HAZARD POTENTIAL CONTROL AT "X" PIG FARM USING THE HIRARC METHOD

A THESIS

Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Engineering in Industrial Engineering

MARTONA HORAS GURION TAMBUNAN 18 14 09716

INTERNATIONAL INDUSTRIAL ENGINEERING PROGRAM DEPARTMENT OF INDUSTRIAL ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY ATMA JAYA UNIVERSITY YOGYAKARTA

2025

IDENTIFICATION PAGE

HALAMAN PENGESAHAN

Tugas Akhir Berjudul

HAZARD POTENTIAL CONTROL AT "X" PIG FARM USING THE HIRARC METHOD

yang disusun oleh Martona Horas Gurion Tambunan 181409716 dinyatakan telah memenuhi syarat pada tanggal 28 Januari 2025

Dosen Pembimbing 1 Dosen Pembimbing 2	: Ir. Josef Hernawan Nudu, S.T., M.T. : DM. Ratna Tungga D., S.Si., M.T.	Keterangan Telah Menyetujui Telah Menyetujui
Tim Penguji		
Penguji 1	: Ir. Josef Hernawan Nudu, S.T., M.T.	Telah Menyetujui
Penguji 2	: Ir. Adhi Anindyajati, S.T., M. Biotech, Ph.D.	Telah Menyetujui
Penguji 3	: Mikha Meilinda C., S.Si., M.Sc.	Telah Menyetujui

Yogyakarta, 28 Januari 2025 Universitas Atma Jaya Yogyakarta Teknologi Industri Dekan

ttd.

Dr. Ir. Parama Kartika Dewa SP., S.T., M.T.

Dokumen ini merupakan dokumen resmi UAJY yang tidak memerlukan tanda tangan karena dihasilkan secara elektronik oleh Sistem Bimbingan UAJY. UAJY bertanggung jawab penuh atas informasi yang tertera di dalam dokumen ini

STATEMENT OF ORIGINALITY

STATEMENT OF ORIGINALITY

I, the undersigned below:

Name: Martona Horas Gurion Tambunan Student ID Number: 18 14 09716

Hereby declare that my thesis entitled "*Hazard Potential Control at "X" Pig Farm Using the HIRARC Method*" is the result of my own research conducted during the Academic Year 2023/2024. This work is original and does not contain any elements of plagiarism from the work of any other authors/researchers.

If at a later time it is discovered that this declaration is untrue or inconsistent with applicable rules and regulations, I am willing to accept sanctions including the revocation of the degree awarded by Atma Jaya Yogyakarta University.

This statement is made truthfully and with full responsibility.

Yogyakarta, January 19, 2025

Martona Horas Gurion Tambunan

DEDICATION PAGE

"Sukses berdasarkan hal yang sama dengan prinsip dasar ejakulasi. Kau mengeluarkan jutaan sperma hanya untuk 1 telur yang bisa dibuahi. Lebih banyak kau keluarkan, lebih banyak kesempatan akan jadi."

~ Gurion ~

RESEARCH STATEMENT LETTER

ACKNOWLEDGMENT

Praise and gratitude to God for His grace and blessings, which have enabled the completion of this thesis titled "Hazard Potential Control at "X" Pig Farm Using the HIRARC Method". This research serves as a capstone implementation of the field of Industrial Engineering at the Faculty of Industrial Technology, Atma Jaya University Yogyakarta. It has been compiled as part of an effort to contribute to society while also fulfilling the requirements for obtaining the degree of Bachelor of Industrial Engineering.

There are many parties who have supported the completion of this thesis. Therefore, with utmost humility, the author extends sincere gratitude to:

- God Almighty, for giving the breath of life and continuously blessing and guiding me throughout my studies and the completion of this Final Project.
- 2. Miss. Ir. Lenny Halim, S.T., M.Eng., as the Academic Advisor throughout my studies at Atma Jaya University Yogyakarta.
- 3. Mr. Josef Hernawan Nudu, S.T., M.T., as the First Supervisor and First Examiner, for his guidance and thorough evaluation of this thesis from start to finish.
- 4. Mrs. DM. Ratna Tungga Dewa, S.Si., M.T., as the Second Supervisor, for her guidance in completing this research from beginning to end.
- 5. Mr. Ir. Adhi Anindyajati, S.T., M. Biotech, Ph.D., as the Second Examiner, for his evaluation and insights that contributed to the successful completion of this research.
- 6. Mrs. Mikha Meilinda C., S.Si., M.Sc., as the Third Examiner, for her constructive feedback and support in completing this thesis successfully.
- Mr. HS (initials), the owner of the farm for granting access to conduct research at "X" Pig Farm.
- 8. Mr. Herman, the head of the farm along with the farm workers, for their active participation during the research activities at "X" Pig Farm.
- The late Mr. Maruli Tua Hamonangan Tambunan, S. Hut., M.P., the author's father, for his lifelong support, both materially and emotionally, as well as his life lessons and advice.
- 10. Mrs. Yanne Umat, S.P., M.Pd., the author's mother and a single parent for her unwavering support, both materially and emotionally and her continuous guidance and advice.

