REDUCING DEFECT ON BOTTLING PROCESS OF MESRAN SUPER SAE 20W/50 USING SEVEN-STEP METHOD (Case Study In PT PERTAMINA Lubricating Unit Of Cilacap)

THESIS

Submitted as Partial Fulfill of the Requirements to Obtain the Bachelor of International Industrial Engineering Degree

Arranged by:

RIZKY DESTAMA PUTRA Student Number: 04 14 04153

INTERNATIONAL INDUSTRIAL ENGINEERING PROGRAM FACULTY OF INDUSTRIAL TECHNOLOGY UNIVERSITAS ATMA JAYA YOGYAKARTA YOGYAKARTA 2009

A BACHELOR OF INTERNATIONAL INDUSTRIAL ENGINEERING THESIS On REDUCING DEFECT ON BOTTLING PROCESS OF MESRAN SUPER SAE 20W/50 USING SEVEN-STEP METHOD (Case Study In PT PERTAMINA Lubricating Unit Of Cilacap) Has been Examined and Approved On December, 2009 Adviser, Co-Adviser, Hadi Santono, S.T., M.T. M. Chandra Dewi, S.T., M.T. Board of Examiners, Chairman, Hadi Santono, S.T., M.T. Member, Member, The Jin Ai, S.T., M.T., D.Eng. Ir. B. Kristyanto, M.Eng., Ph.D

> Yogyakarta, December, 2009 Dean of Faculty of Industrial Technology Universitas Atma Jaya Yogyakarta

> > Paulus Mudjihartono, S.T., M.T.

DEDICATION

Dedicated to :

My God Always Blessed me and give me Power every time

My family in Cilacap Beloved Mother, Beloved Father, and My Sister Always Support and Prayer me

My Lovely Sweetheart "Fifi" Thanks for leaving me when I really need your support you broke my heart you always make me sad but I will love you forever and ever

> My Best Teacher Mr. Hadi Santono, S.T., M.T. And Mrs. M. Chandra Dewi, S.T., M.T. Always give me direction and advice in Final Task

> > And all of my friend Always give me time to play everything,

FOREWORD

This final report is one of the prerequisite to finish the undergraduate study program in Industrial Engineering Department, Industrial Technology Faculty, Atmajaya Yogyakarta University.

I am so grateful to many people who encouraged, and help me to finish this final report. On this opportunity, I would like to thank:

- 1. God Almighty, for His blessing and guidance.
- 2. Mr. Paulus Mudjihartono, S.T., M.T, as the Dean of Industrial Technology Faculty, Atmajaya Yogyakarta University.
- 3. Mr. Parama Kartika Dewa SP, S.T., M.T., as the Head of Industrial Engineering Department, Industrial Technology Faculty, Atmajaya Yogyakarta University.
- 4. Mr. Hadi Santono, S.T., M.T., as the Head of International Class of Industrial Engineering, with those never ending break through.
- 5. Mr. Hadi Santono, S.T., M.T., as first adviser, who had spent plenty of time to give guidance, direction, inputs and correction in writing this final report.
- Mrs. M. Chandra Dewi, S.T., M.T., as first adviser, who had inputs and correction in writing this final report.
- Mr. Oscar, Mr. Catur, Mr. Ari, ans Mr. Ambulan Sukarno as field adviser thank you for the input, the idea, and warm welcome.
- Mr. Sakri Sunarso and his big family who changes me in the way of life.

iv

- 9. My parents, thanks for supporting my life. Dad, your junior now ready to take over you. Mom, you'll proud of me.
- 10. My sister who always support me. Thanks for everything.
- 11. Mun-mun thanks for the support and advice, ninis a.k.a fierce doctor, iche for your program, and all my friends in 45 white dragon squad.
- 12. My friends TIKI Batch 2004, finally, we're in the same level. Thank you.
- 13. All those who haven't mentioned, thank you.

I realize that this final report has not perfect but I hope that this final report can be useful and can be developed in a further research.

