1. Work Design & Measurement

2. Operations Engineering & Management

# **PRODUCTION CAPACITY IMPROVEMENT AT CV X**

A THESIS

Submitted in Partial Fulfillment of the Requirement for the Degree of Bachelor of Engineering in Industrial Engineering



JUAN 19 14 10132

INTERNATIONAL INDUSTRIAL ENGINEERING PROGRAM DEPARTMENT OF INDUSTRIAL ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY UNIVERSITAS ATMA JAYA YOGYAKARTA YOGYAKARTA 2023

#### **IDENTIFICATION PAGE**

### A thesis entitled:

#### **PRODUCTION CAPACITY IMPROVEMENT AT CV X**

# submitted by Juan 19 14 10132

#### was examined and approved on 23 October 2023

|                     |                                                 | Approval Status |
|---------------------|-------------------------------------------------|-----------------|
| Thesis Supervisor 1 | : Dr. Ir. Yosephine Suharyanti, S.T., M.T.      | Approved        |
| Thesis Supervisor 2 | : Dr. Ir. Yosephine Suharyanti, S.T., M.T.      | Approved        |
|                     |                                                 |                 |
| Board of Examiners  |                                                 |                 |
| Chief Examiner      | : Dr. Ir. Yosephine Suharyanti, S.T., M.T.      | Approved        |
| Examiner 1          | : Ir. Adhi Anindyajati, S.T., M.Biotech., Ph.D. | Approved        |

| Examiner 1 | : Ir. Adhi Anindyajati, S.T., M.Biotech., Ph.D.  | Approved |
|------------|--------------------------------------------------|----------|
| Examiner 2 | : Ir. Fransiska Hernina Puspitasari, S.T., M.Sc. | Approved |

Yogyakarta, 23 October 2023 Universitas Atma Jaya Yogyakarta Faculty of Industrial Technology,

Dean,

## (signed)

Dr. Ir. Parama Kartika Dewa SP., S.T., M.T.

#### **DECLARATION OF ORIGINALITY**

I certify that the research entitled "Production Capacity Improvement at CV X" in this thesis has not already been submitted for any other degree.

I certify that to the best of my knowledge and belief, this thesis which I wrote does not contain the works or parts of the works of other people, except those cited in the quotations and bibliography, as a scientific paper should.

In addition, I certify that I understand and abide the rule stated by the Ministry of Education and Culture the Republic of Indonesia, subject to the provisions of *Peraturan Menteri Pendidikan Nasional Republik Indonesia Nomor 17 Tahun 2010 tentang Pencegahan dan Penanggulangan Plagiat di Perguruan Tinggi*.

Yogyakarta, 23 October 2023



Juan (19 14 10132)

#### **DEDICATION PAGE**

To mom, dad, and sis, You are a gift and a blessing in my life. Thank you for your love and never-ending support. No words can describe how much I love you guys and how thankful I am to be a part of this family.

To Ma'am Yosephine Suharyanti,

Thank you for your help and guidance throughout my thesis journey. I am forever grateful to have the best lecturer as my supervisor for my final project.

To my beloved friends, Thank you for making my life better. Because of you, I laugh a little harder, cry a little less, and smile a lot more.

#### ACKNOWLEDGMENT

First, thank God Almighty for His blessings, the author can complete the final thesis on time. This final project is one of the requirements to achieve an Industrial Engineering bachelor's degree at Universitas Atma Jaya Yogyakarta.

