PERILAKU LENTUR BAJA PROFIL C TUNGGAL
DENGAN MENGGUNAKAN PERKUATAN TULANGAN
ARAH VERTIKAL

TUGAS AKHIR SARJANA SRAO SUTO

Oleh:
RONALD MARTIN SINAGA
No. Mahasiswa : 10263 / TSS
NPM : 00 02 10263

UNIVERSITAS ATMAJAYA YOGYAKARTA
Fakultas Teknik
Program Studi Teknik Sipil
Tahun 2005
PENGESAHAN

Tugas Akhir Sarjana Strata Satu, dengan topik,
PERILAKU LENJUR BAJA PROFIL C TUNGGAL
DENGAN MENGGUNAKAN PERLUATAN TULANGAN
ARAH VERTIKAL

Oleh:
RONALD MARTIN SINAGA
No. Mahasiswa : 10263 /TSS
NPM : 00 02 10263

Telah diperiksa, disetujui, dan ditunjuk oleh Pembimbing

Yogyakarta, 2005

Pembimbing I

[Signature]

(Ir. Haryanto Yono Wigroho, M.T.)

Pembimbing II

[Signature]

(Siswadi, S.T., M.T.)

Disahkan oleh:

Ketua Program Studi Teknik Sipil

[Signature]

(Wiryawan Sardjono P., M.T.)

ii
PENGESAHAN
Tugas Akhir Sarjana Strata Satu, dengan topik,
PERILAKU LENTUR BAJA PROFIL C TUNGGAL
DENGAN MENGUNAKAN PERKUATAN TULANGAN
ARAH VERTIKAL

Oleh:
RONALD MARTIN SINAGA
No. Mahasiswa : 10263 / TSS
NPM : 00 02 10263

telah diperiksa, disetuju, dan diuji oleh Penguji

Yogyakarta, 2005

Ketua : Ir. Haryanto Yoso Wigohe. M.T.

Anggota : Sumiyati Gunawan, S.T., M.T.

Anggota : Ir. Ch. Arief Sudibyo
untuk
bapak, ibu, dan keluargaku
tercinta

for
my dearest friends n A,
our friendship is not going to lose by time or distance

iv
“Sukses atau gagal bukanlah mutu ukuran, yang penting lakukanlah yang terbaik”

“Nikmati dan cintailah pekerjaan yang kamu lakukan niscaya kesuksesan ada di depan mata”

“Berdoa dan berusaha adalah kunci keberhasilan”

“Kasihlah sesamamu karena kasih lebih tinggi dari apapun di dunia”
KATA HANTAR

Puji syukur penulis ucapkan kehadirat Tuhan Yang Maha Esa karena kasih dan karunia-Nya, penulis dapat melaksanakan penelitian Tugas Akhir ini dan menulis laporannya.

Tugas Akhir merupakan salah satu syarat dalam rangka menyelesaikan pendidikan tinggi Tingkat Sarjana Strata-1 pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Atma Jaya Yogyakarta dan wajib untuk dilaksanakan oleh setiap mahasiswa.

Dalam pelaksanaan dan penulisan Tugas Akhir yang berjudul "Perilaku Lentur Baja Profil C Tunggal Dengan Menggunakan Perkuatan Tulangan Arah Vertikal", penulis telah berusaha semaksimal mungkin untuk memperoleh hasil yang sebaik-baiknya sesuai dengan kemampuan dan pengetahuan yang penulis miliki selama belajar di bangku kuliah serta berpegang pada buku-buku referensi dan petunjuk yang terpakai. Penulis juga menyadari bahwa Tugas Akhir ini masih jauh dari sempurna mengingat keterbatasan pengetahuan dan pengalaman yang penulis miliki. Karena itu segala kritik dan saran dari semua pihak sangat diharapkan untuk penyempurnaan Tugas Akhir ini.

Pada kesempatan ini penulis juga ingin mengucapkan banyak terima kasih kepada semua pihak yang telah membimbing dan banyak membantu dalam penyusunan tugas akhir ini.
1. Bapak Ir. Haryanto Yoso Wigoroh, M.T., selaku Dosen Pembimbing I Tugas Akhir yang telah memberi bimbingan selama pelaksanaan penelitian dan penulisan laporan tugas akhir ini.