Yogyakarta, December 2009

CONTENTS

TITLE PAGE.			i
APPROVAL			ii
			iii
ACKNOWLEDGM	IENT	\um _{ina}	iv
		· · · · · · · · · · · · · · · · · · ·	vi
LIST OF TAE	BLES		viii
LIST OF FIG	GURES		xi
LIST OF APP	PENDICES		xiii
ABSTRACT			xiv
UK			
Chapter 1	INTRODU	CTION 0	1
	1.1.	Background	1
	1.2.	Problem Statement	2
	1.3.	Research Objective	2
	1.4.	Scope of Research	2
	1.5.	Research Methodology	3
	1.6.	Flow Chart	5
	1.7.	Thesis Outline	7
Chapter 2	LITERAT	URE STUDY	8
	2.1.	Previous Research	8
	2.2.	Current Research	9
Chapter 3	BASIC I	HEORY	11
	3.1.	Definition of Quality	11
	3.2.	Quality Control Systems	11
	3.3.	Benefit of Quality Control	12
	3.4.	Variance	12

		3.5.	Seven-Step Method	13
		3.6.	Tools in Seven-Step Method	15
	Chapter 4	DATA AI	ND COMPANY PROFILE	23
		4.1.	Lubricant Background	23
		4.2.	Location and Plant Layout	28
		4.2.1.	Factory Location	28
		4.2.2.	Lubricant Process	29
		4.2.3.	Quality Control Activities	31
		4.3.	Company Vision and Mission	32
		4.3.1.	Visions	32
		4.3.2.	Mission	32
		4.4.	Quality Achievement	32
		4.5.	Work Hour	34
		4.6.	Research Product	34
		4.7.	Data	39
N		4.7.1.	Attribute Data	39
V				
	Chapter 5	ANALIS	YS AND DISCUSSION	46
	Chapter 6	CONCLUS	SION AND RECOMMENDATION	84
		6.1.	Conclusion	84
		6.2.	Recommendation	85
	BIBLIOGRAP	НҮ		86
	APPENDICES			87

LIST OF TABLE

Table	2.1.	:	Comparison between Previous and Current	
			Research	10
Table	4.1.	. :	Production Data of Lubricant	39
Table	4.2.	:	Lubricant Nonconformities on December	
			2008 11 10 16	40
Table	4.3.	1	Lubricant Nonconformities on January	
	~		2009	41
Table	4.4.	Ā	Lubricant Nonconformities on February	
			2009	42
Table	4.5.	:	Lubricant Nonconformities on March 2009	43
Table	4.6.	:	Lubricant Nonconformities on April 2009	44
Table	4.7.	:	Lubricant Nonconformities on May 2009	45
Table	5.1.	:	Percentage of product nonconformity on	
			December 2008 until May 2009	47
Table	5.2.	:	Frequency of All Nonconformities On	
	-		December 2008 until May 2009	49
Table	5.3.	:	Percentage of No Aluminum Foil	
			Nonconformity per Production in	
			December 2008	54
Table	5.4.	:	Percentage of No Aluminum Foil	
			Nonconformity per Production in January	
			2009	54
Table	5.5.	:	Percentage of No Aluminum Foil	
			Nonconformity per Production in	
			February 2009	55
Table	5.6.	:	Percentage of No Aluminum Foil	
			Nonconformity per Production in March	
			2009	56

Table	5.7.	:	Percentage of No Aluminum Foil	56
			Nonconformity per Production in April 2009	
Table	5.8.	:	Percentage of No Aluminum Foil	
			Nonconformity per Production in May	
			2009	57
Table	5.9.	: (Percentage of Oblique Cap Nonconformity	
			per Production in December 2008	59
Table	5.10.	:	Percentage of Oblique Cap Nonconformity	
. (いん	1	per Production in January 2009	59
Table	5.11.	:	Percentage of Oblique Cap Nonconformity	
5			per Production in February 2009	60
Table	5.12.	:	Percentage of Oblique Cap Nonconformity	
\sim			per Production in March 2009	60
Table	5.13.	:	Percentage of Oblique Cap Nonconformity	
			per Production in April 2009	61
 Table	5.14.	:	Percentage of Oblique Cap Nonconformity	
			per Production in May 2009	62
Table	5.15.	:	Comparison Percentage No Aluminum Foil	
			on December 2008 until May 2009	64
Table	5.16.	:	Comparison Percentage Oblique Cap on	
			December 2008 until May 2009	65
Table	5.17.	:	Improvement Suggestion of No aliminum	
			Foil	69
Table	5.18.	:	Improvement Suggestion of Oblique Cap	70
Table	5.19.	:	Percentage of No Aluminum Foil	
			Nonconformity per Production in August 2009	72
Table	5.20.	:	Percentage of Oblique Cap Nonconformity	
			per Production in August 2009	73
Table	5.21.	:	Comparison Percentage No Aluminum Foil	77

ix

and Oblique Cap on August 2009

Table	5.22.	:	Nonconformities Pencentage on August,	
			2009	80
Table	5.23.	:	Comparison Percentage of	
			Nonconformities Production	80
Table	5.24.	:	Frequency of All Nonconformities	
			On August 2009	81
			e .	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	0.	$\leq$		
			· · · · · · · · · · · · · · · · · · ·	
0)				
S S				
1				
11				
			<b>T</b>	