Many parties have helped with this project. With the support and encouragement from various parties, this project can be completed properly. Therefore, the author would like to thank:

- 1. Mr. Chandra S. H., as the operational manager of CV X, who kindly approves and helps this research.
- 2. Dr. Ir. Parama Kartika Dewa SP., S.T., M.T., as the Dean of Faculty of Industrial Technology Universitas Atma Jaya Yogyakarta.
- 3. Dr. Ir. Ign. Luddy Indra Purnama, M.Sc., IPU., as the Head of Industrial Engineering Department Universitas Atma Jaya Yogyakarta.
- 4. Ir. Twin Yoshua Raharjo D., S.T., M.Sc., as the Head of Industrial Engineering Undergraduate Program Universitas Atma Jaya Yogyakarta.
- 5. Dr. Ir. Yosephine Suharyanti, S.T., M.T., as the author's thesis supervisor, who patiently guides and supports the author throughout the final project.
- 6. All lecturers in Industrial Engineering Undergraduate Program Universitas Atma Jaya Yogyakarta, who have given the author insights and knowledge during the author's study at Universitas Atma Jaya Yogyakarta.
- 7. Family and friends, as well as all parties who have helped and supported this final project.

The author is fully aware of potential errors in this report. Therefore, the author is open to any advice for better work in the future.

Hopefully, this thesis can be useful for the readers and society.

Yogyakarta, 23 October 2023

The author, Juan

### TABLE OF CONTENT

| CHAPTER | TITLE                                         | PAGE |
|---------|-----------------------------------------------|------|
|         | Cover                                         | i    |
|         | Identification Page                           | ii   |
|         | Declaration of Originality                    | iii  |
|         | Dedication Page                               | iv   |
|         | Acknowledgment                                | v    |
|         | Table of Content                              | vi   |
|         | List of Tables                                | viii |
|         | List of Figures                               | x    |
|         | List of Appendices                            | xi   |
|         | Abstract                                      | xii  |
|         |                                               |      |
| 1       | Introduction                                  | 1    |
|         | 1.1. Background                               | 1    |
|         | 1.2. Problem Identification                   | 2    |
|         | 1.3. Research Problem                         | 11   |
|         | 1.4. Research Objective                       | 11   |
|         | 1.5. Research Limitation                      | 11   |
| 2       | Literature Review and Theoretical Background  | 12   |
|         | 2.1. Literature Review                        | 12   |
|         | 2.2. Theoretical Background                   | 14   |
| 3       | Solution Alternatives                         | 27   |
|         | 3.1. Solution Alternatives                    | 27   |
|         | 3.2. Waste Identification Method Alternatives | 28   |
|         | 3.3. Research Uniqueness                      | 32   |
| 4       | Research Methodology                          | 33   |
|         | 4.1. Company Profile                          | 33   |
|         | 4.2. Research Methodology                     | 33   |
|         | 4.3. Code of Ethics and Research Standard     | 38   |

| CHAPTER | TITLE                                                 | PAGE |
|---------|-------------------------------------------------------|------|
| 5       | Current Situation Analysis                            | 40   |
|         | 5.1. Production Facility                              | 40   |
|         | 5.2. Production Quantity and Production Capacity Data | 41   |
|         | 5.3. Waste Identification                             | 44   |
|         | 5.4. Observation Result                               | 45   |
|         |                                                       |      |
| 6       | Improvement Design and Implementation                 | 67   |
|         | 6.1. Proposed Improvement                             | 67   |
|         | 6.2. Implementation Phase                             | 75   |
|         |                                                       |      |
| 7       | Conclusion                                            | 79   |
|         | 7.1. Conclusion                                       | 79   |
|         | 7.2. Suggestions                                      | 79   |
|         |                                                       |      |
|         | References                                            | xiii |
|         | Appendix                                              | xvi  |

