REDUCING DEFECT ON BOTTLING PROCESS OF MESRAN SUPER SAE 20W/50 USING SEVEN-STEP METHOD
(Case Study In PT PERTAMINA Lubricating Unit Of Cilacap)

THESIS
Submitted as Partial Fulfill of the Requirements to Obtain the Bachelor of International Industrial Engineering Degree

Arranged by:
RIZKY DESTAMA PUTRA
Student Number: 04 14 04153

INTERNATIONAL INDUSTRIAL ENGINEERING PROGRAM
FACULTY OF INDUSTRIAL TECHNOLOGY
UNIVERSITAS ATMA JAYA YOGYAKARTA
YOGYAKARTA
2009
A BACHELOR OF
INTERNATIONAL INDUSTRIAL ENGINEERING THESIS
On
REDUCING DEFECT ON BOTTLING PROCESS OF MESRAN SUPER SAE 20W/50 USING SEVEN-STEP METHOD
(Case Study In PT PERTAMINA Lubricating Unit Of Cilacap)

Has been Examined and Approved
On December, 2009

Adviser, Co-Adviser,
Hadi Santono, S.T., M.T. M. Chandra Dewi, S.T., M.T.

Board of Examiners,
Chairman,
Hadi Santono, S.T., M.T.

Member, Member,
The Jin Ai, S.T., M.T., D.Eng. Ir. B. Kristyanto, M.Eng., Ph.D

Yogyakarta, December, 2009
Dean of Faculty of Industrial Technology
Universitas Atma Jaya Yogyakarta

Paulus Mudjihartono, S.T., M.T.
DEDICATION

Dedicated to:

My God
Always Blessed me and give me Power every time

My family in Cilacap
Beloved Mother, Beloved Father, and My Sister
Always Support and Prayer me

My Lovely Sweetheart "Fifi"
Thanks for leaving me when I really need your support
you broke my heart
you always make me sad
but I will love you forever and ever

My Best Teacher Mr. Hadi Santono, S.T., M.T.
And Mrs. M. Chandra Dewi, S.T., M.T.
Always give me direction and advice in Final Task

And all of my friend
Always give me time to play everything,
FOREWORD

This final report is one of the prerequisite to finish the undergraduate study program in Industrial Engineering Department, Industrial Technology Faculty, Atmajaya Yogyakarta University.

I am so grateful to many people who encouraged, and help me to finish this final report. On this opportunity, I would like to thank:

1. God Almighty, for His blessing and guidance.
2. Mr. Paulus Mudjihartono, S.T., M.T., as the Dean of Industrial Technology Faculty, Atmajaya Yogyakarta University.
3. Mr. Parama Kartika Dewa SP, S.T., M.T., as the Head of Industrial Engineering Department, Industrial Technology Faculty, Atmajaya Yogyakarta University.
4. Mr. Hadi Santono, S.T., M.T., as the Head of International Class of Industrial Engineering, with those never ending break through.
5. Mr. Hadi Santono, S.T., M.T., as first adviser, who had spent plenty of time to give guidance, direction, inputs and correction in writing this final report.
6. Mrs. M. Chandra Dewi, S.T., M.T., as first adviser, who had inputs and correction in writing this final report.
7. Mr. Oscar, Mr. Catur, Mr. Ari, ans Mr. Ambulan Sukarno as field adviser thank you for the input, the idea, and warm welcome.
8. Mr. Sakri Sunarso and his big family who changes me in the way of life.
9. My parents, thanks for supporting my life. Dad, your junior now ready to take over you. Mom, you’ll proud of me.

10. My sister who always support me. Thanks for everything.

11. Mun-mun thanks for the support and advice, ninis a.k.a fierce doctor, iche for your program, and all my friends in 45 white dragon squad.

12. My friends TIKI Batch 2004, finally, we’re in the same level. Thank you.

13. All those who haven’t mentioned, thank you.

I realize that this final report has not perfect but I hope that this final report can be useful and can be developed in a further research.

