RACKING SYSTEM SELECTION FOR THE COLD STORAGE OF PT. BERNOFARM

A THESIS

Submitted in Partial Fulfillment of the Requirement for the Bachelor Degree of Engineering in Industrial Engineering

KRISTIAWAN ATMADI 10 14 06137

INTERNATIONAL INDUSTRIAL ENGINEERING PROGRAM

DEPARTMENT OF INDUSTRIAL ENGINEERING

FACULTY OF INDUSTRIAL TECHNOLOGY

UNIVERSITAS ATMA JAYA YOGYAKARTA

YOGYAKARTA

2014

IDENTIFICATION PAGE

A THESIS ON

RACKING SYSTEM SELECTION FOR THE COLD STORAGE OF PT. BERNOFARM

Submitted by Kristiawan Atmadi 10 14 06137

Faculty Supervisor,

Co-Faculty Supervisor,

Yosef Daryanto, ST., M.Sc.

L. Bening Parwita Sukci, M. Hum.

Board of Examiners,

Chair,

(Yosef Daryanto, ST., M.Sc.)

Member,

(The Jin Ai, D.Eng.)

Member,

(Drs. Ign. Luddy Indra Purnama, M.Sc.)

Yogyakarta, October 21st, 2014

Universitas Atma Jaya Yogyakarta,

Faculty of Industrial Technology,

Dean,

Dr. A. Teguh Siswantoro, M.Sc.

TEKNOLOGI INDUSTR

DECLARATION OF ORIGINALITY OF RESEARCH

I certify that the research entitled "Racking System Selection for the Cold Storage of PT. Bernofarm" in this thesis has not already been submitted for any other degree.

I certify that to the best of my knowledge and belief, this thesis which I wrote does not contain the works of parts of the works of other people, except those cited in the quotations and bibliography, as a scientific paper should.

In addition, I certify that I understand and abide the rule stated by the Ministry of Education and Culture The Republic of Indonesia, subject to the provisions of Peraturan Menteri Pendidikan Nasional Republik Indonesia Nomor 17 Tahun 2010 tentang Pencegahan dan Penanggulangan Plagiat di Perguruan Tinggi.

Signature :

METERAL TEMPEL STATE OF THE PROPERTY OF THE PR

Student name : Kristiawan Atmadi Student ID : 10 14 06137

Date : October 21st, 2014

ACKNOWLEDGEMENT

The author conducted final project of Racking Selection for the Cold Storage of PT. Bernofarm as one of the condition to earn bachelor degree of Industrial Engineer during his study in Atma Jaya Yogyakarta University.

The author would like to thank PT. Bernofarm as the main subject of this final project and the data which had been given to complete the analysis. Deepest appreciation goes to Mr. Yosef Daryanto and Mrs. Bening Parwita Sukci as faculty supervisor and co-supervisor that help to begin the final project, conduct analysis, and finish the paper.

All other appreciation goes to author's family, relatives, and friends, for giving support before, during, and after the internship so that this report is finalized. Last but not least, author is amicable for suggestions that boost the motivation for the next paper.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	Title Page	i
	Identification Page	ii
	Declaration of Originality	iii
	Acknowledgement	iv
	Table of Content	V
	List of Table	vii
	List of Figure	viii
	List of Appendices	×
	Abstract	xi
1	Introduction	^ح / ا
	1.1. Background	1
	1.2. Problem Formulation	3
	1.3. Objectives	3
	1.4. Scopes and Limitations	4
	1.5. Report Outline	4
2.	Literature Review and Theoretical Background	6
	2.1. Literature Review	6
	2.2. Basic Theory	11
3	Research Methodology	26
	3.1. Defining a Problem	26
	3.2. Collecting Data	26
	3.3. Evaluation and Analysis	27

4	Data	30
	4.1. Company Profile	30
	4.2. Warehouse Description and Facilities	31
	4.3. Cold Storage	34
	4.4. Goods Receiving and Shipping from Cold Storage	35
	4.5. Racking System	36
	4.6. Alternative Suppliers	38
5	Analysis	44
	5.1. Selecting Alternative Racking Systems	44
	5.2. Alternative Analysis	51
	5.3. Inventory Levels and Cost Analysis	58
	5.4. Alternative Selection	68
6	Conclusion and Suggestion	70
	6.1. Conclusion	70
	6.2. Suggestion	70
	Deference	74
	Reference	71
	Attachment	75

