
\hline Top longitudinal rebar & 4 D 25 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Check Shear Strength } \\
\hline As & 1963.4954 & mm 2 & \\
\hline T 1 & 981.7477 & kN & \\
\hline C 1 & 981.7477 & kN & \\
\hline Bottom longitudinal rebar & 3 D 25 & & \\
\hline As & 1472.62156 & mm 2 & \\
\hline T 2 & 736.310778 & kN & \\
\hline C 2 & 736.310778 & kN & \\
\hline Vj & 1546.19891 & kN & \(\max (\mathrm{T}+\mathrm{C}-\mathrm{Vsway})\) \\
\hline Vn & 3934.01727 & kN & \\
\hline\(\varphi\) & 0.85 & & \\
\hline\(\varphi \mathrm{Vn}\) & 3343.91468 & kN & \\
\hline Check \(\varphi \mathrm{Vn}>\mathrm{Vj}\) & OK & & \\
\hline
\end{tabular}

Table 2. 96 Hook Design
\begin{tabular}{|c|c|l|l|}
\hline \multicolumn{4}{|c|}{ Hook Design } \\
\hline Type & Standard \(90^{\circ}\) & & SNI 2847:2019 chapter 18.8.5.1 \\
\hline For long. Rebar d10-d36 & & & \\
\hline db & 25 & mm & \\
\hline 8 db & 200 & mm & \\
\hline 150 mm & 150 & mm & \\
\hline fy \(\times \mathrm{db} /(5.4 \times \lambda \times \sqrt{(\mathrm{fc}}))\) & 338.100344 & mm & SNI 2847:209 eq. 18.8.5.1 \\
\hline 1 dh & 338.100344 & mm & \\
\hline Take Development Length & 340 & mm & \\
\hline 12 db & 300 & mm & \\
\hline & & \multicolumn{2}{|c|}{} \\
\hline
\end{tabular}

\subsection*{2.13.2. Conclusion}

The confinement at beam-column joint, development length of longitudinal rebar, and hook length is presented in Table 2. 97 and Table 2. 98.

Table 2. 97 Reinforcement Recap on Beam-Column Joint
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Recap } \\
\hline Longitudinal & 16 D 25 & & \\
\hline Confinement & \(1.5 \mathrm{D} 13-100\) & & \\
\hline & & & \\
\hline Development Length, \(l_{d h}\) & 340 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Recap } \\
\hline Hook Length & 300 & mm \\
\hline
\end{tabular}

Table 2. 98 Transversal Hook Length
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Transversal Hook Length } \\
\hline Hook Type & 135 & \({ }^{\circ}\) \\
\hline \(1_{\text {ext }}\) & 150 & mm \\
\hline
\end{tabular}

According to SNI 2847:2019 figure R18.7.5.2 the spacing between each longitudinal bar in beam-column joint must be less than 350 mm . This spacing must be checked from drawing and presented in Table 2. 99.

Table 2. 99 Check Rebar Spacing
\begin{tabular}{|c|c|c|}
\hline Check xiy and xi \({ }_{x}\) & & Note \\
\hline xi \(_{y}\) & 259.5 & From Drawing \\
\hline xi \(_{x}\) & 259.5 & From Drawing \\
\hline Check xiy & OK & \\
\hline Check xix & OK & \\
\hline
\end{tabular}

\subsection*{2.14. Slab Design}

This design is based on PBI'71 Slab Moment Table Method and SNI 2847:2019. The dimension of slab must be determined either as one way slab and two-way slab. One way slab is a slab that has a long span larger than two times of short span. Two way slab is a slab that has a long span shorter than two times the length of short span. Reinforcement in one way slab will be only placed in one direction, while reinforcement in two-way slab will be placed in two directions. The design of slab can be done as follows:

\subsection*{2.14.1. Determination of Dimension and Slab Type}


The slab will be checked for one way or two ways. Since the long span (Ly) is 3m and the short span (Lx) is also 3 m , the ratio of long span to the short span is one and the type is two-way slab. This slab is interior and is confined by beams on all four sides. The thickness of the slab is 150 mm . The concrete cover of slab according to SNI 2847:2019 table 20.6.1.3.1 is 20 mm . The beam is \(500 \times 500 \mathrm{~mm} 2\). Figure 2.50 shows interior slab and beam cross section. The slab will use fc' 30 MPa and steel fy 400 MPa . The preliminary design for reinforcement diameter for short span (Dlx) is 10 mm , long span (Dly) is 13 mm , short support (Dtx) is 13 mm , and long support (Dty) is 13 mm . The load act on slab is presented in Table 2. 100 Slab Load


Figure 2.50 Interior Slab-Beam Cross-section

Table 2. 100 Slab Load
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Load } \\
\hline Live Load & 4.79 & kN \\
\hline Self-Weight & 3.6 & \(\mathrm{kN} / \mathrm{m} 2\) \\
\hline Reinforced & 2.64 & \\
\hline Ceramic & 0.2 & \(\mathrm{kN} / \mathrm{m} 2\) \\
\hline Ceiling & 0.18 & \(\mathrm{kN} / \mathrm{m} 2\) \\
\hline Total DL & 6.62 & \(\mathrm{kN} / \mathrm{m} 2\) \\
\hline Comb Load 1.2D + 1.6L & 15.608 & \(\mathrm{kN} / \mathrm{m} 2\) \\
\hline
\end{tabular}

\subsection*{2.14.2. Shear Strength}

The shear force \((\mathrm{Vu})\) that acts on the slab is \(\frac{1.15 q_{u} l_{n}}{2}=22.4365 \mathrm{kN}\), the clear distance from top slab to the middle of steel reinforcement in short span (dx) is \(h-c c-\) \(\frac{D 8}{2}=124 \mathrm{~mm}\), and the clear distance of long span steel reinforcement (dy) is \(h-c c-\) \(D 8-\frac{D 8}{2}=112 \mathrm{~mm}\). The shear strength of slab is \(\phi 0.17 \lambda \sqrt{f c^{\prime}} b_{w} d_{x}=43.2975 \mathrm{kN}\) with \(\phi=0.75\) for shear. Because the shear strength is larger than the shear force, it is safe. The Figure 2. 51 Clear Distance Dx and Dy on Slab shows dx and dy.


Figure 2. 51 Clear Distance Dx and Dy on Slab

\subsection*{2.14.3. Moment Strength}

The moment load in the slab can be calculated by multiplying the moment load with the coefficient in PBI 1971 table 13.3.1. The coefficient of short span moment (mlx) is 21 , long span moment ( mly ) is 21 , short support moment ( mtx ) is 52 , and long support moment (mty) is 52 . The moment acts on slab is \(\mathrm{M}= \pm 0.01 \mathrm{q}_{\mathrm{u}} \mathrm{l}^{2}=0.1405 \mathrm{kNm}\). This moment will be multiplied by the coefficient moment previously.

To calculate the main reinforcement, the coefficient of flexural resistance \((\mathrm{k})\) must be calculated first. The general eq. for k is \(\mathrm{k}=\frac{\mathrm{M}_{\mathrm{n}}}{\mathrm{bd}^{2}}=\frac{\mathrm{Mu}}{\phi \mathrm{bd}^{2}}\), with Mu is \(\mathrm{mlx}, \mathrm{mly}, \mathrm{mtx}\), or mty and d is dx or dy. The value of \(\mathrm{k}_{\mathrm{lx}}, \mathrm{k}_{\mathrm{ly}}, \mathrm{k}_{\mathrm{tx}}\), and \(\mathrm{k}_{\mathrm{ty}}\) is \(0.4263,0.5226,1.0557\), and 1.294 , respectively.