Yogyakarta, December 2009
CONTENTS

TITLE PAGE ... i
APPROVAL ... ii
DEDICATION ... iii
ACKNOWLEDGMENT iv
TABLE OF CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES xi
LIST OF APPENDICES xiii
ABSTRACT ... xiv

Chapter 1 INTRODUCTION 1
1.1. Background 1
1.2. Problem Statement 2
1.3. Research Objective 2
1.4. Scope of Research 2
1.5. Research Methodology 3
1.6. Flow Chart 5
1.7. Thesis Outline 7

Chapter 2 LITERATURE STUDY 8
2.1. Previous Research 8
2.2. Current Research 9

Chapter 3 BASIC THEORY 11
3.1. Definition of Quality 11
3.2. Quality Control Systems 11
3.3. Benefit of Quality Control 12
3.4. Variance 12
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5. Seven-Step Method</td>
<td>13</td>
</tr>
<tr>
<td>3.6. Tools in Seven-Step Method</td>
<td>15</td>
</tr>
<tr>
<td>Chapter 4 DATA AND COMPANY PROFILE</td>
<td></td>
</tr>
<tr>
<td>4.1. Lubricant Background</td>
<td>23</td>
</tr>
<tr>
<td>4.2. Location and Plant Layout</td>
<td>28</td>
</tr>
<tr>
<td>4.2.1. Factory Location</td>
<td>28</td>
</tr>
<tr>
<td>4.2.2. Lubricant Process</td>
<td>29</td>
</tr>
<tr>
<td>4.2.3. Quality Control Activities</td>
<td>31</td>
</tr>
<tr>
<td>4.3. Company Vision and Mission</td>
<td>32</td>
</tr>
<tr>
<td>4.3.1. Visions</td>
<td>32</td>
</tr>
<tr>
<td>4.3.2. Mission</td>
<td>32</td>
</tr>
<tr>
<td>4.4. Quality Achievement</td>
<td>32</td>
</tr>
<tr>
<td>4.5. Work Hour</td>
<td>34</td>
</tr>
<tr>
<td>4.6. Research Product</td>
<td>34</td>
</tr>
<tr>
<td>4.7. Data</td>
<td>39</td>
</tr>
<tr>
<td>4.7.1. Attribute Data</td>
<td>39</td>
</tr>
<tr>
<td>Chapter 5 ANALYSIS AND DISCUSSION</td>
<td>46</td>
</tr>
<tr>
<td>Chapter 6 CONCLUSION AND RECOMMENDATION</td>
<td>84</td>
</tr>
<tr>
<td>6.1. Conclusion</td>
<td>84</td>
</tr>
<tr>
<td>6.2. Recommendation</td>
<td>85</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>86</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>87</td>
</tr>
</tbody>
</table>
LIST OF TABLE

Table 2.1. : Comparison between Previous and Current Research

Table 4.1. : Production Data of Lubricant

Table 4.2. : Lubricant Nonconformities on December 2008

Table 4.3. : Lubricant Nonconformities on January 2009

Table 4.4. : Lubricant Nonconformities on February 2009

Table 4.5. : Lubricant Nonconformities on March 2009

Table 4.6. : Lubricant Nonconformities on April 2009

Table 4.7. : Lubricant Nonconformities on May 2009

Table 5.1. : Percentage of product nonconformity on December 2008 until May 2009

Table 5.2. : Frequency of All Nonconformities On December 2008 until May 2009

Table 5.3. : Percentage of No Aluminum Foil Nonconformity per Production in December 2008

Table 5.4. : Percentage of No Aluminum Foil Nonconformity per Production in January 2009

Table 5.5. : Percentage of No Aluminum Foil Nonconformity per Production in February 2009

Table 5.6. : Percentage of No Aluminum Foil Nonconformity per Production in March 2009
Table 5.7. : Percentage of No Aluminum Foil Nonconformity per Production in April 2009

Table 5.8. : Percentage of No Aluminum Foil Nonconformity per Production in May 2009

Table 5.9. : Percentage of Oblique Cap Nonconformity per Production in December 2008

Table 5.10. : Percentage of Oblique Cap Nonconformity per Production in January 2009

Table 5.11. : Percentage of Oblique Cap Nonconformity per Production in February 2009

Table 5.12. : Percentage of Oblique Cap Nonconformity per Production in March 2009

Table 5.13. : Percentage of Oblique Cap Nonconformity per Production in April 2009

Table 5.14. : Percentage of Oblique Cap Nonconformity per Production in May 2009

Table 5.15. : Comparison Percentage No Aluminum Foil on December 2008 until May 2009

Table 5.16. : Comparison Percentage Oblique Cap on December 2008 until May 2009

Table 5.17. : Improvement Suggestion of No Aluminum Foil

Table 5.18. : Improvement Suggestion of Oblique Cap

Table 5.19. : Percentage of No Aluminum Foil Nonconformity per Production in August 2009

