CHAPTER 3 SOLUTION ALTERNATIVES

3.1. Solution Alternatives

According to the research problem of the low production capacity and the stakeholders' concerns, there are three possible solution alternatives to resolve the issue. The solution alternatives are installing additional machines for production, adding more work shifts, and implementing lean manufacturing principle by waste identification and elimination. Table 3.1. shows the solution alternatives along with the analysis of each solution's practicability.

Solution Alternatives	Possibility by Theory	Case Appropriateness	Research Limitation	Conclusion	
Installing	New machines	The plant still has	Installing new	Rejected,	
additional	will increase the	enough space for	machines will	because it	
machines	output and it is a	new machines.	charge the	does not fulfill	
	long-term		company more	the research	
7	investment.		costs.	limitation.	
Adding more	More production	Additional shifts	Additional shifts	Rejected,	
work shifts	hours mean more	may be applied	require more costs	because it	
	products can be	since the current	for employees and	does not fulfill	
	processed and	system has only	other operating	the research	
	produced.	one shift.	costs, such as	limitation.	
			electricity.		
Waste	Waste elimination	Some wastes are	Eliminating the	Chosen,	
identification	will reduce the	identified on early	waste will increase	because it	
and	production time,	observations and	production capacity	fulfills all	
elimination	so more products	can be	by utilizing the	aspects of	
	can be produced	eliminated.	current resources.	considerations.	
	within the same				
	working hours.				

Table 3.1. Solution Alternatives

From Table 3.1., the analysis of every solution's feasibility considers three aspects: the possibility by theory, the case appropriateness, and the fulfilment of the research limitations. These factors will determine the most suitable solution for the research problem.

The first solution, the installation of new additional machines, is possible in this case because the factory plant still has enough space for new machines on the production floor. Moreover, the solution will become a long-term investment for the company, and it will increase the production capacity. Higher production quantity allows more sales to happen and lower operating costs. However, the company does not wish to be charged extra costs by the solution proposed. Therefore, the solution of installing new machines is not feasible in this research.

Then, the second solution will be adding more work shifts. Additional shifts are still available at CV X because they currently work only for one shift. Longer production hours will result in higher production quantity. Although this solution is possible in theory and will fulfill the research objective, more costs will apply to the company. Adding more shifts requires more employees to be hired and other costs, such as the electricity cost, will also become higher due to longer working hours. Due to the research limitations, implementing additional work shifts is not practicable.

The last alternative is waste identification and elimination on the production floor. By eliminating waste, the production time required will be decreased. Thus, within the same amount of time, more production quantity will be produced. Besides, some wastes on the production floor are identified during the observation at the company. Furthermore, this third alternative will not charge the company more costs since it can utilize the current available resources. Therefore, compared to the other alternative solutions, waste identification and elimination is the most suitable solution to be implemented for this research. After confirming with the owner of CV X, this solution is accepted and can be implemented on the company's shop floor.

3.2. Waste Identification Method Alternatives

Based on the Literature Review, there are two commonly used waste identification methods. They are Value Stream Mapping (VSM) and Waste Assessment Model (WAM). Previous studies have been done using the two methods and some of them are shown in Table 3.2.

No.	Author	Year	Title	Objective /	Method	Result
1	Alfiansyah & Kurniati	2018	Identifikasi Waste dengan Metode Waste Assessment Model dalam Penerapan Lean Manufacturing untuk Perbaikan Proses Produksi (Studi Kasus pada Proses Produksi Sarung Tangan)	Eliminating the waste in the gloves production at PT X.	Value Stream Mapping, Waste Assessment Model	Waste elimination is done by reducing defect process, maintenance system improvement, and management system development.
2	Sudjianto, et al.	2013	Value Stream Mapping sebagai Upaya Pengurangan Waste di Departemen S PT A	Reducing waste in S department	Value Stream Mapping	Incoming material scheduling, enhanced supervising and work ethics, material management development, upgrading material handling equipment, and changing the material intake flow decrease the lead time by 5.82%.
3	Maulana	2019	Identifikasi Waste dengan Menggunakan Metode Value Stream Mapping pada Industri Perumahan	Increasing productivity by reducing the waste	Value Stream Mapping	Improved communication system, standardized work method, and transportation system improvement reduce the lead time and increase productivity.
4	Tambunan, et al.	2018	Penerapan Lean Manufacturing menggunakan Value Stream Mapping (VSM) untuk Identifikasi Waste & Performance Improvement Pada UKM "Shoes and Care"	Identify the waste of the "fast clean" service and propose improvements	Value Stream Mapping	Working method and working tools improvement can reduce the cycle time from 2,275 seconds to 1,175 seconds.

