### **SKRIPSI**

## INDUKSI KALUS EMBRIOGENIK DAN INISIASI EMBRIO SOMATIK ANGGREK BULAN (*Phalaenopsis amabilis* (L.) Blume) MENGGUNAKAN ASAM 2,4-DIKLOROFENOKSIASETAT

### Disusun oleh:

Benny Saputra NPM: 080801062



UNIVERSITAS ATMA JAYA YOGYAKARTA FAKULTAS TEKNOBIOLOGI PROGRAM STUDI BIOLOGI YOGYAKARTA 2012

## INDUKSI KALUS EMBRIOGENIK DAN INISIASI EMBRIO SOMATIK ANGGREK BULAN (*Phalaenopsis amabilis* (L.) Blume) MENGGUNAKAN ASAM 2,4-DIKLOROFENOKSIASETAT

### **SKRIPSI**

Diajukan kepada Program Studi Biologi Fakultas Teknobiologi, Universitas Atma Jaya Yogyakarta guna memenuhi sebagian syarat untuk memperoleh Derajat Sarjana S-1

Disusun oleh:

Benny Saputra NPM: 080801062



UNIVERSITAS ATMA JAYA YOGYAKARTA FAKULTAS TEKNOBIOLOGI PROGRAM STUDI BIOLOGI YOGYAKARTA 2012

#### **PENGESAHAN**

Mengesahkan Skripsi dengan Judul

## INDUKSI KALUS EMBRIOGENIK DAN INISIASI EMBRIO SOMATIK ANGGREK BULAN (*Phalaenopsis amabilis* (L.) Blume) MENGGUNAKAN ASAM 2,4-DIKLOROFENOKSIASETAT

Yang dipersiapkan dan disusun oleh:

**Benny Saputra** 

NPM: 080801062

Telah dipertahankan di depan Tim Penguji pada hari Jumat, 21 September 2012

Dan dinyatakan telah memenuhi syarat

SUSUNAN TIM PENGUJI

Pembimbing Utama,

(Drs. Kianto Atmodio, M.Si.)

Anggota Tim Penguji

(Dra. L. Indah Murwani Y, M.Si.)

Pembimbing Kedua,

(L. M. Ekawati P., S. Si., M. Si.)

Mogyakarta, 31 Oktober 2012

UNIVERSITAS ATMA JAYA YOGYAKARTA

FAKULTAS TEKNOBIOLOGI

Dekan,

FAKULTAS

(Drs. A. Wihowo Nugroho Jati, M. S.)

# HALAMAN PERSEMBAHAN

| *ve*                                                |
|-----------------------------------------------------|
| *lovel*                                             |
| *lovelovelo*                                        |
| *lovelovelove*                                      |
| *.lovelovelove*                                     |
| .*lovelovelovelo**lovel*                            |
| *lovelovelovelove*lovelovelo.*                      |
| * lovelovelovelove**lovelovelo.*                    |
| .* love love love love love* love love lov*         |
| *lovelovelovelove*lovelovelo*                       |
| $\dots^*\dots$ lovelovelovelovelovelovelo $\dots^*$ |
| *lovelovelovelovelovelov*                           |
| *lovelovelovelovelo*                                |
| *lovelovelove*                                      |
| *lovelovelo*                                        |
| *lovelo*                                            |
| **                                                  |
| *v*                                                 |
| **                                                  |

"And let us not be weary in well doing: for in due season we shall reap, if we faint not."

- Galatians 6:9 -

**1**(\*^^)0\range \range \range (^^\*)**1** 

### PERNYATAAN BEBAS PLAGIARISME

Saya yang bertanda tangan di bawah ini:

Nama : Benny Saputra

NPM : 080801062

Judul Skripsi: INDUKSI KALUS EMBRIOGENIK DAN INISIASI EMBRIO

SOMATIK ANGGREK BULAN (*Phalaenopsis amabilis* (L.) Blume) MENGGUNAKAN ASAM 2,4-DIKLOROFENOKSI-

**ASETAT** 

Menyatakan bahwa skripsi dengan judul tersebut di atas benar-benar asli hasil karya saya sendiri dan disusun berdasarkan norma akademik. Apabila ternyata di kemudian hari ternyata terbukti sebagai plagiarisme, saya bersedia menerima sanksi akademik yang berlaku berupa pencabutan predikat kelulusan dan gelar kesarjanaan saya.