# LIST OF FIGURE

Figure	1.1.	:	Flow Process Diagram	6
Figure	3.1.	:	Check Sheets	15
Figure	3.2.	:	Pareto Diagrams	16
Figure	3.3.	:	Flow Charts	17
Figure	3.4.	÷	Cause-and-effect Diagrams	18
Figure	3.5.	17	Histogram	19
Figure	3.6.	:	Control Charts	20
Figure	3.7.	:	Scatter Plots	21
Figure	3.8.	•	Run Chart	22
Figure	4.1.	:	Mesran Super SAE 20W/50	24
Figure	4.2.	:	Meditran S	24
Figure	4.3.	:	Translik HD SAE 10W	25
Figure	4.4.	:	PERTAMINA ATF	25
Figure	4.5.	:	ENDURO 4T SAE 20W/50	26
Figure	4.6.	:	DILOKA SAE 40	27
Figure	4.7.	:	Greases	28
Figure	4.8.	:	PT PERTAMINA (PERSERO) Lubricating	
			Unit of Cilacap	2 <b>9</b>
Figure	4.9.	;	Flow Chart Production and Quality	
			Control	31
Figure	4.10.	:	Loading Process	35
Figure	4.11.	:	Labeling Process	35
Figure	4.12.	:	Filling Process	36
Figure	4.13.	:	Capping Process	36
Figure	4.14.	:	Sealing Process	37
Figure	4.15.	:	Lasering Process	38
Figure	4.16.	:	Packaging Process	38
Figure	5.1.	:	Pareto Diagram For Nonconformities	
			On December 2008 until May 2009	50

Figure	5.2.	:	Production Process Flowchart	53
Figure	5.3.	:	Run Chart Percentage No Aluminum	
			Foil Nonconformity per Production	
			On December 2008 until May 2009	58
Figure	5.4.	:	Run Chart Percentage Oblique Cap	
			Nonconformity per Production On	
		5	December 2008 until May 2009	63
Figure	5.5.	ł.	Fishbone diagram of No Aluminum	
	<u>~</u>		Foil	66
Figure	5.6.	:	Fishbone diagram of Oblique Cap	67
Figure	5.7.	÷	Adding Operator in Capping Machine	72
Figure	5.8.	:	Run Chart Percentage No Aluminum	
U I			Foil Nonconformity per Production	
S			On August, 2009	75
Figure	5.9.	:	Run Chart Percentage Oblique Cap	
			Nonconformity per Production	
			On August, 2009	76
Figure	5.10.	:	Run Chart Percentage No Aluminum	
			Foil Nonconformity per Production	
			On Dec, 2009 until May 2009 with	
			Production on August, 2009	78
Figure	5.11.	:	Run Chart Percentage Oblique Cap	
			Nonconformity per Production	
			On Dec, 2009 until May 2009 with	
			Production on August, 2009	79
Figure	5.12.	:	Pareto Diagram For Nonconformities	
			On August 2009	82
			V	

# LIST OF APPENDICES

Appendix	1	:	Layout of PT PERTAMINA (PERSERO)	87
			Lubricating Unit of Cilacap	
Appendix	2	:	Layout of Lithos Department	88
Appendix	3	:	Organization Structure in PT	
			PERTAMINA (PERSERO) Lubricating	
			Unit of Cilacap	89
Appendix	4	:	Check List in Lithos Department	90
Appendix	5	;	Recommendation Memo to Supplier	91
Appendix	б	:	Recommendation Memo to Lithos	92
			Department	2
Appendix	7	:	Official Statement	93
S				S.
	1			

#### ABSTRACT

PT PERTAMINA (PERSERO) Lubricating Unit of Cilacap produces almost the PERTAMINA's lubricant. The products cover the requirement of customer need from automotive and industrial. The main process is filling lubriating oil to the bottle and it process is in Lithos Department. By the observation the writer identify the defects, they are test induction sealer, no aluminum foil, un sticky aluminum foil, damaged cap, bottle & cap not equal, oblique cap, broken bridge cap, and empty bottle & micro hole. Because of product competitions, the defects become the company concern.

This research use Seven-Step Method based to reduce the defects. The improvement suggestion covers man, material, inventory, and material inspection.

By the end of research, the most significant defect product of lubricant in PT PERTAMINA (PERSERO) Lubricating Unit of Cilacap is no aluminum foil nonconformity and oblique cap nonconformity. The sources or factors that cause the defect are materials and man. The implementation conducted in August, 2009 and the result is decreasing the nonconformities of defect product.