
8

CHAPTER 2. THEORETICAL BASIS

2.1. Fundamental Theory

2.1.1. Money management

Money management encompasses the processes of budgeting, saving, investing, and

spending money wisely to achieve financial goals. It is a crucial aspect of overall financial

behavior that significantly impacts an individual's financial well-being [8]. Effective money

management is not merely about earning and spending, money management also involves

strategically planning and managing resources to ensure financial stability and growth.

Budgeting is fundamental, as it involves tracking income and expenses to ensure

alignment with financial objectives. A well-structured budget aids in prioritizing expenses,

identifying potential savings, and preventing overspending. It serves as a roadmap for

financial decisions, helping individuals allocate resources efficiently and avoid unnecessary

expenditures. Saving is equally vital for financial security, as it entails reserving a portion of

income for future needs or emergencies. Regular savings can help individuals establish an

emergency fund, save for specific goals such as purchasing a house or expanding a business,

and create a cushion for financial stability. This practice ensures that unexpected expenses do

not derail long-term financial plans.

Investing involves allocating money into assets with the expectation of generating a

return, facilitating wealth accumulation over time, and assisting in achieving long-term

financial goals. It requires understanding various investment options, assessing risk tolerance,

and formulating investment strategies that align with financial objectives. Effective investing

is crucial for building a robust financial portfolio that can support future aspirations.

Debt management is critical to maintaining financial health, involving the understanding

and effective handling of debt obligations such as credit card debt, student loans, or

mortgages. Formulating a plan to pay off debt, avoiding high-interest debt, and maintaining a

good credit score are essential practices. Effective debt management prevents financial strain

and ensures that debt levels remain manageable.

9

Cash management refers to the effective handling of cash flow, which includes

monitoring income, expenses, and liquidity to optimize the use of cash for daily expenses,

savings, and investments. Maintaining financial stability requires a careful balance between

income and expenditures, ensuring that sufficient cash is available to meet immediate needs

while supporting long-term financial goals.

Credit management involves using credit responsibly and maintaining a good credit score,

which includes understanding credit terms, avoiding excessive debt, and making timely

payments. Responsible credit management ensures access to credit when needed and prevents

the accumulation of burdensome debt.

Collectively, these elements form the foundation of effective money management. By

comprehensively understanding and applying these principles, individuals and businesses can

make informed decisions, mitigate financial risks, and work towards their financial goals.

Effective money management is multifaceted and requires a thorough grasp of various

financial practices [9]. For MSMEs, mastering these principles is particularly crucial as it

significantly influences their financial well-being and overall success.

This thesis focuses on enhancing the efficiency of cash management, a critical area often

overlooked by other applications that tend to emphasize different aspects of financial

management. By concentrating specifically on improving the effectiveness of cash

management practices, this research aims to address a significant gap and provide MSMEs

with a robust tool for better financial oversight.

2.1.2. Micro, Small, and Medium Enterprises (MSME)

MSMEs are integral components of the economic fabric of many countries, particularly

those in the developing world. These entities, which vary in size based on employee count,

assets, or revenue, are renowned for their contributions to employment creation, production,

value addition, GDP growth, and regional development.

According to [10] In Indonesia, MSMEs play a pivotal role in the economic landscape,

with a particular emphasis on their recent evolution and the challenges they face. It is

important to note that MSMEs are not a monolithic group; rather, they exhibit diversity

across various subcategories. Micro Enterprises (MIEs) and Small Enterprises (SEs), which

10

are prevalent in rural areas, serve as crucial contributors to the local economy. These

enterprises often emerge from individuals facing limited employment opportunities, thereby

reflecting the country’s unemployment and poverty challenges.

MIEs are typically informal operations, frequently established by less educated

households or individuals as their primary income source [11]. These enterprises may employ

inappropriate technologies and unskilled labor, including unpaid family members. On the

other hand, SEs may operate in both informal and formal sectors, while Medium Enterprises

(MEs) are more modern, well-organized production units that utilize advanced technologies

and employ highly skilled workers.

In Indonesia, MSMEs represent more than 98% of all firms across sectors and provide

employment for over 90% of the country’s workforce [1]. Despite their numerical

significance and employment generation capacity, Indonesian MSMEs face challenges such

as lower productivity compared to Large Enterprises (LEs) and constraints related to access

to finance, technology, and markets. Initiatives to support MSMEs are viewed as a means to

stimulate economic development, create employment opportunities, generate income, and

alleviate poverty.

2.2. Technology Overview

In the dynamic and complex domain of Android application development, the selection of

technologies is a crucial factor that influences the efficiency, functionality, and user

experience of the final application. The strategic choice of tools can not only streamline the

development process but also enhance the application's performance and facilitate its

maintenance and updates. A profound understanding of these technologies and their

capabilities is essential for their effective application in Android app development.

