A STUDY OF THE IMPACT OF CONSTRUCTION ACCIDENTS ON THE PROJECT CONTINUITY

Final Project Report

as one of requirement to obtain S1 degree of

Universitas Atma Jaya Yogyakarta

By:

KARTIKA IRIANTHY ZEBUA

NPM.: 11 13 13888

INTERNATIONAL S1 PROGRAM

DEPARTMENT OF CIVIL ENGINEERING

FACULTY OF ENGINEERING

UNIVERSITAS ATMA JAYA YOGYAKARTA

YOGYAKARTA

2014

STATEMENT

I signed below stating that the final project with title:

"A STUDY OF THE IMPACT OF CONSTRUCTION ACCIDENTS ON THE PROJECT CONTINUITY"

It is the result of my own work and not a result of plagiarism of other people's work.

Ideas, research data, and quotes directly or directly derived from the writings or ideas of others expressly provided in this Final Project. If it is proved later that this Final Project is the result of plagiarism, which I get the certificate would be canceled and I will return to the Rector of Universitas Atma Jaya Yogyakarta.

Yogyakarta,

Tanuary 2015

Who made the remarks,

Kartika Irianthy Zebua

APPROVAL Final Project A STUDY OF THE IMPACT OF CONSTRUCTION ACCIDENTS ON THE PROJECT CONTINUITY By: KARTIKA IRIANTHY ZEBUA 11 13 13888 Has been examined and approved by the examination committee Signature Date : KOESAM ARBONO TO :JOHN TRA HATTACH > Chairperson Member Member

ACKNOWLEDGEMENTS

First and foremost, I would like to thank to Jesus Christ for the blessing, therefore I can prepare and finish this final project well. In this opportunity, I would like thank to:

- 1. Koesmargono Ir. M.C.M., Ph.D. as my advisor for his advice and counseling.
- 2. Anastasia Yunika, S.T., M. Eng. as Coordinator of International Civil Engineering.
- J. Januar Sudjati, ST., MT. as the head of Civil Engineering Department of Universitas Atma Jaya Yogyakarta.
- All lectures in civil engineering especially in international program, therefore I can graduate from Universitas Atma Jaya Yogyakarta.
- My lovely family especially for my parents, my sisters and brother for their love, affection, orison, and support.
- My boyfriend, Michael Abraham Wahyu Dwi Atmojo, for all support, love, and help.
- My friends in international program, Dea, Dhoni, Justi, Johan, Wira, and Arif for the support and help.
- 8. All parties that I cannot be mentioned all, thank you for your support and help.

I realize, this report has some mistakes. Therefore, I would like to apologize for that. Finally, I hope this report may be useful for the reader and me.

Yogyakarta, January 2015

The Author

Kartika Irianthy Zebua

11 13 13888

TABLE OF CONTENT

Title	i
Statement	ii
Approval	iii
Acknowledgment	v
Table of Content	vi
List of Table	xii
Abstract	xiv
CHAPTER I INTRODUCTION	
1.1. Background.	1
1.2. Problem Statement	3
1.3. The Originality of Final Project	4
1.4. The Objective of Final Project	5
1.5. The Benefits of Final Project	5
1.6. The Systematic of Report.	6
CHAPTER II LITERATURE REVIEW	
2.1. Construction Project	8
2.2. Construction Safety Regulation	8
2.3 Accident Causation Model	8

2.3.1. Domino Theory	. 9
2.3.2. Human Error Theory	. 9
2.3.3. ARCTM	. 9
2.4. Classification of Work Accidents	. 10
2.5. Lost of Cost Injury	. 11
2.5.1. Direct Cost	. 12
2.5.2. Indirect Cost.	12
2.6. Lost of Work Time	13
2.7. Project Continuity	13
2.7.1. Planning	. 14
2.7.2. Project Development and Environment	. 14
2.7.3. Design	. 14
2.7.4. Right of Way	14
2.7.5. Construction.	. 15
2.7.6. Maintenance	. 15
2.8. The Measurement of Project Continuity	. 15
2.8.1. Cost	16
2.8.2. Time	16
2.8.3. Quality	16

CHAPTER III METHODOLOGY

3.1. Type of Observation	18
3.2. Area of Observation.	18
3.3. Time of Observation	18
3.4. Population and Sample of Observation	18
3.5. The Variable of Observation	19
3.5.1. Independent Variable	19
3.5.2. Dependent Variable	19
3.6. The Measurement Aspects of Observation	19
3.7. Research Realization.	22
3.8. Data Tabulation	23
3.9. Method of Testing Instruments	23
3.10. Data Analysis	25
3.10.1 Multiple Correlation Analysis	25
3.10.2. F Test	27
3.10.3. T Test	29
CHAPTER IV DATA ANALYSIS AND DISCUSSION	
4.1. Data of Respondents	33
4.1.1. Profession of Respondents	33
112 Age of Respondents	3/1