The steel reinforcement is divided for span location (l) and support location (t). The length of steel in span location (bl) is \(\frac{1}{2} \mathrm{~b}=1500 \mathrm{~mm}\) and for support location (bt) is \(\frac{1}{4} \mathrm{~b}=750 \mathrm{~mm}\). The ratio of steel \((\rho)\) is \(\frac{0.85 \mathrm{fc}^{\prime}}{\mathrm{fy}}\left(1-\sqrt{1-\frac{2 \mathrm{k}}{0.85 \mathrm{fc}^{\prime}}}\right)\), with k is klx, kly, ktx , or kty. The value of \(\rho_{\mathrm{lx}}, \rho_{\mathrm{ly}}, \rho_{\mathrm{tx}}\), and \(\rho_{\mathrm{ty}}\) is \(0.001075,0.00132,0.002696\), and 0.003322 , respectively. The maximum steel ratio ( \(\rho \mathrm{max}\) ) is \(\frac{0.36 \mathrm{fc} \mathrm{c}^{\prime} \beta 1}{\mathrm{fy}}\) with \(\beta 1\) value is from SNI 2847:2019 table 22.2.2.4.3 and the value of \(\beta 1\) is 0.8357 . So, the maximum steel ratio is 0.003322 . This is still bigger than the biggest steel ratio that is required. The area of steel required (As-req) is \(\rho b d\) with \(\mathrm{b}=1000 \mathrm{~mm}\) and d is dx or dy . The steel ratio for As-reqlx, As-reqly, As-reqtx, and As-reqty is \(133.2882 \mathrm{~mm} 2,147.8559 \mathrm{~mm} 2,334.3347\) mm2, and 372.0204 mm 2 , respectively. Because SNI 2847:2019 table 8.4.1.1 provides the minimum steel area (Asmin), therefore the used steel area (As-use) cannot be smaller than the Asmin. The Asmin for fy 420 MPa is \(0.2 \% \mathrm{Ag}\) which is equal to 300 mm 2 .

Therefore, the As-uselx, As-usely, As-usetx, and As-usety is \(300 \mathrm{~mm} 2,300 \mathrm{~mm} 2\), 334.3347 mm 2 , and 300 mm 2 , respectively.

In order to calculate the moment strength of steel, the value \(a=\frac{A s f y}{0.85 f c^{\prime} f y}\) must be calculated and the moment strength can be calculated from \(\operatorname{Asfy}\left(d-\frac{a}{2}\right)\). The value of alx, aly, atx, and aty is \(9.4118,9.4118,10.4889\), and 11.6712 , respectively. The factored moment strength ( \(\phi M n\) ) of \(\phi M n l x, \phi M n l y, \phi M n t x\), and \(\phi M n t y\) is 12.8838 \(\mathrm{kNm}, 11.5878 \mathrm{kNm}, 14.2183 \mathrm{kNm}\), and 14.2935 kNm , respectively with \(\phi=0.9\). This is still bigger than moment load mlx, mly, mtx, and mty which is \(2.9499 \mathrm{kNm}, 2.9499\) \(\mathrm{kNm}, 7.3045 \mathrm{kNm}\), and 7.3045 kNm , respectively.

\subsection*{2.14.4. Reinforcement}

The spacing for reinforcement is calculated from \(\frac{0.25 \pi D^{2} b}{A s_{r e q}}\). The spacing for reinforcement in short span (slx), long span (sly), short support (stx), and long support (sty) is \(261.8 \mathrm{~mm}, 221.2 \mathrm{~mm}, 198.5 \mathrm{~mm}\), and 178.4 mm . This spacing must be rounded down to make the steel arrangement easier to 50 mm down. From SNI 2847:2019 chapter 8.7.2.3 the maximum spacing is 3 times slab thickness ( 3 h ) and 450 mm . So, the used reinforcement for Dlx, Dly, Dtx, and Dty is D10-250, D13-200, D13-150, and D13-150, respectively.

\subsection*{2.14.5. Conclusion}

The slab type A of \(3000 \times 3000 \mathrm{~mm}\) will use fc' 30 MPa and fy 400 MPa with reinforcement as in Table 2. 101 Slab Reinforcement

Table 2. 101 Slab Reinforcement
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Slab Reinforcement } \\
\hline Dlx & D10-250 \\
\hline Dly & D13200- \\
\hline Dtx & D13-150 \\
\hline Dty & D13-150 \\
\hline
\end{tabular}

\subsection*{2.15. Stair Design}


Figure 2. 52 Stair Design Flowchart

The stairs are typical for every floor in the building. In stair design, the design copes for slab (landing slab) and stair. The stair and landing slab slab will use reinforced concrete. The procedure of stair and landing slab slab design is shown in Figure 2. 52.