2.2.1. Jetpack Compose

According to [12] Jetpack Compose, as introduced by the Google Development Team, is

a contemporary UI toolkit designed for crafting user interfaces for the Android Operating

System using the Kotlin programming language. This toolkit signifies a paradigm shift from

the conventional approach of constructing user interfaces using XML layout files in tandem

with Kotlin code. Jetpack Compose empowers developers to make user interfaces in a more

11

efficient and expedited manner, fostering a more streamlined and integrated development

process.

A salient feature of Jetpack Compose is its capacity to facilitate developers to write UI

code in a more declarative style. This implies that developers can articulate the desired UI

state and allow the toolkit to manage the rendering and updates contingent on alterations to

that state. This declarative methodology can result in more succinct and comprehensible UI

code, enhancing its understandability and maintainability. This information underscores the

innovative nature of Jetpack Compose and its potential to revolutionize Android application

development.

2.2.2. Kotlin

Kotlin, a statically typed programming language developed by JetBrains, has emerged as

a powerful tool in the realm of software development. It operates on the Java Virtual Machine

(JVM) and can be compiled into JavaScript or native code, offering a high degree of

flexibility. Since 2017, Kotlin has been officially supported by Google for Android app

development, marking a significant milestone in its adoption [13].

One of the key features of Kotlin is its Conciseness. Kotlin is designed to minimize

boilerplate code, which refers to sections of code that must be included in many places with

little or no alteration. Type inference in Kotlin allows the compiler to deduce the type of a

variable from its initializer expression, reducing verbosity and enhancing readability.

Furthermore, data classes and lambda expressions in Kotlin allow for more expressive and

concise code, improving maintainability.

Another unique feature of Kotlin’s type system is Null Safety, designed to eliminate the

risk of null references, a common pitfall in Java. In Kotlin, types are non-nullable by default,

and variables need to be explicitly declared as nullable if they are to hold a null value. This

feature helps prevent the occurrence of Null Pointer Exceptions, a common runtime error,

thereby enhancing the robustness of the code.

Kotlin also introduces the concept of Extension Functions, which allows developers to

add new functions to existing classes without altering their source code. This feature

enhances the modularity and flexibility of the code, enabling developers to extend the

12

functionality of classes from external libraries or the standard library without inheriting from

them.

Coroutines are a standout feature of Kotlin that simplifies asynchronous programming by

enabling suspending and resuming of computations. They allow developers to write

asynchronous code in a sequential style, making the code more readable and easier to

understand. Coroutines are especially useful in managing tasks that are network or disk I/O-

bound, such as database operations, network requests, and file reads/writes.

Kotlin’s Smart Casts feature reduces the verbosity of the code by eliminating the need for

explicit type checks and type casting. If the compiler can determine through a ‘is’ check or an

‘if’ statement that the variable is of a certain type, it automatically casts it to that type,

reducing the need for explicit casting and enhancing code readability.

Data Classes in Kotlin provide a concise way to define classes that hold data. When a

class is declared as a data class, Kotlin automatically generates boilerplate code like equals(),

hashCode(), and toString() methods based on their properties. This leads to cleaner, more

readable code, and promotes the use of immutability, which is a key principle in functional

programming.

Finally, Interoperability is a key feature of Kotlin. It is fully interoperable with Java,

which means all existing Java libraries and frameworks can be used in Kotlin, and Kotlin

code can also be called from Java. This interoperability enables a smooth transition for

developers already familiar with Java, as they can gradually introduce Kotlin features into

their codebase without having to rewrite the entire codebase in Kotlin.

In essence, Kotlin offers a modern, expressive, and pragmatic approach to software

development. It is particularly well-suited for Android app development due to its seamless

integration with existing Java codebases and robust tooling support. This aligns well with the

objectives of this thesis, as the proposed solutions aim to leverage advanced technologies like

Kotlin to address the challenges faced by Indonesian MSMEs, thereby contributing to their

growth and development.

13

2.2.3. Firebase

According to [14] Firebase is presented as a NoSQL-based platform renowned for its

real-time database and backend services. These services facilitate data synchronization across

clients and storage on Firebase’s cloud. The platform also provides a suite of features

including a cloud-based infrastructure for Android app testing, comprehensive crash reporting,

and targeted user notifications. Firebase is lauded for its user-friendly interface, scalability,

and cost-effectiveness, making it a preferred choice for mobile app development. The

platform offers an extensive array of services specifically designed for mobile app

development, which include:

1. Firebase Analytics: This service provides critical insights into app usage and user

engagement, enabling developers to comprehend how users interact with their

applications.