2. Bapak Siswadi, S.T., M.T., selaku Dosen Pembimbing II Tugas Akhir yang telah memberi bimbingan selama pelaksanaan penelitian dan penulisan laporan tugas akhir ini.

5. Orangtua dan saudara penulis tercinta atas semua yang telah diberikan yang tidak bisa penulis ungkapkan.

6. Teman-teman yang telah banyak membantu dan memberikan dukungan kepada penulis serta semua pihak yang tidak mungkin penulis sebarkan satu persatu.

Akhir kata penulis berharap semoga hasil yang diperoleh dari penelitian ini dapat bervuna bagi semua pihak yang memerlukan.

Yogyakarta, Maret 2005

Penulis
DAFTAR ISI

HALAMAN JUDUL .. i
HALAMAN PENGESAHAN .. ii
HALAMAN PERSEMBAHAN ... iv
KATA HANTAR... vi
DAFTAR ISI ... viii
DAFTAR TABEL ... xi
DAFTAR GAMBAR .. xiii
DAFTAR LAMPIRAN .. xv
ARTI LAMBANG DAN SINGKATAN ... xvi
INTISARI ... xvii

BAB I PENDAHULUAN

1.1. Latar Belakang .. 1
1.2. Maksud Penelitian .. 2
1.3. Tujuan Penelitian .. 2
1.4. Masalah dan Batasan Masalah .. 2
1.5. Manfaat Penelitian .. 3

BAB II TINJAUAN PUSTAKA ... 4

BAB III LANDASAN TEORI ... 7

3.1. Pendahuluan .. 7
3.2. Balok .. 8
 3.2.1. Lendutan pada balok ... 9
 3.2.2. Kelengkungan balok ... 11

viii
<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Stabilitas Plat</td>
<td>18</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Tekuk plat yang ditekan secara menta</td>
<td>19</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Tegangan kritis plat yang ditekan secara merata</td>
<td>24</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Batas rasio lebar terhadap tebal untuk mencegah tekuk plat dalam perencanaan tegangan kerja</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>Perencanaan Lentur</td>
<td>29</td>
</tr>
<tr>
<td>3.5</td>
<td>Alat Sambung Las</td>
<td>31</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Kekuatan nominal las</td>
<td>32</td>
</tr>
<tr>
<td>3.6</td>
<td>Hipotesis</td>
<td>33</td>
</tr>
<tr>
<td>BAB IV</td>
<td>PELAKSANAAN PENELITIAN</td>
<td>34</td>
</tr>
<tr>
<td>4.1</td>
<td>Metode Penelitian</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Persiapan Bahan dan Alat</td>
<td>34</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Bahan</td>
<td>35</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Peralatan penelitian</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>Model Benda Uji</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>Pembuatan Benda Uji</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>Pengujian Benda Uji</td>
<td>42</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Pengujian kuat tarik baja profil kanal C</td>
<td>43</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Pengujian kuat tarik baja tulangan</td>
<td>43</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Pengujian kuat geser las</td>
<td>44</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Pengujian kuat lentur (Pembebanan profil kanal C)</td>
<td>44</td>
</tr>
<tr>
<td>4.6</td>
<td>Kendala-Kendals Saat Pelaksanaan Penelitian</td>
<td>49</td>
</tr>
</tbody>
</table>
BAB V HASIL PENELITIAN