- 11. The author's siblings: Miss. Magdalena Yamasari Tambunan, S. Ak. (older sister), Miss. Mentari Naomi Gracia Tambunan (younger sister), and Mr. Marudut Sahat Aviv Tambunan (younger brother) for their endless support, motivation and encouragement throughout this academic journey.
- 12. The author's extended family, whose names cannot be mentioned one by one for their support that contributed to the completion of this thesis.
- 13. All friends and fellow students, for their moral support during the course of this study.
- 14. All other individuals, who have contributed in any way whose names cannot be mentioned one by one, for their moral support that helped in completing this academic journey.

Finally, this thesis as a capstone project has taught the author to be diligent, disciplined, and meticulous throughout the process. It is hoped that the results of this research will provide significant benefits to society and contribute to the progress of the nation, particularly in the field of engineering in the future.

Yogyakarta, January 19, 2025

Martona Horas Gurion Tambunan

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	Title Page	i
	Identification Page	ii
	Statement of Originality	iii
	Dedication Page	iv
	Research Statement Letter	v
	Acknowledgment	vi
	Table of Contents	viii
	List of Tables	xii
	List of Figures	xiv
	List of Appendices	xvi
	Abstract	xvii
1	INTRODUCTION	1
	1.1. Background	1
	1.2. Problem Exploration	1
	1.2.1. Licensing Issues	2
	1.2.2. Environmental Issues	2
	1.2.3. Animal Feed Supply Issues	2
	1.2.4. Workplace Accident Issues	2
	1.3. Problem Formulation	6
	1.4. Research Objectives	6
	1.5. Problem Limitations	6
	1.5.1. Research Location Limitations	7
	1.5.2. Workplace Accident Data Limitations	7
2	LITERATURE REVIEW AND THEORETICAL	8
	FRAMEWORK	
	2.1. Literature Review	8
	2.2. Theoretical Framework	10
	2.2.1. Workplace Accidents	10
	2.2.2. Hazards	10
	2.2.3. Hazard Identification	10

	2.2.4. Risk Analysis	11
	2.2.5. Risk Assessment	11
	2.2.6. Risk Control	11
	2.2.7. Establishment of OSH Policy	13
	2.2.8. First Aid for Workplace Accidents	13
	2.2.9. Safety Signs	13
3	PROBLEM IDENTIFICATION AND SELECTION O	F 14
	ALTERNATIVE SOLUTIONS	
	3.1. Root Cause Identification	14
	3.1.1. Root Cause Identification using Why-Wh	ıy
	Analysis	14
	3.1.2. Root Cause Identification using Fishbon Diagram	e 14
	3.2. Selection of Alternative Solutions	17
	3.3. Method Determination	17
	3.4. Problem Uniqueness	18
	3.5. Standards and Ethics Used	18
4	RESEARCH METHODOLOGY	19
	4.1. Empathize Phase	19
	4.2. Define Phase	20
	4.3. Ideate and Selection of Solution Phase	20
	4.4. Prototype and Testing Phase	21
5	COMPREHENSIVE STUDY AND DATA ACQUISIT	TION 23
	5.1. Brief Profile of Research Object	23
	5.2. Comprehensive Study of the Production Pro	ocess 23
	5.3 Data Acquisition	27
	5.3.1 Work Accident Data	27
	5.3.2 Data on Equipment Usage	29
	5.3.3. Data on Hazard Potentials and Risks	30
6	DESIGN AND IMPLEMENTATION	36