2. Firebase Cloud Messaging (FCM): Formerly known as Google Cloud Messaging

(GCM), FCM is a cross-platform solution for sending messages and notifications to

Android, web applications, and iOS devices.

3. Firebase Auth: This service supports social login providers such as Facebook, Google,

GitHub, and Twitter, facilitating user authentication using client-side code. It includes

user management features for email and password login stored with Firebase.

4. Real-time Database (Firestore): This service offers a real-time database and backend

services that synchronize application data across clients and store it on Firebase’s

cloud. Client libraries are provided for seamless integration with Android, iOS, and

JavaScript applications.

5. Firebase Storage: This service facilitates secure file transfer for Firebase apps, backed

by Google Cloud Storage. Developers can efficiently store images, audio, video, and

other user-generated content.

6. Firebase Test Lab for Android: This service provides a cloud-based infrastructure for

testing Android apps across a variety of devices and configurations, offering test

results and insights in the Firebase console.

7. Firebase Crash Reporting: This service generates detailed error reports within the app,

grouping errors into clusters for easier triaging based on severity. Developers can log

custom events to capture the steps leading up to a crash.

8. Firebase Notifications: This service enables targeted user notifications for mobile app

developers, enhancing user engagement and interaction.

14

In this thesis, the author utilized Firebase Storage, Real-time Database (Firestore), and

Firebase Auth for this project, demonstrating the practical application of these services in a

real-world scenario. This underscores the versatility and comprehensive nature of Firebase as

a platform for mobile app development. The decision to employ Firestore was also influenced

by its nature as a Database-as-a-Service (DBaaS) [15].

DBaaS offers several advantages that align with the needs of this thesis. Firestore

provides scalability on demand, crucial for handling varying workloads. It offers operational

agility, allowing for rapid deployment and configuration changes with minimal effort.

Firestore ensures enhanced security measures, a critical aspect of any data-driven application.

2.2.4. Text Recognition

Text recognition, as delineated in the study by [16], involves the identification and

comprehension of text within natural scene images. This research specifically discusses the

utilization of a Deep Convolutional Neural Network (CNN) [17] to perform word recognition

on the whole proposal region at the same time. This involves taking the entire cropped region

of the word as input to the network and gradually pooling evidence from across the image to

perform the classification of the word across a large dictionary of words.

Moreover, the research [18] introduces the Practical Plus Optical Character Recognition

(PP-OCR) system, which is an ultra-lightweight OCR solution designed to address the

challenges of text recognition in various application scenarios. PP-OCR boasts a remarkably

small overall model size, with specific sizes allocated for recognizing Chinese characters and

alphanumeric symbols. The system comprises text detection, detected box rectification, and

text recognition components, each optimized for efficiency and effectiveness.

The text recognition system within PP-OCR begins by receiving a cropped region of a

word within a natural scene image as input. This region encapsulates the text that is to be

recognized. The system then applies a CNN to process the entire cropped region of the word

as input. This means that the CNN processes the entire word image in one go, rather than

focusing on individual characters. The CNN, trained on synthetic data for realistic and varied

word image samples, incrementally pools evidence from across the image to perform

classification of the word across a comprehensive dictionary of words [19].

15

As a result, the CNN produces a probability distribution over all the words in the

dictionary. The recognition result is then determined based on this probability distribution.

The word with the highest probability is deemed the recognition result, meaning that the

word that the CNN identifies as the most probable match for the input word image is chosen

as the recognized word. This approach ensures efficient and accurate text recognition within

natural scene images, showcasing the capabilities of the PP-OCR system in handling diverse

text appearances and scenarios.

In this thesis, the author employs text recognition technology to facilitate the capture of

receipts in the form of images and convert it into text. This technology subsequently enables

the extraction and conversion of the textual content present on the receipt into a digital note

within the application. This process significantly enhances the efficiency and accuracy of data

capture and storage.

2.2.5. API Services

An Application Programming Interface, or API, is a set of rules and protocols that

software applications use to communicate with each other [20]. It’s like a user interface, but

instead of enabling human-computer interaction, it facilitates machine-to-machine

communication. APIs are used to connect, extend, and integrate software systems. They allow

different software systems to share data and functionality, making them essential for building

distributed, loosely coupled systems. Web APIs, a type of API that operates over the internet,

are commonly used in web applications, mobile apps, and cloud apps. They allow software

applications to communicate and share data over the internet. Despite their crucial role, APIs

are typically invisible to end users and operate “under the hood”. The only people who

interact with APIs directly are developers, who use them to build applications or solutions.