5.1. Pendahuluan

5.2. Hasil Pengujian Kuat Tarik Baja Dan Kuat Geser Las

5.2.1. Pengujian kuat tarik baja profil kanal C

5.2.2. Pengujian kuat tarik baja tulangan

5.2.3. Pengujian kuat geser las

5.3. Hasil Pengujian Kuat Lentur Balok Profil Kanal C

5.3.1. Hubungan beban-lendutan (P-δ) hasil pengujian

5.3.2. Hubungan beban-rotasi badan (P-θ) hasil pengujian

5.3.3. Hubungan beban-keelengkungan (P-ϕ) hasil pengujian

5.3.4. Hubungan momen-lendutan (M-δ) hasil pengujian

5.3.5. Hubungan momen-rotasi badan (M-θ) hasil pengujian

5.3.6. Hubungan momen-keelengkungan (M-ϕ) hasil pengujian

5.3.7. Perilaku lentur balok profil kanal C

5.3.8. Perhitungan kekecurangan benda uji terhadap peningkatan kekuatannya

BAB VI KESIMPULAN DAN SARAN

6.1. Kesimpulan

6.2. Saran

DAFTAR PUSTAKA

LAMPIRAN
<table>
<thead>
<tr>
<th>No Tabel</th>
<th>Nama Tabel</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Hubungan Beban-Lendutan (P-Ω) Hasil Pengujian Benda Uji TANPA Perkuatan</td>
<td>54</td>
</tr>
<tr>
<td>5.2</td>
<td>Hubungan Beban-Lendutan (P-Ω) Hasil Pengujian Benda Uji dengan Perkuatan 2,5h</td>
<td>54</td>
</tr>
<tr>
<td>5.3</td>
<td>Hubungan Beban-Lendutan (P-Ω) Hasil Pengujian Benda Uji dengan Perkuatan 2,0h</td>
<td>54</td>
</tr>
<tr>
<td>5.4</td>
<td>Hubungan Beban-Lendutan (P-Ω) Hasil Pengujian Benda Uji dengan Perkuatan 1,5h</td>
<td>55</td>
</tr>
<tr>
<td>5.5</td>
<td>Hubungan Beban-Lendutan (P-Ω) Hasil Pengujian Benda Uji dengan Perkuatan 1,0h</td>
<td>55</td>
</tr>
<tr>
<td>5.6</td>
<td>Hubungan Beban-Rotasi Badan (P-Ω) Hasil Pengujian Benda Uji TANPA Perkuatan</td>
<td>57</td>
</tr>
<tr>
<td>5.7</td>
<td>Hubungan Beban-Rotasi Badan (P-Ω) Hasil Pengujian Benda Uji dengan Perkuatan 2,5h</td>
<td>57</td>
</tr>
<tr>
<td>5.8</td>
<td>Hubungan Beban-Rotasi Badan (P-Ω) Hasil Pengujian Benda Uji dengan Perkuatan 2,0h</td>
<td>57</td>
</tr>
<tr>
<td>5.9</td>
<td>Hubungan Beban-Rotasi Badan (P-Ω) Hasil Pengujian Benda Uji dengan Perkuatan 1,5h</td>
<td>58</td>
</tr>
<tr>
<td>5.10</td>
<td>Hubungan Beban-Rotasi Badan (P-Ω) Hasil Pengujian Benda Uji dengan Perkuatan 1,0h</td>
<td>58</td>
</tr>
<tr>
<td>5.11</td>
<td>Hubungan Beban-Kelengkungan (P-θ) Hasil Pengujian Benda Uji TANPA Perkuatan</td>
<td>60</td>
</tr>
<tr>
<td>5.12</td>
<td>Hubungan Beban-Kelengkungan (P-θ) Hasil Pengujian Benda Uji dengan Perkuatan 2,5h</td>
<td>60</td>
</tr>
<tr>
<td>5.13</td>
<td>Hubungan Beban-Kelengkungan (P-θ) Hasil Pengujian Benda Uji dengan Perkuatan 2,0h</td>
<td>61</td>
</tr>
<tr>
<td>5.14</td>
<td>Hubungan Beban-Kelengkungan (P-θ) Hasil Pengujian Benda Uji dengan Perkuatan 1,5h</td>
<td>61</td>
</tr>
<tr>
<td>5.15</td>
<td>Hubungan Beban-Kelengkungan (P-θ) Hasil Pengujian Benda Uji dengan Perkuatan 1,0h</td>
<td>61</td>
</tr>
<tr>
<td>5.16</td>
<td>Hubungan Momem-Lendutan (M-Ω) Hasil Pengujian Benda Uji TANPA Perkuatan</td>
<td>63</td>
</tr>
<tr>
<td>5.17</td>
<td>Hubungan Momem-Lendutan (M-Ω) Hasil Pengujian Benda Uji dengan Perkuatan 2,5h</td>
<td>63</td>
</tr>
<tr>
<td>5.18</td>
<td>Hubungan Momem-Lendutan (M-Ω) Hasil Pengujian Benda Uji dengan Perkuatan 2,0h</td>
<td>64</td>
</tr>
<tr>
<td>5.19</td>
<td>Hubungan Momem-Lendutan (M-Ω) Hasil Pengujian Benda Uji dengan Perkuatan 1,5h</td>
<td>64</td>
</tr>
<tr>
<td>5.20</td>
<td>Hubungan Momem-Lendutan (M-Ω) Hasil Pengujian Benda Uji dengan Perkuatan 1,0h</td>
<td>64</td>
</tr>
<tr>
<td>No. Tabel</td>
<td>Nama Tabel</td>
<td>Halaman</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>5.21</td>
<td>Hubungan Momen-Rotasi Badan (Mθ) Hasil Pengujian Benda Uji Tanpa Perkuatan</td>
<td>66</td>
</tr>
<tr>
<td>5.22</td>
<td>Hubungan Momen-Rotasi Badan (Mθ) Hasil Pengujian Benda Uji dengan Perkuatan 2,5h</td>
<td>66</td>
</tr>
<tr>
<td>5.23</td>
<td>Hubungan Momen-Rotasi Badan (Mθ) Hasil Pengujian Benda Uji dengan Perkuatan 2,0h</td>
<td>66</td>
</tr>
<tr>
<td>5.24</td>
<td>Hubungan Momen-Rotasi Badan (Mθ) Hasil Pengujian Benda Uji dengan Perkuatan 1,5h</td>
<td>67</td>
</tr>
<tr>
<td>5.25</td>
<td>Hubungan Momen-Rotasi Badan (Mθ) Hasil Pengujian Benda Uji dengan Perkuatan 1,0h</td>
<td>67</td>
</tr>
<tr>
<td>5.26</td>
<td>Hubungan Momen-Kelengkungan (Mϕ) Hasil Pengujian Benda Uji Tanpa Perkuatan</td>
<td>69</td>
</tr>
<tr>
<td>5.27</td>
<td>Hubungan Momen-Kelengkungan (Mϕ) Hasil Pengujian Benda Uji dengan Perkuatan 2,5h</td>
<td>69</td>
</tr>
<tr>
<td>5.28</td>
<td>Hubungan Momen-Kelengkungan (Mϕ) Hasil Pengujian Benda Uji dengan Perkuatan 2,0h</td>
<td>69</td>
</tr>
<tr>
<td>5.29</td>
<td>Hubungan Momen-Kelengkungan (Mϕ) Hasil Pengujian Benda Uji dengan Perkuatan 1,5h</td>
<td>70</td>
</tr>
<tr>
<td>5.30</td>
<td>Hubungan Momen-Kelengkungan (Mϕ) Hasil Pengujian Benda Uji dengan Perkuatan 1,0h</td>
<td>70</td>
</tr>
<tr>
<td>5.31</td>
<td>Perbandingan Kenaikan Tegangan Listur Masing-Masing Benda Uji</td>
<td>76</td>
</tr>
<tr>
<td>5.32</td>
<td>Perbandingan Kenaikan Biaya Masing-Masing Benda Uji</td>
<td>81</td>
</tr>
</tbody>
</table>