6.1	. C	uestionnaire Design	36
6.2	2. R	lisk Assessment Design	38
6.2.1. Likelihood and Severity Scale fo		. Likelihood and Severity Scale for Worker	39
		Activities in the Barn Area (General)	
	6.2.2	. Likelihood and Severity Scale for Pig Herding	40
		Process	
	6.2.3	. Likelihood and Severity Scale for Pig Tying	40
		Process in the Slaughter Pen	
	6.2.4	. Likelihood and Severity Scale for Slaughter	40
		Process	
	6.2.5	Likelihood and Severity Scale for Burning	40
		Process	
	6.2.6	. Likelihood and Severity Scale for Cutting	40
		Process	
	6.2.7	. Risk Matrix Scale for Worker Activities in the	45
		Barn Area (General)	
	6.2.8	. Risk Matrix Scale for Pig Herding Process	45
	6.2.9	. Risk Matrix Scale for Pig Tying Process in the	46
		Slaughter Pen	
	6.2.1	0. Risk Matrix Scale for Slaughter Process	46
	6.2.1	1. Risk Matrix Scale for Burning Process	47
	6.2.1	2. Risk Matrix Scale for Cutting Process	48
6.3	3. H	lazard Potential Control Design	48
	6.3.1	. Hazard Potential Control Design for Worker	48
		Activities in the Barn Area (General)	
	6.3.2	. Hazard Potential Control Design for Pig	50
		Herding Process	
	6.3.3	. Hazard Control Design for Slaughter Process	50
6.3.4		. Hazard Control Design for Burning Process	51
	6.3.5	. Hazard Potential Control Design for Cutting	51
		Process	
6.4	4. S	Selection of Hazard Control Products and	52
Administrative Design		02	
6.5. Implementation of the Design		62	
6.6	6. D	esign Implementation Results	65

6.6.1	. Design Implementation Results for Worker	69
	Activities in the Barn Area (General)	
6.6.2	. Design Implementation Results for Pig	71
	Herding Process	
6.6.3	. Design Implementation Results for Slaughter	72
	Process	
6.6.4	. Design Implementation Results for Burning	73
	Process	
6.6.5	. Design Implementation Results for Cutting	73
	Process	
CONCLU	JSION	75
REFERE	INCES	76
APPEND	DICES	78

7

LIST OF TABLES

TITLE		PAGE
Table 1.1.	Summary of Problem Exploration Results	4
Table 1.2.	Historical Workplace Accident Data	7
Table 2.1.	Literature Review Mapping	9
Table 5.1.	Work Accident Data	28
Table 5.2.	Data on Equipment Usage	30
Table 5.3.	Data on Types of Hazards and Risks in Worker	31
	Activities in the Barn Area (General)	
Table 5.4.	Data on Types of Hazards and Risks in the Pig Herding Process	32
Table 5.5.	Data on Types of Hazards and Risks in the Pig Tying	33
	Process in the Slaughter Pen	
Table 5.6.	Data on Types of Hazards and Risks in the Slaughter	33
	Process	
Table 5.7.	Data on Types of Hazards and Risks in the Burning	34
	Process	
Table 5.8.	Data on Types of Hazards and Risks in the Cutting	35
	Process	
Table 6.1.	Questionnaire Data	36
Table 6.2.	Likelihood and Severity Scale Based on AS/NZS 4360	38
	Standardization	
Table 6.3.	Risk Matrix Scale Based on AS/NZS 4360	39
	Standardization	
Table 6.4.	Likelihood and Severity Scale for Worker Activities in	41
	the Barn Area (General)	
Table 6.5.	Likelihood and Severity Scale for the Pig Herding	41
	Process	
Table 6.6.	Likelihood and Severity Scale for the Pig Tying Process	42
	in the Slaughter Pen	
Table 6.7.	Likelihood and Severity Scale for the Slaughter Process	42
Table 6.8.	Likelihood and Severity Scale for the Burning Process	43
Table 6.9.	Likelihood and Severity Scale for the Cutting Process	44
Table 6.10.	Risk Matrix Scale for Worker Activities in the Barn Area	45
	(General)	

Table 6.11.	Risk Matrix Scale for the Pig Herding Process	46
Table 6.12.	Risk Matrix Scale for the Pig Tying Process in the	46
	Slaughter Pen	
Table 6.13.	Risk Matrix Scale for the Slaughter Process	47
Table 6.14.	Risk Matrix Scale for the Burning Process	47
Table 6.15.	Risk Matrix Scale for the Cutting Process	48
Table 6.16.	Selection of Anti-Slip Footwear Implementation	52
	Products	
Table 6.17.	Selection of Glove Implementation Products	52
Table 6.18.	Selection of Mask Implementation Products	53
Table 6.19.	Selection of First Aid Kit (P3K) Implementation Products	54
Table 6.20.	Comparison of Likelihood and Severity Scale Before	66
	and After Design Implementation	
Table 6.21.	Comparison of Risk Matrix Scale Before and After	68
	Design Implementation	