Table 3.2. Previous Studies for Waste Identification

Table 3.2. Continuation

No.	Author	Year	Title	Objective	Method	Result
5	Jufrijal &	2022	Identifikasi Waste Crude 🤇 🦷	Identify the waste	Waste	Overproduction, defects, and waiting
	Fitriadi		Palm Oil dengan	on the production	Assessment	become the critical wastes in the crude
			Menggunakan Waste	process	Model	palm oil production process.
			Assessment Model			
6	Putri, et al.	2017	Identifikasi Waste	Identify the waste	Waste	The defects waste reaches 27%, so
			Menggunakan Waste	at PT KHI Pipe	Assessment	machine maintenance, better raw material
			Assessment Model (WAM)	Industries and	Model 🧹 🎽	selection, and on-the-job training are
			Pada Lini Produksi PT. KHI	propose	λ	proposed.
			Pipe Industries	improvements		
7	Hatpito, et al.	2019	Identifikasi Waste Proyek	Identify the waste	Waste	Better material storage, administration
			Konstruksi Jalan dengan	using lean project	Assessment	system improvement, regular tools
			Menggunakan Metode Lean	management	Model	maintenance, and human resources
			Project Management	approach to		development program are proposed to
				prevent delay,		reach the objective.
				attain cost		
				efficiency, and		
				pass the quality		
				standard		

From Table 3.2., it can be concluded that both VSM and WAM can be implemented in various industries and projects. Therefore, animal feed industry such as CV X is no exception. Following this discovery, the best method to identify the waste in this research must be determined.

First, the Value Stream Mapping method is done by analyzing the stream of processes and operations in the company. Then, based on the VSM, a Process Activity Mapping is created to determine the value-added and non-value-added activities. Based on the Process Activity Mapping, the waste of the production process at the company can be identified. Next, the critical waste can be concluded from the total time of non-value-added activities in a particular process. By using VSM, the identification of waste will be comprehensive because the analysis is based on the whole operations in the company. Moreover, the VSM method considers the value-added activities, so the research may find the comparison between the total time of value-added activities and non-value-added activities. However, the VSM method cannot show the relationship among the wastes, such as how influential a waste is towards another waste, existing at the company.

Meanwhile, the Waste Assessment Model method is done by using the Waste Assessment Questionnaire. The questionnaire is filled in by someone who is considered eligible to assess the relationship between the wastes, such as the production manager. From the answer of the questionnaire, the total score of each waste can be found. Based on the total score, the weight for every waste will be symbolized in the Waste Relationship Matrix. Finally, by converting the weight from the Waste Relationship Matrix to a score, the values for the waste are found. The advantage of using the WAM method is the research can find the relationship between the waste in the company. Nevertheless, the WAM method is prone to subjectivity and human error because the respondent must be the employee of the company. Moreover, the WAM method assumes that all seven wastes exist in the plant, but additional investigation is required to determine in which stage the waste occurs in the process.

Considering the advantages and disadvantages of each method, the VSM method has more advantages offered to attain the objective of this research. The VSM method has better objectivity because the analysis is based on data and done by the researcher, not by an employee from the company. Furthermore, the VSM method can directly identify where the waste occurs in the system. Therefore, improvement can be focused on the specific characteristics. Also, a comprehensive analysis of the VSM method becomes another advantage that this method offers compared to the WAM method. Thus, this research will use the Value Stream Mapping method to identify the waste at CV X. Later, improvements will be implemented based on the founding from the waste identified.

3.3. Research Uniqueness

The uniqueness of this research is the company's vision to sell exclusive and highquality products. Thus, it has a specific market and market expansion is not as simple as other companies. Moreover, it requires many considerations to produce lower product quality with cheaper prices, since it will affect the company's reputation in the market. Besides, some workers, like the workers in the grinding department, do more than one job. Other than grinding the materials, they need to transport the material to the other department with a considerable amount of time and work addition. Furthermore, using the VSM on the animals feed production company is still rare to be found, proved by the results that show up from the search engine.