THE EFFECT OF LOT SIZE AND PRODUCT STRUCTURE ON
MAKESPAN MINIMIZATION IN MULTILEVEL PRODUCT SCHEDULING
(Due to 4 Levels of Product Structure with Maximum
Parts Are 4 in Each Level)

THESIS
Submitted as Partial Fulfillment of the Requirements
to Obtain the Bachelor of International
Industrial Engineering Degree

Arranged by:
SAMMUEL SUKAMTO
Student Number: 04 14 04084

INTERNATIONAL INDUSTRIAL ENGINEERING PROGRAM
FACULTY OF INDUSTRIAL TECHNOLOGY
UNIVERSITAS ATMA JAYA YOGYAKARTA
YOGYAKARTA
2009
STATEMENT OF WORK’S ORIGINALITY

I honestly declare that this thesis which I wrote does not contain the works or parts of the works of other people, except those cited in the quotations and bibliography, as a scientific paper should.

Yogyakarta, April 2009

The Writer

Sammuel Sukamto
THESIS TITLED

THE EFFECT OF LOT SIZE AND PRODUCT STRUCTURE ON
MAKESPAN MINIMIZATION IN MULTILEVEL PRODUCT SCHEDULING
(Due to 4 Levels of Product Structure with Maximum
Parts Are 4 in Each Level)

Arranged by:
Name: Sammuel Sukamto
NIM: 04 14 04084

Adviser, Co-Adviser,
(V. Ariyono, S.T., M.T.) (Y. Suharyanti, S.T., M.T.)
ACKNOWLEDGEMENT

Dedicated to my parents...
FOREWORD

Thank to God for His blessings and guidance that allow the writer to completely finish the long journey of this final project. This final project is the requirements to obtain the bachelor of International Industrial Engineering Degree in Universitas Atma Jaya Yogyakarta.

The writer realizes that in this final project working, there are plenty of supports and helps from all the people involved. Therefore, in this chance, the writer would like to thank:

1. Mr. Paulus Mudjihartono, S.T., M.T., as the Dean of Faculty of Industrial Technology Universitas Atma Jaya Yogyakarta.
2. Mr. Parama Kartika Dewa, S.T., M.T., as the Head of Industrial Engineering Program Universitas Atma Jaya Yogyakarta.
3. Mr. Hadi Santono, S.T., M.T. as the Head of International Program of Industrial Engineering Universitas Atma Jaya Yogyakarta.
4. Mr. V. Ariyono, S.T., M.T. as the adviser in completing the report.
5. Mrs. Yosephine Suharyanti, S.T., M.T. as co-adviser in completing the report.
6. All of the lectures and staffs of Universitas Atma Jaya Yogyakarta, for their knowledge which given to the writer.
7. My parents, for their supports, patience, and prays.
8. My brothers and sister, for their support and prays.

9. IIE Batch 2004, Geo, Eko, Amey, Ellyn, Dewi, Maya, Yeni, Sugeng, Bram, Yuri, William, Lukas, Yansen, Dahana, Vena, Abie, Eliza, Gieta, Desta, Awiek, Andhika, for their assistances, supports, cares, inspirations, funs and loves.

10. All of my friends from IIE all batches and from my workplace GoodNet, for the supports and prays.

11. Michael, Pongky, Hjay, Francis, Simbah, Bontank, Victor, Nungky, Yulia and all of my friends and other people that the writer couldn't mention, for their everlasting friendship, funs, and supports.

The writer realizes that this final project still far from perfect. Therefore, all the critics or suggestions are accepted to make this report better.

The writer hopes that this report will be useful for all people, especially the readers.