xii
<table>
<thead>
<tr>
<th>No. Gambar</th>
<th>Nama Gambar</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Efek dari cold-forming pada kekuatan material</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Penampang profil kanal</td>
<td>8</td>
</tr>
<tr>
<td>3.2</td>
<td>Balok berpenampang kanal C dengan perkuatan pada sisi sayap bebas</td>
<td>9</td>
</tr>
<tr>
<td>3.3a</td>
<td>Lendutan pada balok</td>
<td>10</td>
</tr>
<tr>
<td>3.3b</td>
<td>Kekakuan dari grafik bebas-lendutan</td>
<td>10</td>
</tr>
<tr>
<td>3.4</td>
<td>Kelengkungan dari sebuah balok yang melentur</td>
<td>11</td>
</tr>
<tr>
<td>3.5</td>
<td>Deformasi balok yang mengalami lentur murni</td>
<td>13</td>
</tr>
<tr>
<td>3.6</td>
<td>Penyebaran tegangan normal sebuah balok elastis linier</td>
<td>14</td>
</tr>
<tr>
<td>3.7</td>
<td>Titik-titik defleksi pada balok profil C</td>
<td>17</td>
</tr>
<tr>
<td>3.8</td>
<td>Hubungan momen (M) dengan kelengkungan (ϕ)</td>
<td>18</td>
</tr>
<tr>
<td>3.9</td>
<td>Plat yang ditekan secara merata</td>
<td>19</td>
</tr>
<tr>
<td>3.10</td>
<td>Koefisien teku untuk plat yang ditekan secara merata – tepi longitudinal bertumpuan sederhana</td>
<td>24</td>
</tr>
<tr>
<td>3.11</td>
<td>Koefisien teku elastis untuk tekanan pada plat segi empat datar</td>
<td>25</td>
</tr>
<tr>
<td>3.12</td>
<td>Perbandingan antara teku plat dan teku kolom</td>
<td>27</td>
</tr>
<tr>
<td>3.13</td>
<td>Defleksi teku pada elemen yang tidak diperkuat (jepit-bebas)</td>
<td>28</td>
</tr>
<tr>
<td>3.14</td>
<td>Defleksi teku pada elemen yang diperkuat (jepit-jepit)</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Universal Testing Machine (UTM) Shimadzu UMH 30</td>
<td>36</td>
</tr>
<tr>
<td>4.2a</td>
<td>Tampak melintang loading frame</td>
<td>37</td>
</tr>
<tr>
<td>4.2b</td>
<td>Tampak memanjang loading frame</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Hydraulic jack</td>
<td>39</td>
</tr>
<tr>
<td>4.4</td>
<td>Tumpuan sendi dan rol</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>Dial gauge</td>
<td>40</td>
</tr>
<tr>
<td>4.6</td>
<td>Model benda uji</td>
<td>41</td>
</tr>
<tr>
<td>4.7</td>
<td>Benda uji untuk kuat tarik profil kanal C</td>
<td>43</td>
</tr>
<tr>
<td>4.8</td>
<td>Benda uji untuk kuat tarik baja tulangan</td>
<td>44</td>
</tr>
<tr>
<td>4.9</td>
<td>Benda uji ucu uji kekuatan las</td>
<td>44</td>
</tr>
<tr>
<td>4.10</td>
<td>Jarak dan perletakan tumpuan/dukungan pada loading frame</td>
<td>45</td>
</tr>
<tr>
<td>4.11</td>
<td>Titik-titik pengukuran pada benda uji</td>
<td>46</td>
</tr>
<tr>
<td>4.12</td>
<td>Perletakan benda uji dan hydraulic jack pada loading frame</td>
<td>47</td>
</tr>
<tr>
<td>4.13</td>
<td>Peletakan dial gauge pada benda uji</td>
<td>48</td>
</tr>
<tr>
<td>5.1</td>
<td>Grafik hubungan beban-lendutan (P-ϕ) semua benda uji</td>
<td>56</td>
</tr>
<tr>
<td>No. Gambar</td>
<td>Nama Gambar</td>
<td>Halaman</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>5.2</td>
<td>Grafik hubungan beban-rotasi badan ((P-\theta)) semua benda uji</td>
<td>59</td>
</tr>
<tr>
<td>5.3</td>
<td>Grafik hubungan beban-kelengkungan ((P-\phi)) semua benda uji</td>
<td>62</td>
</tr>
<tr>
<td>5.4</td>
<td>Grafik hubungan momen-kendutan ((M-\theta)) semua benda uji</td>
<td>65</td>
</tr>
<tr>
<td>5.5</td>
<td>Grafik hubungan momen-rotasi badan ((M-\phi)) semua benda uji</td>
<td>68</td>
</tr>
<tr>
<td>5.6</td>
<td>Grafik hubungan momen-kelengkungan ((M-\phi)) semua benda uji</td>
<td>71</td>
</tr>
<tr>
<td>5.7</td>
<td>Pembebanan profil kanal C</td>
<td>72</td>
</tr>
<tr>
<td>5.8</td>
<td>Grafik kenaikan tegangan lentur benda uji</td>
<td>77</td>
</tr>
<tr>
<td>5.9</td>
<td>Grafik kenaikan biaya benda uji</td>
<td>81</td>
</tr>
<tr>
<td>5.10</td>
<td>PerbANDINGan kenaikan biaya dan kenaikan tegangan lentur benda uji</td>
<td>82</td>
</tr>
<tr>
<td>No. Lampiran</td>
<td>Nama Lampiran</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Perhitungan Inersia Profil kanal C</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>Hasil Pengujian Kuat Tarik Baja dan Geser Las</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>Hasil Pengujian Pembebanan (Kuat Lentur) Benda Uji</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>Foto-Foto Hasil Penelitian</td>
<td>96</td>
</tr>
</tbody>
</table>
ARTI LAMBANG DAN SINGKATAN