Yogyakarta, 31 Oktober 2012 Yang menyatakan,

BC3A3ABF200726677

6000

Benny Saputra 080801062

### KATA PENGANTAR

Puji syukur kepada Tuhan Yesus yang selalu memberkati dan melindungi penulis sehingga dapat menyelesaikan skripsi yang berjudul "Induksi Kalus Embriogenik dan Inisiasi Embrio Somatik Anggrek Bulan (*Phalaenopsis amabilis* (L.) Blume) Menggunakan Asam 2,4-Diklorofenoksiasetat" dengan baik. Skripsi ini disusun berdasarkan hasil penelitian di laboratorium Teknobio-Industri Fakultas Teknobiologi, Universitas Atma Jaya Yogyakarta. Skripsi ini merupakan tugas akhir yang wajib dilaksanakan sebagai syarat kelulusan untuk menyelesaikan studi S-1 di Fakultas Teknobiologi, Universitas Atma Jaya Yogyakarta.

Penelitian dan penulisan skripsi ini tidak akan dapat terselesaikan dengan baik jika tanpa adanya bantuan dari orang-orang yang selalu membantu dan mendukung penulis. Oleh karena itu, penulis ingin mengucapkan terima kasih kepada berbagai pihak yang telah berperan dalam penyelesaian laporan ini. Penulis mengucapkan terima kasih kepada :

- Drs. A. Wibowo Nugroho Jati, M. S. selaku dekan Fakultas Teknobiologi, Universitas Atma Jaya Yogyakarta yang telah membantu penulis dalam memberikan saran dan pengarahan dalam menyempurnakan naskah skripsi ini.
- Drs. P. Kianto Atmodjo, M. Si. selaku dosen pembimbing utama yang telah membantu penulis dalam memberikan pengarahan, dan nasihat dalam penyusunan skripsi ini.

- 3. L. M. Ekawati Purwijantiningsih, S. Si, M. Si. selaku dosen pembimbing kedua yang telah membantu penulis dalam memberikan saran, kritik, dan waktu dalam penyusunan skripsi ini.
- 4. Dra. L. Indah Murwani Y, M. Si. selaku dosen penguji yang telah memberikan saran dan masukan guna menyempurnakan naskah skripsi ini.
- 5. FR. Sulistyowati selaku laboran yang telah banyak membantu dalam proses penelitian dan penggunaan fasilitas laboratorium.
- 6. Frank Law, Johan Iskandar, Weni Apriani, dan orang tua tercinta yang selalu memberikan dukungan, doa, dan cinta.
- 7. Teman-teman angkatan 2008 yang telah banyak membantu dan menemani selama penelitian, terima kasih atas segala dukungannya.
- 8. Anjeli Maree Ramos, Erna dan semua pihak yang tidak dapat penulis sebutkan satu per satu.

Penulis juga mengucapkan terima kasih kepada pembaca yang telah bersedia meluangkan waktu untuk membaca skripsi ini. Akan tetapi, penulis juga menyadari bahwa penulisan skripsi ini masih terdapat banyak kekurangan. Oleh sebab itu, penulis sungguh mengharapkan kritik maupun saran yang bersifat membangun dari para pembaca.