\subsection*{2.15.1. Stair Data}

The figure of stair area and stair detail can be seen in Figure 2. 53 and Figure 2. 54.
- Height of each floor (Hlt)
\[
\begin{aligned}
& =4 \mathrm{~m} \\
& =3.5 \mathrm{~m} \\
& =1.7 \mathrm{~m} \\
& =0.2 \mathrm{~m}
\end{aligned}
\]
- Stair width
- Landing slab width
- Optrede (Op)
- Antrede (An)
- Number of stair (Ntg)
- Stair length (Ltg)
- Stair slope ( \(\alpha\) )
- Thickness of the stair
- Thickness of landing slab
- Stair concrete cover
- Landing slab concrete cover
- Fc ,
- Fy
- Equivalent thickness of the stair \((\mathrm{tt})=\frac{0.5 \times 0.2 \times 0.25}{\sqrt{0.2^{2}+0.5^{2}}}=0.078087 \mathrm{~m}=78.087\) mm

Total equivalent of the stair ( \(\mathrm{t}^{\prime}\) ) mm
- Weight of concrete
\[
\begin{aligned}
& =24 \mathrm{kN} / \mathrm{m}^{3} \\
& =21 \mathrm{kN} / \mathrm{m}^{3}
\end{aligned}
\]
- Weight of tile
\(=0.25 \mathrm{~m}\)
\(=20\) stairs
\(=2.25 \mathrm{~m}\)
\(=\tan ^{-1}\left(\frac{0.2}{0.25}\right)=38.66^{\circ}\)
\(=0.15 \mathrm{~m}\)
\(=0.3 \mathrm{~m}\)
\(=30 \mathrm{~mm}\)
\(=40 \mathrm{~mm}\)
\(=25 \mathrm{MPa}\)
\[
=370 \mathrm{MPa}
\]
\(=\frac{0.15+0.078087}{\cos \alpha}=0.292094 \mathrm{~m}=292.094\)


Figure 2. 53 Stair Area


Figure 2. 54 Stair Detail

\subsection*{2.15.2. Loading}

The load of stairs and landing slab slab are from self-weight, tiles, railing, and live load. The load can be seen in Table 2. 102 and Table 2. 103.

Table 2. 102 Stair Loading
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Stair Loading (qtg) } \\
\hline -Slab Weight & \(\frac{292.094}{1000} \times 24=7.01\) & \(\mathrm{kN} / \mathrm{m}\) \\
\hline -Tiles and Plaster & \(0.05 \times 21=1.05\) & \(\mathrm{kN} / \mathrm{m}\) \\
\hline -Railing Weight & 1 & \(\mathrm{kN} / \mathrm{m}\) \\
\hline Total Dead Load (qd) & 9.06 & \(\mathrm{kN} / \mathrm{m}\) \\
\hline Live Load (qL) & 4.79 & \(\mathrm{kN} / \mathrm{m}\) \\
\hline
\end{tabular}

Table 2. 103 Landing slab Loading
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|c|}{ Landing slab Loading (qbd) } \\
\hline -Slab Weight & \(0.15 \times 24=3.6\) & \(\mathrm{kN} / \mathrm{m}\) \\
\hline -Tiles and Plaster & \(0.05 \times 21=1.05\) & \(\mathrm{kN} / \mathrm{m}\) \\
\hline -Railing Weight & 1 & \(\mathrm{kN} / \mathrm{m}\) \\
\hline Total Dead Load (qd) & 5.65 & \(\mathrm{kN} / \mathrm{m}\) \\
\hline Live Load (qL) & 4.79 & \(\mathrm{kN} / \mathrm{m}\) \\
\hline
\end{tabular}

\subsection*{2.15.3. Reinforcement}

The internal force of stairs is obtained by the help of SAP2000 Software. The maximum moment due to dead load is 14.62 kNm , maximum moment due to live load is 10.92 kNm , shear force due to dead load is 13.32 kN , and shear force due to live load is 9.02 kN . The maximum combination uses \(1.2 \mathrm{D}+1.6 \mathrm{~L}\), which for \(\mathrm{Mur}=35.468 \mathrm{kNm}\) and Vur \(=30.416 \mathrm{kN}\). The maximum moment is taken as 0.5 Mur so \(\mathrm{Mu}=17.508 \mathrm{kNm}\) for support location. Meanwhile for span location the maximum momen is taken as 0.8 Mur so \(\mathrm{Mu}=28.01 \mathrm{kNm}\).