\[\begin{align*}
A &= \text{variasi jarak perkuatan} \\
b &= \text{lebar} \\
h/t &= \text{rasio lebar terhadap tebal} \\
E &= \text{modulus elastisitas baja (2.10^5 MPa)} \\
E1 &= \text{kekakuan lentur} \\
f_s &= \text{tegangan lentur} \\
F_{cr} &= \text{tegangan kritis (MPa)} \\
F &= \text{tegangan lelah (MPa)} \\
F_{ resin} &= \text{kekakuan tarik material elektrode} \\
f_r &= \text{tegangan residu (tegangan sisanya)} \\
f_{\text{initial}} &= \text{tegangan lelah initial (tegangan lelah yang sebenarnya)} \\
h &= \text{tinggi} \\
I &= \text{momen inersia} \\
K/I &= \text{fungsi kelangsungan kolom} \\
k &= \text{koefisien teknis} \\
L &= \text{jarak, panjang bentang} \\
M &= \text{momen (kgm)} \\
N_x &= \text{gaya tekan searah sumbu X} \\
P &= \text{beban terasat (kg)} \\
q &= \text{beban merata} \\
R_{\text{nominal}} &= \text{kekakuan nominal persaingan panjang las, dalam tidak melebihi kekakuan nominal per satuan panjang material dasar didekatnya} \\
t &= \text{tebal} \\
t_p &= \text{tebal efektif} \\
W &= \text{modulus penampang} \\
W_{Fp} &= \text{wide flange (baja profil 1 dengan sayap lebar)} \\
y &= \text{jarak garis netral ke serat tarik atau tekan} \\
\delta &= \text{lendutan (mm)} \\
\Delta &= \text{perubahan panjang (mm)} \\
\epsilon &= \text{tegangan} \\
\phi &= \text{kclenkung} \\
\lambda &= \text{parameter kelangsungan} \\
\mu &= \text{angka poisson (untuk baja = 0,3)} \\
\pi &= \text{phi} \\
\theta &= \text{rotasi pada badan profil (rad)} \\
\rho &= \text{jari-jari kelengkungan} \\
\sigma &= \text{tegangan}
\end{align*}\]
INTISARI