Yogyakarta, 31 Oktober 2012

Penulis

# **DAFTAR ISI**

| Halan                                                   | nan            |
|---------------------------------------------------------|----------------|
| HALAMAN JUDUL                                           | i              |
| LEMBAR PENGESAHAN                                       | 11             |
| HALAMAN PERSEMBAHAN                                     | iii            |
| PERNYATAAN BEBAS PLAGIARISME                            | iv             |
| KATA PENGANTAR                                          | V              |
| DAFTAR ISI                                              | vii            |
|                                                         | viii           |
| DAFTAR GAMBAR                                           | ix             |
| DAFTAR LAMPIRAN                                         | X              |
| INTISARI                                                | хi             |
| I. PENDAHULUAN                                          | 1              |
| A. Latar Belakang                                       | 1              |
| B. Perumusan Masalah                                    | 5              |
| C. Tujuan Penelitian                                    | 5              |
| D. Manfaat Penelitian                                   | 5              |
| II. TINJAUAN PUSTAKA                                    | 6              |
| A. Sejarah, Morfologi dan Sistematika Anggrek Bulan     | 6              |
| B. Syarat Pertumbuhan Anggrek Bulan                     | 9              |
| C. Embriogenesis Somatik dan Manfaatnya                 | 9              |
| D. Kalus                                                | 11             |
| E. Embrio Somatik                                       | 13             |
| F. Faktor Yang Mempengaruhi Pembentukan Embrio Somatik  | 14             |
| G. Eksplan                                              | 15             |
| H. Medium Tanam Kultur Jaringan                         | 17             |
| I. Zat Pengatur Tumbuh                                  | 18             |
| J. Zat Pengatur Tumbuh 2,4-D (2,4-Diklorofenoksiasetat) | 20             |
| K. Air Kelapa                                           | 21             |
| L. Hipotesis                                            | 22             |
| III. METODE PENELITIAN                                  | 23             |
| A. Tempat dan Waktu Penelitian                          | 23             |
| B. Alat dan Bahan                                       | 23             |
| C. Rancangan Percobaan                                  | 23             |
| D. Tahapan Penelitian dan Cara Kerja                    | 24             |
| IV. HASIL DAN PEMBAHASAN                                | 29             |
| A. Induksi Kalus Embriogenik                            | 29             |
| B. Inisiasi Embrio Somatik                              | 37             |
| V. KESIMPULAN DAN SARAN                                 | 44             |
| A. Kesimpulan                                           | 44             |
| B. Saran                                                | 44             |
| DAFTAR PUSTAKA                                          | 44             |
| LAMPIRAN                                                | <del>4</del> 3 |
| L# MY 11 11 11 11 11 11 11 11 11 11 11 11 11            | -) 4           |

# DAFTAR TABEL

|         | Hala                                                          | man |
|---------|---------------------------------------------------------------|-----|
| Tabel 1 | Komposisi Medium New Phalaenopsis (NP)                        | 17  |
| Tabel 2 | Perlakuan Konsentrasi 2,4-D Untuk Induksi Kalus Embriogenik   |     |
|         | dan Inisiasi Embrio Somatik                                   | 24  |
| Tabel 3 | Morfologi Kalus Pada Medium Pada Minggu ke-2, ke-3, dan ke-   |     |
|         | 4                                                             | 31  |
| Tabel 4 | 1                                                             |     |
|         | Kalus, Rerata Waktu Induksi Kalus Embriogenik, dan Persentase |     |
|         | Eksplan Membentuk Kalus Embriogenik Setelah Enam Minggu       |     |
|         | Kultur                                                        | 34  |
| Tabel 5 |                                                               |     |
|         | Membentuk Embrio Somatik Setelah Tiga Minggu Kultur           | 41  |
| Tabel 6 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                         | 52  |
| Tabel 7 |                                                               | 52  |
| Tabel 8 |                                                               |     |
|         | Anggrek Bulan                                                 | 53  |
| Tabel 9 | Hasil Perhitungan Persentase Eksplan Membentuk Kalus          |     |
|         | Embriogenik                                                   | 53  |
|         | O. Hasil Pengamatan Morfologi Kalus Anggrek Bulan             | 54  |
| Tabel 1 | 1. Hasil Pengamatan Waktu Terbentuk Embrio Somatik Anggrek    |     |
|         | Bulan Setelah Subkultur (Hari)                                | 55  |
| Tabel 1 | 2. Hasil Perhitungan Persentase Kalus Embriogenik Membentuk   | Ш   |
|         | Embrio Somatik                                                | 55  |
| Tabel 1 | 3. Hasil Pengamatan Morfologi Embrio Somatik Anggrek Bulan    | 1   |
|         | Selama Tiga Minggu Setelah Subkultur                          | 56  |
|         | 4. Hasil ANAVA Waktu Induksi Kalus Anggrek Bulan              | 57  |
|         | 5. Hasil ANAVA Waktu Inisiasi Embrio Somatik Anggrek Bulan    | 58  |
| Tabel 1 | 6. Hasil DMRT Waktu Inisiasi Embrio Somatik Anggrek Bulan     | 58  |