#### LIST OF TABLES

|             | TITLE                                                  | PAGE |
|-------------|--------------------------------------------------------|------|
| Table 1.1.  | Total Costs During January 2020 – December 2022        | 8    |
| Table 3.1.  | Solution Alternatives                                  | 27   |
| Table 3.2.  | Previous Studies for Waste Identification              | 29   |
| Table 5.1.  | Current Job Description                                | 40   |
| Table 5.2.  | Current Operating Machines and Equipment               | 40   |
| Table 5.3.  | Observation Results for Operator 1 Grinding            | 45   |
| Table 5.4.  | Observation Results for Operator 2 Grinding            | 46   |
| Table 5.5.  | Data Uniformity Test Summary for Scooping the          | 47   |
|             | Materials                                              |      |
| Table 5.6.  | Data Uniformity Test Summary for Preparing the Sack    | 48   |
| Table 5.7.  | Data Uniformity Test Summary for Pouring the Materials | 49   |
| Table 5.8.  | Data Uniformity Test Summary for Closing the Sack      | 51   |
| Table 5.9.  | Data Uniformity Test Recapitulation                    | 52   |
| Table 5.10. | Data Adequacy Test Summary for Scooping the            | 52   |
|             | Materials                                              |      |
| Table 5.11. | Data Adequacy Test Summary for Preparing the Sack      | 52   |
| Table 5.12. | Data Adequacy Test Summary for Pouring the Materials   | 53   |
| Table 5.13. | Data Adequacy Test Summary for Closing the Sack        | 53   |
| Table 5.14. | Data Adequacy Test Recapitulation                      | 53   |
| Table 5.15. | Performance Rating for Scooping the Materials          | 54   |
| Table 5.16. | Allowances for Scooping the Materials                  | 54   |
| Table 5.17. | Performance Rating for Preparing the Sack              | 55   |
| Table 5.18. | Allowances for Preparing the Sack                      | 55   |
| Table 5.19. | Performance Rating for Pouring the Materials           | 56   |
| Table 5.20. | Allowances for Pouring the Materials                   | 56   |
| Table 5.21. | Performance Rating for Closing the Sack                | 57   |
| Table 5.22. | Allowances for Closing the Sack                        | 57   |
| Table 5.23. | Adjustments and Allowances Recapitulation              | 57   |
| Table 5.24. | Observed Time Calculation                              | 58   |
| Table 5.25. | Normal Time Calculation                                | 58   |
| Table 5.26. | Standard Time Calculation                              | 59   |
| Table 5.27. | Current Gang Process Chart Machine 1                   | 60   |

|             | TITLE                                           | PAGE |
|-------------|-------------------------------------------------|------|
| Table 5.28. | Current Gang Process Chart Machine 2            | 61   |
| Table 5.29. | Current Gang Process Chart Machine 3            | 62   |
| Table 5.30. | Current Gang Process Chart Machine 4            | 63   |
| Table 5.31. | Current Gang Process Chart Machine 5            | 64   |
| Table 5.32. | Current Gang Process Chart Machine 6            | 65   |
| Table 6.1.  | Proposed Job Description                        | 67   |
| Table 6.2.  | Proposed Operating Machines and Equipment       | 68   |
| Table 6.3.  | Comparison Between the Current and the Proposed | 68   |
|             | System                                          |      |
| Table 6.4.  | Comparison Between the Current and the Proposed | 69   |
|             | Capacity                                        |      |
| Table 6.5.  | Proposed Gang Process Chart Machine A and B     | 71   |
| Table 6.6.  | Proposed Gang Process Chart Machine C and D     | 72   |
| Table 6.7.  | Proposed Gang Process Chart Machine E and F     | 73   |
| Table 6.8.  | Proposed Gang Process Chart Machine G and H     | 74   |
| Table 6.9.  | Implementation Results                          | 76   |
| Table 6.10. | Production Data Comparison Before and After     | 77   |
|             | Improvement                                     |      |