Calculation for reinforcement must begin from the calculation of nominal strength (Rn) which is \(\frac{M u}{0.9 b d^{2}}\) with \(\mathrm{b}=1000 \mathrm{~mm}\) and d is stair thickness - concrete cover \(-1 / 2\) steel diameter. The minimum steel ratio ( \(\rho \mathrm{min}\) ) is 0.0018 , the maximum steel ratio ( \(\rho \max\) ) is \(0.75\left(\frac{0.85 f c^{\prime} \beta}{370}\right)\left(\frac{600}{600+f y}\right)\), and the required steel ratio ( \(\rho\) need) is \(\frac{0.85 f c^{\prime}}{f y}\left(1-\sqrt{1-\frac{2 R n}{0.85 f c^{\prime}}}\right)\). The required steel area (Asneed) is \(\rho b d\). The required spacing is \(\frac{0.25 \pi^{2} d^{2} b}{A s}\). The spacing need to be rounded down to 50 mm for easier arrangement. Last the Asuse \(=\frac{0.25 \pi d^{2} b}{s}\) must be larger than Asneed.

The concrete shear strength \((\mathrm{Vc})\) must be checked from shear force \((\mathrm{Vu})\) with \(\phi V c=\phi \frac{1}{6} \sqrt{ }\left(f c^{\prime}\right) b d\) with \(\phi=0.75\). Last, the moment strength (Mn) must be checked and must be bigger than Mu. Factored nominal moment can be calculated with \(\phi M n=\) \(\phi \operatorname{Asfy}\left(d-\frac{a}{2}\right)\), where \(a=\frac{A s f y}{0.85 f c^{\prime} f y}, c=\frac{a}{\beta 1}\), and \(\epsilon_{t}=\frac{0.003(d-c)}{c}\). Because in landing slab span the concrete shear strength \((\mathrm{Vc})\) is smaller than ultimate shear force \((\mathrm{Vu})\), than steel shear strength must be calculated as \(\frac{V u}{\phi}-V c\). The calculation for reinforcement is presented in Table 2. 104 Stairs and Landing slab Reinforcement Calculation