# DAFTAR GAMBAR

|            | H                                                       | alamar |
|------------|---------------------------------------------------------|--------|
| Gambar 1.  | Tanaman Anggrek Bulan                                   | 7      |
| Gambar 2.  | Daun Anggrek Bulan                                      | 7      |
| Gambar 3.  | Bunga Anggrek Bulan                                     | . 8    |
| Gambar 4.  | Tahapan Pembentukan Embrio Zigotik Selama Embriogenesis |        |
| Gambar 5.  | Struktur Kimia ZPT 2,4-D                                | 20     |
| Gambar 6.  | Kalus Anggrek Bulan Hari Ke-14                          | . 30   |
| Gambar 7.  | Morfologi Kalus Anggrek Bulan Minggu Keempat            | 32     |
| Gambar 8.  | Kalus Anggrek Bulan Membentuk Protokorm                 | 33     |
| Gambar 9.  | Embrio Somatik Tipe Globular dan Torpedo                | 39     |
| Gambar 10. | Embrio Somatik Anggrek Bulan Minggu Ketiga Setelah      |        |
|            | Subkultur                                               | 40     |
| Gambar 11. | Rerata Waktu Terbentuk Embrio Somatik Anggrek Bulan     |        |
| Gambar 12. | Persentase Terbentuk Embrio Somatik Anggrek Bulan       | 42     |
| Gambar 13. | Hasil Regenerasi Tanaman Anggrek Bulan                  | 43     |

# DAFTAR LAMPIRAN

| I                                                                     | Halaman |
|-----------------------------------------------------------------------|---------|
| Lampiran 1. Data Waktu Induksi Kalus (Hari) Anggrek Bulan             | 52      |
| Lampiran 2. Data Waktu Induksi Kalus Embriogenik (Hari) Anggrek       |         |
| Bulan                                                                 | 53      |
| Lampiran 3. Data Morfologi Kalus Anggrek Bulan Selama Enam Minggu     | 54      |
| Lampiran 4. Data Waktu Terbentuk Embrio Somatik Anggrek Bulan         |         |
| Setelah Subkultur (Hari)                                              | 55      |
| Lampiran 5. Data Morfologi Embrio Somatik Anggrek Bulan Selama Tiga   | ì       |
| Minggu Setelah Subkultur                                              | 56      |
| Lampiran 6. Data Analisis Statistik Waktu Induksi Kalus Anggrek Bulan | 57      |
| Lampiran 7. Data Analisis Statistik Waktu Inisiasi Embrio Somatik     |         |
| Anggrek Bulan                                                         | 58      |

#### **INTISARI**

Anggrek bulan (Phalaenopsis amabilis (L.) Blume) merupakan anggrek asli Indonesia yang memiliki nilai tinggi sebagai tanaman hias. Penelitian kultur in vitro anggrek terutama Phalaenopsis telah banyak dilakukan, tetapi untuk penelitian menggunakan 2,4-D untuk embriogenesis somatik pada anggrek bulan belum dilakukan. Penelitian ini bertujuan untuk menentukan konsentrasi ZPT 2,4-D yang paling baik untuk menginduksi pembentukan kalus embriogenik dan inisiasi embrio somatik anggrek bulan serta mengetahui morfologi kalus embriogenik dan embrio somatik yang terbentuk. Eksplan yang digunakan adalah plantlet yang belum memiliki akar dari subkultur anggrek bulan. Penelitian ini menggunakan Rancangan Acak Lengkap dengan perlakuan konsentrasi 2,4-D 0 mg/L, 1 mg/L, 2 mg/L, 3 mg/L, 4 mg/L, dan 5 mg/L sebanyak tiga kali ulangan. Penelitian dilakukan 2 tahap, yaitu induksi kalus embriogenik dan inisiasi embrio somatik. Embrio somatik telah berhasil diinduksi secara tidak langsung pada medium New Phalaenopsis (NP) yang mengandung 20 g/l sukrosa, 10% air kelapa dan perlakuan 2,4-D. Hasil penelitian menunjukkan bahwa tingkat induksi kalus embriogenik paling baik diperoleh pada perlakuan kontrol tanpa 2,4-D yang mencapai 100% pada enam minggu setelah kultur dengan rerata waktu induksi yaitu 32 hari dan morfologi kalus embriogenik : warna kalus hijau kekuningan, remah, dan tampak mengkilat. Penambahan 2,4-D sebanyak 1 mg/L merupakan konsentrasi paling baik untuk inisiasi embrio somatik anggrek bulan (mencapai 100%) pada tiga minggu setelah subkultur dengan rerata waktu inisiasi embrio somatik yaitu 6-7 hari. Bentuk embrio yang berkembang dari kalus embriogenik ada dua macam, yaitu globular dan torpedo yang warna kuning kehijauan.