LIST OF FIGURES

TITLE		PAGE
Figure 2.1.	Risk Control Hierarchy	12
Figure 3.1.	Why-Why Analysis Diagram of Workplace Accidents	15
	in the Pig Farm "X"	
Figure 3.2.	Fishbone Diagram of Workplace Accidents in the Pig	16
	Farm "X"	
Figure 4.1.	Empathize Phase Flowchart	19
Figure 4.2.	Define Phase Flowchart	20
Figure 4.3.	Ideate and Selection of Solutions Phase Flowchart	21
Figure 4.4.	Prototype and Testing Phase Flowchart	22
Figure 5.1.	Pig Removal from the Barn	24
Figure 5.2.	Process of Herding Pigs into the Slaughter Pen	24
Figure 5.3.	Process of Tying Pigs in the Slaughter Pen	25
Figure 5.4.	Slaughter Process	26
Figure 5.5.	Burning Process	26
Figure 5.6.	Cutting Process	27
Figure 6.1.	Selected Design for Safety Shoes Product	52
Figure 6.2.	Selected Design for Gloves Product	53
Figure 6.3.	Selected Design for Mask Product	53
Figure 6.4.	Selected Design for First Aid Kit (P3K) Product	54
Figure 6.5.	Illustration of Logopit Plus Software (Left) and	55
	Microsoft Word (Right)	
Figure 6.6.	Design Process of the Safety Induction Manual Book	55
	Using Microsoft Word Software	
Figure 6.7.	Design Process of Safety Signs Using Logopit Plus	56
	Software	
Figure 6.8.	Design Process of Routine Fire Gun Inspection Form	57
	Using Microsoft Word Software	
Figure 6.9.	Design of Biological Hazard Warning Sign	58
	Administration	
Figure 6.10.	Design of Caution Warning Administration	59
Figure 6.11.	Design of Slippery Hazard Warning Administration	60
Figure 6.12.	Design of Simple Fire Extinguisher Location Guide	61
	Administration	

Figure 6.13.	Results of Biological Hazard Warning Sign	62
	Administration	
Figure 6.14.	Results of Biological Hazard Warning Sign	63
	Administration	
Figure 6.15.	Results of Slippery Hazard Warning Administration	63
Figure 6.16.	Results of Simple Fire Extinguisher Location Guide	63
	Administration	
Figure 6.17.	Results of Routine Inspection Administration for LPG	64
	Tubes and Fire Gun Devices	
Figure 6.18.	Implementation of Personal Protective Equipment	64
	(PPE) Product Use	
Figure 6.19.	Implementation of Simple Fire Extinguisher Product	65
	Use	
Figure 6.20.	Implementation of First Aid Kit (P3K) Product Use	65

LIST OF APPENDICES

TITLE		PAGE
Appendix 1.	Research Instrument: Preliminary Study Transcript	78
Appendix 2.	Research Instrument: Implementation Results Transcript	83
	to Stakeholders - 1	
Appendix 3.	Research Instrument: Implementation Results Transcript	84
	to Stakeholders - 2	
Appendix 4.	Research Instrument: Implementation Results Transcript	86
	to Stakeholders - 3	
Appendix 5.	Results of the Safety Induction Manual Book Design	88

ABSTRACT

The Pig Farm "X" is a livestock business located in Yogyakarta that specializes in producing pork. This business focuses on raising pigs from small sizes to full-grown, slaughter-ready conditions. The primary goal of the farm owner is to expand sales, ranging from selling processed products in traditional markets to exporting processed pork to restaurants and other cities. However, the farm faces several operational challenges, including environmental issues, licensing problems, feed supply constraints, and workplace accidents in the barn area. This research specifically addresses the issue of workplace accidents in the barn area.

Several key factors contribute to workplace accidents at this farm, namely human factors, methods, machinery, and the environment. The human factor arises from workers' lack of caution while performing activities in the barn area. The method factor includes the absence of clear occupational safety procedures for barn workers. The machinery factor is linked to the lack of safety standards for the equipment used. Lastly, the environmental factor stems from unsafe working conditions within the workplace.

The results of this study include a reduction in the potential hazard levels experienced by barn workers, particularly during high-risk activities such as cutting, burning, and similar operations. The Critical Success Factor indicating the success of this research is the ability to control the hazards present in certain operations. Before the intervention, some of these hazards were classified as medium, high, or even extreme. After implementation, the potential hazard levels were reduced to low or medium. Additionally, the design outcomes tailored to the needs of this farm include the development of occupational safety signage, the implementation of personal protective equipment (PPE) usage, and the provision of safety induction training for barn workers at the "X" Pig Farm.

Keywords: Potential hazard control, workplace accidents, Hazard Identification, Risk Assessment, and Risk Control (HIRARC)