BUSINESS PLAN MODEL FOR SOUVENIR MANUFACTURING: A STRATEGIC ACTION APPROACH IN FUND RAISING (Case Study in Universitas Atma Jaya Yogyakarta)

THESIS

Submitted as Partial Fulfill of Requirements
To Obtain the Bachelor of International
Industrial Engineer Degree

Written By:
WILLIAM SUSANTO SOEGIARTO
04 14 04361

INTERNATIONAL INDUSTRIAL ENGINEERING PROGRAM
INDUSTRIAL TECHNOLOGY FACULTY
UNIVERSITAS ATMA JAYA YOGYAKARTA
YOGYAKARTA
2009

A BACHELOR OF INTERNATIONAL INDUSTRIAL ENGINEERING THESIS On

BUSINESS PLAN MODEL FOR SOUVENIR MANUFACTURING: A STRATEGIC ACTION APPROACH IN FUND RAISING (Case Study in Universitas Atma Jaya Yogyakarta)

> Has been Examined and Approved On June, 2009

Adviser, Co-Adviser,

T.B. Hanandoko, S.T., M.T.

Baju Bawono, S.T., M.T.

Board of Examiners, Chairman,

T.B. Hanandoko, S.T., M.T.

Member, Member,

A. Tonny, ST., M. Eng.

The Jin Ai, D. Eng

Yogyakarta, June, 2009 Dean of Faculty of Industrial Technology Universitas Atma Jaya Yogyakarta

Paulus Mudjihartono, S.T., M.T.

STATEMENT OF WORK'S ORIGINALITY

I honestly declare that this thesis which I wrote does not contain the works or parts of the works of other people, except those cited in the quotations and bibliography, as a scientific paper should

Yogyakarta, June 2009

William Susanto Soegiarto

ACKNOWLEDGEMENT

Especially for:

- My Lord, Jesus Christ
- My lovely Mom and Dad
- My brother, Herman
- TIKI Batch 2004, good luck to everyone...

FOREWORD

Thanks to the LORD Jesus Christ that has guided my paths so that this final report could be completed.

This final report is one of the prerequisite to finish the undergraduate study program in Industrial Engineering Department, Industrial Technology Faculty, Atmajaya Yogyakarta University.

I am so grateful to many people who encouraged me to finish this final report and helped me along my research. On this opportunity, I would like to thanks:

- 1. Mr. Paulus Mudjihartono, S.T., M.T, as the Dean of Industrial Technology Faculty, Atmajaya Yogyakarta University.
- 2. Mr. Parama Kartika Dewa SP, S.T., M.T., as the Head of Industrial Engineering Department, Industrial Technology Faculty, Atmajaya Yogyakarta University.
- 3. Mr. Hadi Santono, S.T., M.T., as the Head of International Class of Industrial Engineering who leads us to the "right" way.
- 4. Mr. T.B. Hanandoko, S.T., M.T., as the first adviser, who had spent his time to give guidance, direction, inputs and correction in writing this final report.
- 5. Mr. Baju Bawono, S.T., M.T., as the second adviser, who had spent his time to give inputs, guidance and correction in writing this final report.
- 6. To Mr. Azhari, thank you for helping us on this project by making the machines.
- 7. To my beloved parents who always support and encouraged me to compile this final report.

- 8. To all of my family who had given me a lot of advise and encouraged me to finish this final report. I love you all.
- 10. To my "gelo" partners: Eko Cawet, Geo Boyke and Dahana Serbet who fight together with me to finish this project.
- 11. And all parties that the writer cannot mention one by one, thanks for the support.

The writer realize that this final report still has a lot of imperfections, so any criticize and inputs are really expected. Eventually, the writer hopes that this final report can be useful and can be developed in a further research.

Yogyakarta, June 2009

The writer

CONTENTS

COVER		i
AUTHO:	RIZATION	ii
STATE	MENT OF WORK'S ORIGINALITY	iii
	WLEDGEMENT	
FOREW	ORD	V
CONTE	NT	vii
ABSTR.	ACT	xii
CHAPT:	ER 1 INTRODUCTION	
1.1.	Background	1
1.2.	Problem Statement	3
1.3.	Research Objective	3
1.4.	Scope of Research	3
1.5.	Research Methodology	4
1.6.	Report Outline	5
		//
CHAPT	ER 2 LITERATURE REVIEW	6
CHAPT	ER 3 BASIC THEORY	
3.1.	Calculation Method of Manufacturing Cost	
	Based on F de Meyer	8
3.2.	Cost per piece and cost based on unit of	
	weight (gram)	12
3.3.	Selling price per piece and selling price	
	Based On Unit of weight	12
3.4.	Break Even Point	12
3.5.	Payback Period	13
3.6.	Cash Flow	13
3 7	Rugineg Dlan	1 4