Table 5.20. : Percentage of Oblique Cap Nonconformity per Production in August 2009

Table 5.21. : Comparison Percentage No Aluminum Foil
Table 5.22. : Nonconformities Percentage on August, 2009
Table 5.23. : Comparison Percentage of Nonconformities Production
Table 5.24. : Frequency of All Nonconformities On August 2009
LIST OF FIGURE

Figure 1.1. : Flow Process Diagram 6
Figure 3.1. : Check Sheets 15
Figure 3.2. : Pareto Diagrams 16
Figure 3.3. : Flow Charts 17
Figure 3.4. : Cause-and-effect Diagrams 18
Figure 3.5. : Histogram 19
Figure 3.6. : Control Charts 20
Figure 3.7. : Scatter Plots 21
Figure 3.8. : Run Chart 22
Figure 4.1. : Mesran Super SAE 20W/50 24
Figure 4.2. : Meditran S 24
Figure 4.3. : Translik HD SAE 10W 25
Figure 4.4. : PERTAMINA ATF 25
Figure 4.5. : ENDORO 4T SAE 20W/50 26
Figure 4.6. : DILOKA SAE 40 27
Figure 4.7. : Greases 28
Figure 4.8. : PT PERTAMINA (PERSERO) Lubricating Unit of Cilacap 29
Figure 4.9. : Flow Chart Production and Quality Control 31
Figure 4.10. : Loading Process 35
Figure 4.11. : Labeling Process 35
Figure 4.12. : Filling Process 36
Figure 4.13. : Capping Process 36
Figure 4.14. : Sealing Process 37
Figure 4.15. : Lasering Process 38
Figure 4.16. : Packaging Process 38
Figure 5.1. : Pareto Diagram For Nonconformities On December 2008 until May 2009 50
Figure 5.2. : Production Process Flowchart
Figure 5.3. : Run Chart Percentage No Aluminum Foil Nonconformity per Production On December 2008 until May 2009
Figure 5.4. : Run Chart Percentage Oblique Cap Nonconformity per Production On December 2008 until May 2009
Figure 5.5. : Fishbone diagram of No Aluminum Foil
Figure 5.6. : Fishbone diagram of Oblique Cap
Figure 5.7. : Adding Operator in Capping Machine
Figure 5.8. : Run Chart Percentage No Aluminum Foil Nonconformity per Production On August, 2009
Figure 5.9. : Run Chart Percentage Oblique Cap Nonconformity per Production On August, 2009
Figure 5.10. : Run Chart Percentage No Aluminum Foil Nonconformity per Production On Dec, 2009 until May 2009 with Production on August, 2009
Figure 5.11. : Run Chart Percentage Oblique Cap Nonconformity per Production On Dec, 2009 until May 2009 with Production on August, 2009
Figure 5.12. : Pareto Diagram For Nonconformities On August 2009
LIST OF APPENDICES

Appendix 1 : Layout of PT PERTAMINA (PERSERO) 87
 Lubricating Unit of Cilacap
Appendix 2 : Layout of Lithos Department 88
Appendix 3 : Organization Structure in PT
 PERTAMINA (PERSERO) Lubricating
 Unit of Cilacap 89
Appendix 4 : Check List in Lithos Department 90
Appendix 5 : Recommendation Memo to Supplier 91
Appendix 6 : Recommendation Memo to Lithos 92
 Department
Appendix 7 : Official Statement 93
PT PERTAMINA (PERSERO) Lubricating Unit of Cilacap produces almost the PERTAMINA’s lubricant. The products cover the requirement of customer need from automotive and industrial. The main process is filling lubricating oil to the bottle and it process is in Lithos Department. By the observation the writer identify the defects, they are test induction sealer, no aluminum foil, un sticky aluminum foil, damaged cap, bottle & cap not equal, oblique cap, broken bridge cap, and empty bottle & micro hole. Because of product competitions, the defects become the company concern.

This research use Seven-Step Method based to reduce the defects. The improvement suggestion covers man, material, inventory, and material inspection.

By the end of research, the most significant defect product of lubricant in PT PERTAMINA (PERSERO) Lubricating Unit of Cilacap is no aluminum foil nonconformity and oblique cap nonconformity. The sources or factors that cause the defect are materials and man. The implementation conducted in August, 2009 and the result is decreasing the nonconformities of defect product.