### LIST OF FIGURES

|             | TITLE                                                 | PAGE |
|-------------|-------------------------------------------------------|------|
| Figure 1.1. | CV X Business Process                                 | 3    |
| Figure 1.2. | Interrelationship Diagram                             | 6    |
| Figure 1.3. | Reasons of One-Time Customers at CV X                 | 7    |
| Figure 1.4. | Production Quantity, Production Capacity, and Sales   | 10   |
|             | Data                                                  |      |
| Figure 2.1. | Westinghouse System Skill Ratings                     | 16   |
| Figure 2.2. | Westinghouse System Effort Ratings                    | 17   |
| Figure 2.3. | Westinghouse System Condition Ratings                 | 17   |
| Figure 2.4. | Westinghouse System Consistency Ratings               | 17   |
| Figure 2.5. | ILO Recommended Allowances                            | 19   |
| Figure 2.6. | Gang Process Chart Example                            | 23   |
| Figure 2.7. | Flow Diagram Example                                  | 23   |
| Figure 2.8. | Waste Assessment Questionnaire                        | 26   |
| Figure 4.1. | Empathizing Phase Flowchart                           | 33   |
| Figure 4.2. | Problem Defining Flowchart                            | 34   |
| Figure 4.3. | Ideating and Selection of Solution Flowchart          | 36   |
| Figure 4.4. | Design and Prototyping Flowchart                      | 37   |
| Figure 4.5. | Implementation and Testing Flowchart                  | 38   |
| Figure 5.1. | Production Quantity and Production Capacity Chart     | 43   |
| Figure 5.2. | Current Value Stream Mapping                          | 44   |
| Figure 5.3. | Data Uniformity Test Chart for Scooping the Materials | 48   |
| Figure 5.4. | Data Uniformity Test Chart for Preparing the Sack     | 49   |
| Figure 5.5. | Data Uniformity Test Chart for Pouring the Materials  | 50   |
| Figure 5.6. | Data Uniformity Test Chart for Closing the Sack       | 51   |
| Figure 5.7. | Current Flow Diagram                                  | 66   |
| Figure 6.1. | Proposed Flow Diagram                                 | 75   |
| Figure 6.2. | Operator 1 Grinding Helping One Operator 2 Grinding   | 76   |
| Figure 6.3. | Operator 1 Grinding Helping Two Operator 2 Grinding   | 76   |

#### LIST OF APPENDICES

|             | TITLE                                 | PAGE  |
|-------------|---------------------------------------|-------|
| Appendix 1. | Research Approval                     | xvi   |
| Appendix 2. | Documentation at CV X                 | xvii  |
| Appendix 3. | Question List for Interview with CV X | xviii |
| Appendix 4. | Turnitin Result                       | xix   |

#### ABSTRACT

Animal husbandry has become one of the dominant sectors of fulfilling the basic need for nutritious food. In their operations, these industries require animal feed. Seeing this as a business opportunity, CV X has become one of the producers of animal feed, specializing in ruminants feed. However, the stakeholders of CV X still face some problems. The owner states that he receives a low dividend from the company due to the low number of sales. Consequently, the marketing employees complain about the low bonuses that they get because they should receive a bonus for every sold product. Meanwhile, some one-time customers are detected and most of them stop buying from the company due to the expensive products' prices. Since the expensive prices are heavily dependent on inflation and government policies, the customers' concern cannot be solved directly by this research. Nevertheless, the owner hopes that these concerns can be solved without charging the company additional costs.

Based on the problem, waste identification using Value Stream Mapping (VSM) is chosen to later eliminate the wastes detected in the company's production process. Less waste will result in higher production capacity and quantity, so there will be more products available to be sold and operating costs will be lower. Combined with the upcoming marketing strategy the company has planned for the near future, increasing production capacity will greatly help the company.

From the VSM, it is concluded that the grinding department is the bottleneck of the process and has a lot of waste, namely waiting. Moreover, there are two non-operating machines due to the shortage of staff caused by the change of the facility layout in 2022. To solve this issue, a reallocation of the workers' workload in the grinding department is done, so the same number of staff can handle more machines. This research finds that by identifying the waste using VSM and eliminating it by reducing the waiting waste and workers' workload redistribution, the production capacity increases by 33.33%. This implies that the implementation of waste identification and elimination has successfully attained the research objective and solved the solvable stakeholders' concerns.

Keywords: Waste identification, waste elimination, value stream mapping, production capacity, animal feed production