Baja profil C sering digunakan sebagai balok gording dan mengalami pembebanan lentur. Baja profil katul C mempunyai rasio lebar terhadap tebal (b/t) yang tinggi sehingga menjadi tidak stabil (stabilitasnya rendah) dan rawan terhadap tekanan tekuk (local buckling) serta kemampuan lenturnya rendah. Bahaya tekuk lokal ini dapat dihindari dengan meningkatkan tegangan kritisnya dengan cara penambahan perkuatan tulangan arah vertikal sehingga baja profil katul C menjadi lebih stabil.

Pada penelitian ini diuji perilaku lentur baja profil C dengan penambahan perkuatan tulangan arah vertikal yang kemudian akan dibandingkan dengan baja profil C tanpa perkuatan. Perkuatan tulangan diberikan pada sayap bawah baja profil C dengan variasi jarak kelipatan tegangnya. Ada empat variasi jarak yang dilakukan yaitu k, 3/2h, 2h, dan 5/2h.

Dari penelitian diperoleh tegangan leleh (fL) baja profil C sebesar 211,1509 MPa, tegangan leleh baja tulangan sebesar 357,9048 MPa, dan belan patah las sebesar 10,2024 KN. Hasil penelitian juga menunjukkan bahwa penambahan perkuatan tulangan arah vertikal dapat meningkatkan nilai tegangan lentur (fL) baja profil katul C. Pada jarak perkuatan 3/2h terjadi peningkatan nilai tegangan lentur sebesar 69,26%, pada jarak perkuatan 2h peningkatan sebesar 106,34%, pada jarak perkuatan 3/2h peningkatan sebesar 131,81%, dan pada jarak perkuatan 1h peningkatan sebesar 152,34% terhadap nilai tegangan lentur baja profil C tanpa perkuatan yang nilainya sebesar 19,47 MPa.

Kata kunci : profil C, stabilitas, local buckling, tegangan lentur.