CHAPTER 4 DATA 4.1. Data of machines 25 4.2. Product Information 27 4.3. Data of Material usage and price 27 4.4. Data of Operator and additional cost 27 4.5. Data of Production Level 28 4.6. Data of expenses per year 31 4.7. Data of estimate buyer and pieces 32 4.8. Data of capital investment 32 CHAPTER 5 DATA ANALYSIS 5.1. Machines cost per hour or per piece 34 5.2. Operator cost per hour 36 5.3. Production Cost 36 5.4. Machine cost 44 5.5. Selling price per piece and selling price Based on Unit of weight (gram)..... 44 Break Even Point with initial capital 5.6. 45 Investment Payback Period 5.7. 45 5.8. Cash Flow 46 CHAPTER 6 CONCLUSION AND SUGGESTION 6.1. Conclusion 49 6.2. Suggestion 49

REFERENCES

APPENDIX

FIGURE CONTENTS

Figure 1.1.		Research	n Methodology Diagram	4		
		۲	in	TABLES CONTENTS		
Table 2.1 Comparison of Previous and Present						
		0.	Research	1	7	
	Table	4.1.	Data of	MDX Machine	25	
	Table	4.2.	Data of	Master Modeling Machine	25	
	Table	4.3.	Data of	Vulcanized Machine	26	
	Table	4.4.	Data of	Spin Casting Machine	26	
	Table	4.5.	Product	information	27	
	Table	4.6.	Data of	Material Usage and Price	27	
	Table	4.7.	Data of	Operator and Additional Cost	//	
					27	
	Table	4.8.	Data of	50 pieces production	28	
	Table	4.9.	Data of	100 pieces production	28	
	Table	4.10.	Data of	500 pieces production	29	
	Table	4.11.	Data of	1,000 pieces production	29	
	Table	4.12.	Data of	5,000 pieces production	30	
	Table	4.13.	Data of	10,000 pieces production	30	
	Table	4.14.	Data of	Fixed expense	31	
	Table	4.15.	Data of	Variable expense	31	
	Table	4.16.	Data of	Operational expense	31	
	Table	4.17.	Data of	amount target buyer and		
			pieces .		32	

TABLES CONTENTS CONTINUED

Table	4.18.	Data of	Machin	ne Ca	pital		••••••	•••••	32
Table	4.19.	Data of	Initia	al Ra	w Mat	erial	Capit	al	
						•••••		•••••	33
Table	4.20.	Data of	Initia	al Ca	pital	Inves	stment		
	-6								33
Table	5.1.	Machine	Cost	•••••	•••••			•••••	46
Table	5.2.	Selling	Price	per	unit	•••••			46
Table	5.3.	Selling	Price	per	gram			<u></u>	46
Table	5.4.	Cash Flo	ow						48

APPENDIX CONTENTS

APPENDIX	A	MDX MACHINE	51
APPENDIX	В	MASTER MODELING MACHINE	52
APPENDIX	C	VULCANIZER MACHINE	53
APPENDIX	D	SPIN CASTING MACHINE	54
APPENDIX	E	RAW MATERIAL	55
APPENDIX	F	SUPPORT TOOLS	56
APPENDIX	G	PRODUCTION PROCESS	58
APPENDIX	Н	MASTER PRODUCTS	60
APPENDIX	I	SOUVENIR PRODUCT	61
APPENDIX	J	BUSINESS PLAN	62

ABSTRACT

Souvenir, as a symbol, logo or emblem, interlaced with many things, such as tourism, institutions, organizations, and clubs, even personal. The souvenir market is growing together with the increasing amount of travelers, companies, clubs, etc. In Yogyakarta, the souvenir industries use technology of sand casting to produce souvenirs made from metal. The weakness of this method is that the products have not the same form in details. In the last several months Jogja Artistic Symbolic Souvenir (JASS), a planned business unit of Atma Jaya University of Yogyakarta, has develop new technology, called spin casting, to cover the weakness of sand casting method. Spin-casting offers capability to produce intricate design, smooth surface finish, economical process and mass production.

This paper will examine proper souvenir manufacturing conducted in JASS. The production cost will be calculated, to determine the selling price. Break Even Point will be used to know how many pieces of product should be produced to cover the investment. After that cash flow forecast will be generated to decide is the profit feasible or not. Finally by writing a business plan, this can provide a framework to a real action of fundraising efforts. It will show that this business is feasible enough to be run.

Based on the analysis and examination in business plan at the appendix, it can be concluded that this business is feasible to run. With BEP of 10,000 units, the investment will be returned in 6 years period based on cash flow. The total profit in 10 years period is IDR 560,004,223.