List of Table

1.	Table 2.1.	Gap Analysis	10
2.	Table 4.1.	Initial Stock for Product in September 30 th , 2013	35
3.	Table 5.1.	Characteristics of Racking Alternatives	44
4.	Table 5.2.	Racking Selection based on Objectives	46
5.	Table 5.3.	Comparison of Suppliers	47
6.	Table 5.4. Excel	Storage Products Push-back Rack Specifications	49
7.	Table 5.5.	Drive-in Installation Cost	62
8.	Table 5.6.	Push-back Racking Alternative 1 Cost	64
9.	Table 5.7.	Push-back Racking Alternative 2 Cost	64
10.	Table 5.8.	Slip Sheet Method Cost	67
11.	Table 5.9.	Summary of Analysis	68

List of Figure

1.	Figure 3.1.	Flowchart of Methodology	29	
2.	Figure 4.1.	Building Location of PT. Bernofarm	31	
3.	Figure 4.2.	Deep Reach Truck in PT. Bernofarm	32	
4.	Figure 4.3.	Forklift Truck in PT. Bernofarm	32	
5.	Figure 4.4.	Business Process of Receiving Goods	33	
6.	Figure 4.5.	Business Process of Releasing Goods	34	
7.	Figure 4.6.	Cold Storage Present Condition	35	
8.	Figure 4.7.	Example of Aluminum Foil Packaging Function	36	
9.	Figure 4.8.	Detailed pallet and load size in the storage	37	
10.	Figure 4.9.Sh	elf Depth Options from SSI SCHAEFER's Drive-in Ra	ck39	
11.	Figure 4.10.	Width Options for SSI SCHAEFER's Drive-in Rack	39	
12.	Figure 4.11.	Detailed Excel's Push-back Racking Choices	41	
13.	Figure 4.12.S	Figure 4.12.Slip Sheet from Shanghai Shuangzhong Packing Material		
14.	Figure 5.1.	Drive-in Racking Illustration	48	
15.	Figure 5.2.	Excel Push-back Racking Example	50	
16.	Figure 5.3.			
	Comparison o	f Standard Fiber Slip Sheet Stack Versus Plastic		
	Slip Sheet Sta	ack Versus Wooden Pallet Stack 51		
17.	Figure 5.4.	Drive-in Rack with Top Sideway Layout	53	
18.	Figure 5.5.Dr	ive-in Rack with Lines for Hand Pallet Trucks Layout	54	
19.	Figure 5.6.	First Alternative for Push-back Rack	55	
20.	Figure 5.7.	Second Alternative for Push-back Rack	56	
21.	Figure 5.8.	Slip Sheet Stack Alternative	58	
22.	Figure 5.9.	Front-to-back Support for Drive-in Rack	60	
23.	Figure 5.10.	Attachment Bracket for Drive-in Rack	60	
24.	Figure 5.11.	End Stops for Drive-in Rack	60	
25.	Figure 5.12.	Longitudinal Bracing for Drive-in Rack	61	
26.	Figure 5.13.	Horizontal Cross Bracing for Drive-in Rack	61	
27.	Figure 5.14.	Corner Protector for Drive-in Rack	62	
28.	Figure 5.15.	Buffer Line for Drive-in Rack	62	
29.	Figure 5.16.	6-deep Push-back Rack Picture	63	
30.	Figure 5.17.	Post Protector Example	64	
31.	Figure 5.18.	Push/Pull Attachment for Forklift Truck	65	

32.	Figure 5.19.	Sequence of Using Push/Pull Atta	achment	65
33.	Figure 5.20. Pallet Wr	apper Machine	66	
34.	Figure 5.21. Example	of Plastic Rolls to Wrap Pallet	67	

List of Appendices

Appendices A:	Packaging Warehouse Top View	75
Appendices B:	Packaging Warehouse Side View	77
Appendices C :	Packaging Warehouse Rack View	79
Appendices D :	Number of Goods In and Goods Out in Pallet	81
Appendices E :	Number of Goods In and Goods Out in Kg	85
Appendices F:	Result of Calculation per Day	96
Appendices G:	Engineering Drawing of Analysis	100
Appendices H:	Suppliers Data	106

ABSTRACT

The final project entitled "Racking Selection for the Cold Storage of PT. Bernofarm" began with the problem existing in company's cold storage. The main problem of the cold storage is the lack of capacity which requires new racking and handling method to store all the goods on demand. The new layout with new system is targeted by the company to store 600 pallets. On the other hand, the company also needs a good low investment of money for the new proposed system. This final project begins with taking data required from the company such as company profile, building size and location, and the number of moving goods.

Some racking alternatives are then compared and evaluated to fit the cold storage after getting the maximum number of goods stored in a day. Three best alternatives suitable for the company's current needs are evaluated based on the layout and the calculation of cost needed to install each of the alternatives, furthermore one best racking suitable for the cold storage is chosen to maximize the capacity of the cold storage with a minimum cost to invest. The chosen racking is drive-in rack with capacity of 756 pallets. The investment of this racking is also the lowest from all other alternative with cost of US\$10,135.45.