APIs are not just about connecting software systems, they also connect businesses,

services, and products. By providing a means for integrating IT systems within a company

and with external business partners, APIs enable businesses to expand and innovate. They

allow company assets to be accessed and used in new ways, both internally and by external

third-party developers. A good API should be valuable, fit the needs of its users, be simple to

understand, easy to integrate and monitor, and be secure, reliable, and meet performance

requirements. APIs that fulfill these conditions are more likely to be adopted by developers

and can become a means for retaining existing partners and obtaining new ones.

16

In this thesis, several APIs are employed to enhance the functionality and user experience

of the application. The Exchangerates API, which provides exchange rate data for over 170

global currencies, is used to provide real-time currency values. The Rest Countries API

complements this by providing detailed information about each country associated with the

currency, allowing the application to present a comprehensive overview of each currency.

Additionally, the Tab Scanner API is utilized to scan images and convert them into a line-by-

line string format, effectively extracting receipt information and enhancing the application's

text-to-object capabilities.

2.3. UML Diagram Overview

According to [21] The Unified Modelling Language (UML) is a visual language used in

software engineering to define and document a system. It provides a way to visualize a

system’s architecture, design, and requirements through various types of diagrams. These

diagrams are graphical illustrations that encapsulate various facets of a system, including its

structure, behavior, and interactions. Here, the author will focus solely on the specific

diagrams employed within the study.

2.3.1. Use-case Diagram

According to [22] A Use Case Diagram, a specific type of UML diagram, serves as a

graphical representation of the interactions between a system and its users, or actors, in the

context of use cases. These diagrams hold a pivotal role in the realm of software development,

as they encapsulate the functional requirements of a system from the vantage point of the user.

The symbols utilized in this study, along with their corresponding meanings, are

comprehensively detailed in Table 2.1 below:

Table 2.1: Use-Case Diagram Symbols

No. Symbol Name Description

1.

Actor

An actor represents a user or an external system that interacts

with the system being modeled. They are outside the system

but have specific roles or goals within the system.

2.

Use Case

A use case represents a specific functionality or a discrete unit

of work that the system performs to achieve a specific goal for

an actor.

17

3.

Association
A line connecting an actor to a use case indicates that the actor

is involved in that particular use case.

4.

Extend
Indicates that one use case can extend another use case under

certain conditions.

5.

Include
Shows that one use case includes the functionality of another

use case.

6.

Generalization
In some cases, actors or use cases can be generalized to show

commonalities.

2.3.2. Entity Relationship Diagram

According to [23] An Entity-Relationship Diagram (ERD) is a visual representation of the

entities within a system or domain, and the relationships between those entities. ERDs are

commonly used in database design to model the structure of a database and illustrate how

data is organized and related to each other. ERDs consist of three main components: entities,

attributes, and relationships as explained in the Table 2.2.

Table 2.2: ERD Symbols

No. Symbol Name Description

1.

Entity
Entities represent real-world objects or concepts within

the system being modeled.

2.

Relationship

Relationships describe how entities are related to each

other. They illustrate the connections and interactions

between different entities in the database.

3.

Attribute

Attributes are the properties or characteristics of entities.

They provide more detailed information about the

entities.

4.

Primary Attribute
Primary Attributes are the unique key that differentiates

one entity from another.

5.

To one

Relationship

One Relationship is one of the relationships that shows

the entity side will contain only one.

6.

To many

Relationship

To Many Relationship is one of the relationships that

shows the entity side will contain one or more.

7.

Optional To One

Relationship

Optional To One Relationship is one of the relationships

that shows the entity side can contain one or zero.

8.

Optional To Many An optional To Many Relationship is one of the

18

Relationship relationships that shows the entity side can contain zero or

many.

2.3.3. Activity Diagram

According to [24] activity diagram is a graphical representations used to describe internal

processing and action-object flow within a system. They are part of the UML and offer a way

to visualize workflows, especially the flow of control and data. Here’s a detailed explanation

of the symbols used in activity diagrams.

Table 2.3: Activity diagram symbols

No. Symbol Name Description

1.

Start/ Initial

Node

Used to represent the starting point or the initial state

of an activity

2.

Action
Used to represent the executable sub-areas of an

activity

3.

Control Flow /

Edge

Used to represent the flow of control from one action

to the other

4.

Activity Final

Node

Used to mark the end of all control flows within the

activity

5.

Decision Node
Used to represent a conditional branch point with one

input and multiple outputs

6.

Merge Node
Used to represent the merging of flows. It has several

inputs, but one output.

7.

Fork
Used to represent a flow that may branch into two or

more parallel flows

8.

Merge
Used to represent two inputs that merge into one

output