4.1.3. Experience of Respondents	34
4.1.4. Education Background of Respondents	35
4.2. Data of Projects	36
4.2.1. Budget of Projects	36
4.2.2. Number of Labors	37
4.2.3. Duration of Projects	38
4.3. Prerequisite Test	
4.3.1. Validity Test	39
4.3.2. Reliability Test	40
4.4. Analysis of Factors that Influence Project Continuity	41
4.4.1. Analysis of Accident Intensity in Construction Project	41
4.4.2. Analysis of Lost of Cost caused by Accident in	
Construction Project	42
4.4.3. Analysis of Lost of Work Time caused by Accident	
in Construction Project	44
4.5. Analysis of Respondents' Opinions about The Impact of Accident	
on Project Sustainability	45
4.5.1. Analysis of Influence Level of Accident Intensity towards	
Project Continuity	46
4.5.2. Analysis of Influence Level of Lost of Cost towards	
Project Continuity	46
4.5.3. Analysis of Influence Level of Lost of Work Time	
Towards Project Continuity	47
4.6 Analysis of Accident Intensity towards Project Continuity	48

4.6.1. Analysis of Accident Intensity towards Project Continuity	
by Using Correlation	49
4.6.2. Analysis of Accident Intensity towards Project Continuity	
by Using T Test	50
4.7. Analysis of Lost of Cost towards Project Continuity	50
4.7.1. Analysis of Lost of Cost towards Project Continuity	
by Using Correlation	51
4.7.2. Analysis of Lost of Cost towards Project Continuity	
by Using T Test	52
4.8. Analysis of Lost of Work Time towards Project Continuity	52
4.8.1. Analysis of Lost of Work Time towards Project Continuity	
by Using Correlation.	53
4.8.2. Analysis of Lost of Work Time towards Project Continuity	
by Using T Test	54
4.9. Analysis The Relationship between Accident Intensity, Lost of Cost, Lost	t
of Work Time and Project Continuity	55
CHAPTER V CONCLUSION AND SUGGESTION	
5.1. Conclusion	56
5.1.1. Analysis of Factors that Influence Project Continuity	56
5.1.2. Analysis of Respondents' Opinions about the Impact of Accident	t
on Project Sustainability	57
5.1.3. Analysis of Accident Intensity towards Project Continuity	57
5.1.4. Analysis of Lost of Cost by Accident towards	
Project Continuity	58

5.1.5. Analysis of Lost of Work Time by Accident towards	
Project Continuity	58
5.1.6. Impact Analysis of Accident Intensity, Lost of Cost,	
Lost of Work Time toward Project Continuity	
by Using F Test	59
5.2. Suggestion	60
References	
Appendix	

LIST OF TABLE

Table 4.1. Profession of Respondent	33
Table 4.2. Age of Respondent	34
Table 4.3. Experience of Respondent	35
Table 4.4. Education Background of Respondent	36
Table 4.5. Project's Budget	37
Table 4.6. Labors Amount	38
Table 4.7. Duration of Project	38
Table 4.8. Reliability Test Result	40
Table 4.9. Various of Accident on Construction Project	42
Table 4.10. Lost of Cost by Accident in Construction Project	43
Table 4.11. Lost of Work Time by Accident in Construction Project	45
Table 4.12. Effect of Accident Intensity towards Project Continuity	46
Table 4.13. Effect of Treatment Cost towards Project Continuity	47
Table 4.14. Effect of Lost of Work Time towards Project Continuity	48
Table 4.15. Correlation between Accident Intensity and	
Project Continuity	49
Table 4.16. Analysis of Accident Intensity toward	
Project Continuity by using T test	50
Table 4.17. Correlation between Lost of Cost by Accident and	
Project Continuity	51

Table 4.18. Analysis of Lost of Cost by Accident toward	
Project Continuity by Using T Test	52
Table 4.19. Correlations Between Lost of Work Time by Accident and	
Project Continuity	53
Table 4.20. Analysis of Lost of Work Time by Accident toward	
Project Continuity by Using T Test	54
Table 4.21. Analysis The Relationship between Accident Intensity,	
Lost of Cost, Lost of Work Time and Project Continuity	55

ABSTRACT

A STUDY OF THE IMPACT OF CONSTRUCTION ACCIDENTS ON THE PROJECT CONTINUITY, Kartika Irianthy Zebua, Student Number 11.13.13888, year of 2015, Construction Management, Civil Engineering International Program, Faculty of Engineering, Universitas Atma Jaya Yogyakarta.

Construction workers have significant portion in every engineering project. They build roads, houses and also repair and maintain public infrastructures. Construction workers have the highest possibility to experience accident, some of them experience fatal injuries during do their work in the project. The number of worker injury in Indonesia is one of the highest in ASEAN. Based on earliest BPJS data almost 32% the accident are happened at construction sector include all projects like buildings, roads, bridges, tunnels, etc. This fact clarify that labor safety need more attention, there are many factors that have to be considered to prevent the loss of accident. Based on that explanation, author is interested to investigate about the impact of construction accident toward project continuity.

Instrument used for this study is questionnaire which consists of three independent variable; Accident Intensity, Lost of Cost, Lost of Work time, and dependent variable about project continuity that has aim to measure the influence level of accident toward project continuity. Obtained data was analyzed using SPSS that consists of Percentage analysis, Mean analysis, and Pearson's Correlation analysis, T Test, and F Test.

From the result of data analysis showed that type of injuries from accidents that most often occur in construction projects is a surface injury. A type of injuries from accidents that require the highest medical costs in construction projects is bruised. A type of injury due to an accident that result the highest loss of working time in construction projects is bruised. There are 35.9% of respondent asses if the influence level of accident intensity towards project continuity is in neutral level. 32.8% of respondent asses if the influence level of lost of cost towards project continuity is in neutral level. 29.7% of respondent asses if the influence level of lost of work time towards project continuity is in influence level.

Key Words: project continuity, construction management, accident, Pearson's Correlation, questionnaire.