Table 2. 104 Stairs and Landing slab Reinforcement Calculation
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Data } & \multirow{2}{*}{ Unit } & \multicolumn{2}{|c|}{ Support } & \multicolumn{2}{c|}{ Span } & \multicolumn{2}{c|}{ Landing slab } \\
\cline { 3 - 8 } & & Main & \begin{tabular}{c} 
Shrinkag \\
\(\mathbf{e}\)
\end{tabular} & Main & \begin{tabular}{c} 
Shrinkag \\
\(\mathbf{e}\)
\end{tabular} & Support & Span \\
\hline Mu & kNm & 17.508 & 17.508 & 28.013 & 28.013 & 44.8617 & 30.8424 \\
\hline Dst & mm & 13 & 8 & 13 & 8 & 13 & 13 \\
\hline d & mm & 113.5 & 113.5 & 113.5 & 113.5 & 245.5 & 245.5 \\
\hline & & 0.8357 & 0.8357 & 0.8357 & 0.8357 & 0.8357 & 0.8357 \\
\hline Rn & \begin{tabular}{c}
\(\mathrm{kN} / \mathrm{m}\) \\
2
\end{tabular} & 1.51 & 1.51 & 2.41 & 2.41 & 0.785 & 0.5396 \\
\hline min & & 0.0018 & 0.0018 & 0.0018 & 0.0018 & 0.0018 & 0.0018 \\
\hline need & & 0.00424 & 0.002 & 0.00695 & 0.002 & 0.00216 & 0.00148 \\
\hline max & & 0.02265 & 0.02265 & 0.02265 & 0.02265 & 0.02265 & 0.02265 \\
\hline use & & 0.00424 & 0.002 & 0.00695 & 0.002 & 0.00216 & 0.0018 \\
\hline As need & mm 2 & 480.9741 & 300 & 1042.607 & 300 & 544.8488 & 453.6 \\
\hline Spacing & mm & 275.9656 & 167.619 & 127.308 & 167.619 & 369.0166 & 443.2582 \\
\hline S use & mm & 250 & 150 & 100 & 150 & 350 & 400 \\
\hline As use & mm 2 & 530.9292 & 335.238 & \begin{tabular}{c}
1327.322 \\
9
\end{tabular} & 335.238 & 574.4627 & 502.6548 \\
\hline & & \begin{tabular}{c} 
As us \(>\) As \\
need
\end{tabular} & \begin{tabular}{c} 
As us>As \\
need
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Data } & \multirow{2}{*}{ Unit } & \multicolumn{2}{|c|}{ Support } & \multicolumn{2}{c|}{ Span } & \multicolumn{2}{c|}{ Landing slab } \\
\cline { 3 - 8 } & & Main & \begin{tabular}{c} 
Shrinkag \\
\(\mathbf{e}\)
\end{tabular} & Main & \begin{tabular}{c} 
Shrinkag \\
\(\mathbf{e}\)
\end{tabular} & Support & Span \\
\hline a & mm & 9.2444 & - & 23.1110 & - & 33.3414 & 8.7521 \\
\hline c & & 11.0619 & - & 27.6547 & - & 39.2250 & 10.2966 \\
\hline & & 0.0278 & - & 0.0093 & - & 0.0163 & 0.0704 \\
\hline & & 0.9000 & - & 0.9000 & - & 0.9000 & 0.9000 \\
\hline Mn & kNm & 19.2495 & - & 45.0593 & - & 45.0176 & 47.3695 \\
\hline Mu & kNm & 17.508 & - & 28.013 & - & - & 30.8424 \\
\hline & & \(\mathrm{Mn}>\mathrm{Mu}\) & & \(\mathrm{Mn}>\mathrm{Mu}\) & - & - & \(\mathrm{Mn}>\mathrm{Mu}\) \\
\hline Vc & kN & 94.5833 & - & 94.5833 & - & - & 52.5 \\
\hline Vc & kN & 70.9375 & - & 70.9375 & - & - & 39.375 \\
\hline Vu & kN & 30.416 & - & 30.416 & - & - & 41.65 \\
\hline & & \(\mathrm{Vc}>\mathrm{Vu}\) & - & \(\mathrm{Vc}>\mathrm{Vu}\) & - & - & \(\mathrm{Vc}<\mathrm{Vu}\) \\
\hline Vs & kN & - & - & - & - & - & 3.0333 \\
\hline dc & mm & - & - & - & - & - & 8 \\
\hline Av & mm 2 & - & - & - & - & - & 50.2857 \\
\hline spacing & mm & - & - & - & - & - & 100.263 \\
\hline S use & mm & - & - & - & - & - & 100 \\
\hline
\end{tabular}

\subsection*{2.15.4. Conclusion}

The stairs and landing slab slab will use reinforced concrete with fc' 25 MPa and fy 370 MPa . The dimension of stairs optrede is 0.2 m , antrede is 0.25 m , stair width is 3.5 m , stair length is 2.25 m , stair slope is \(38.66^{\circ}\), the total number of stairs is 20 , and the thickness of stair is 0.15 meter. The dimension of landing slab width is 1.7 m and thickness is 300 mm . The recap of reinforcement is presented in Table 2. 105 Stairs and Landing slab Reinforcement Recap

Table 2. 105 Stairs and Landing slab Reinforcement Recap
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Recap } \\
\hline \multirow{2}{*}{ Stairs Support } & Main & D13-250 \\
\cline { 2 - 3 } & Shrinkage & D8-150 \\
\hline \multirow{2}{*}{ Stairs Span } & Main & D13-100 \\
\cline { 2 - 3 } & Shrinkage & D8-150 \\
\hline \multirow{2}{*}{ Landing slab } & Support & D16-350 \\
\cline { 2 - 3 } & Span & D8-100 \\
\hline
\end{tabular}```