Yogyakarta, April 2009

The writer
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>i</td>
</tr>
<tr>
<td>Statement Of Work’s Originality</td>
<td>ii</td>
</tr>
<tr>
<td>Approval</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td>Foreword</td>
<td>v</td>
</tr>
<tr>
<td>Table Of Content</td>
<td>vii</td>
</tr>
<tr>
<td>List Of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List Of Figures</td>
<td>x</td>
</tr>
<tr>
<td>Abstract</td>
<td>xi</td>
</tr>
<tr>
<td>CHAPTER 1 Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1. Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td>1.3. Research Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.4. Scope of Research</td>
<td>3</td>
</tr>
<tr>
<td>1.5. Research Methodology</td>
<td>3</td>
</tr>
<tr>
<td>a. Generating Data</td>
<td>3</td>
</tr>
<tr>
<td>b. Data Processing Step</td>
<td>4</td>
</tr>
<tr>
<td>c. Analyzing Step</td>
<td>4</td>
</tr>
<tr>
<td>d. Making Report</td>
<td>4</td>
</tr>
<tr>
<td>e. Research Flow Diagram</td>
<td>4</td>
</tr>
<tr>
<td>1.6. Report Outline</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER 2 Literature Review</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 3 Basic Theory</td>
<td></td>
</tr>
<tr>
<td>3.1. Scheduling</td>
<td>10</td>
</tr>
<tr>
<td>3.2. Routing File</td>
<td>11</td>
</tr>
<tr>
<td>3.3. Bill of Materials</td>
<td>11</td>
</tr>
<tr>
<td>3.4. Gantt Chart</td>
<td>13</td>
</tr>
<tr>
<td>3.5. Lot Splitting</td>
<td>13</td>
</tr>
</tbody>
</table>
3.6. Hypothesis Test 14
3.7. Analysis of Variance (ANOVA) 15

CHAPTER 4 Data
4.1. Product Structure 19
4.2. Routing File 20
4.3. Lot size 26

CHAPTER 5 Data Analysis
5.1. Gantt chart simulation 28
5.2. Ratio Calculation for Minimum Makespan 34
5.3. Hypothesis Testing using ANOVA 35

CHAPTER 6 Conclusion and Suggestion
6.1. Conclusion 41
6.2. Suggestion 41

References
Appendices
LIST OF TABLES

Table 4.1. Routing Files for Replication 1 36
Table 4.2. Routing Files for Replication 2 37
Table 4.3. Routing Files for Replication 3 38
Table 4.4. Routing Files for Replication 4 39
Table 5.1. Result of Gantt chart Simulation 54
Table 5.2. Result of Optimum Ratio 57
Table 5.3. ANOVA Single Factor Test Result 57
Table 5.4. Result of Optimum Ratio 58
Table 5.5. ANOVA Single Factor test Result 59
LIST OF FIGURES

Figure 1.1. Research Flow Diagram 6
Figure 3.1. The Example of the Structure of BOM (www.feldmanengineering.com/BoMGlossary.htm) 18
Figure 3.2. The Example of Gantt Chart (Burbidge, 1971) 19
Figure 4.1. The Product Structure 30
Figure 5.1. Research Map of Production System Laboratory of UAJY 45
Figure 5.2. Gantt Chart 48
Figure 5.3. Part C Operation 1, 1st Product Structure 49
Figure 5.4. Makespan Result from the Given Example 50
Figure 5.5. Common Makespan Pattern 50
Figure 5.6. Setup time-Run time Ratio Data 53
ABSTRACT

Every company has to compete each others to survive in their business world. One of the ways is to reducing the expense cost. A good scheduling can minimize it, because production time equals with production cost. If production takes long time to be done, the production cost needed will be higher. So the scheduling which can minimize makespan is needed. Finding the effect of lot size and product structure on makespan minimization in multilevel product scheduling becomes the main theme of this research that is included in the long term research project of The Production System Laboratory of Universitas Atma Jaya Yogyakarta.

There are some data used in this research, those are product structure (BOM), lot size, setup time, and run time. Product structure used is 4 level of product structure with maximum number of parts are 4 in each level where the combinations of product structure forms are generated to fulfill that consideration. Number of item produced is 45 and lot size evaluated are 5, 9, 15, and 45. Setup time is randomly generated by random number that is varied from 5 to 10 minutes/lot, and run time is varied from 1 to 5 minutes/unit. Optimum lot size is lot size decision giving the minimum makespan. Gantt chart is simulated to obtain the makespan each product structure, lot size and replication. Optimum lot size will be evaluated using ANOVA single factor.

Based on Gantt chart simulation, there is minimum makespan for each lot size, product structure and replication. Optimum lot size resulted is lot size 9 and 15. Based on ANOVA single factor result, the conclusion is product structure complexity does not significantly affect the optimum lot size.