6.1. Kesimpulan

Dari perancangan sistem kendali peralatan listrik gedung ini dapat ditarik kesimpulan yakni sistem dapat berjalan dengan baik serta transmisi yang digunakan ialah RS 485 karena lebih tahan terhadap noise (gangguan) untuk kendali jarak jauh. Rancangan model pengendalian alat listrik ini menggunakan dua buah lampu untuk menguji dua channel DMX512. Spesifikasi teknis dari perancangan model alat pengendalian listrik berbasis mikrokontroler AT89S52 dengan standard protocol DMX512 ini antara lain:

- Jarak maksimum pengiriman data 1.2 cm.
- Baudrate yang digunakan sebesar 250000 bps.
- Connector yang digunakan XLR 3 Pin atau 5 Pin.
- Menggunakan tegangan listrik sebesar 5 Volt.
- Jumlah paket data DMX512 adalah 512 channel.
- Kuat arus maksimum sebesar 40A (BTA41).
- Dua buah output AC 220 Volt.
- Menggunakan dip switch 2 x8 untuk pemilihan 256 channel DMX512
- Menggunakan Freewere Maniolator 256 dalam pengendalian peralatan listrik
Data yang dikirimkan dari transmitter DMX512 berupa data A (+) yang masuk ke pin 6, data B (-) yang masuk ke pin 7 dan ground pada IC SN75176. Data yang masuk akan diolah dan hanya menjadi dua hasil desimal yaitu nol dan 128. Bila nol maka peralatan listrik akan dimatikan dan bila hasilnya 128 maka peralatan listrik akan dihidupkan. Data yang dikirimkan bersifat Half-Duplex karena tidak ada feedback dalam sistem pengendalian ini. Sistem pengendalian peralatan listrik pada ruangan dari suatu gedung dilakukan secara terpusat dari satu ruang pengendali, supaya memudahkan pengendalian untuk menghidupkan dan mematikan peralatan listrik.

6.2. Saran

Berdasarkan hasil penelitian yang telah dilakukan ada beberapa saran yang dapat diberikan untuk lebih menyempurnakan hasil penelitian ini, yakni:

a. Sebaiknya ada sistem dimmer agar dapat digunakan untuk pengendalian starting motor pada industri.

b. Agar lebih mudah dalam memasukkan alamat sebaiknya menggunakan keypad yang dipadukan dengan penampil LCD.

DAFTAR PUSTAKA

Budiarto, W., 2005, Perancangan Sistem dan Aplikasi Mikrokontroler, PT. Elex Media Komputindo, Jakarta.

54
LAMPIRAN 1

GAMBAR PCB LAYOUT RANGKAIAN
RECEIVER DAN DRIVER DMX 512
LAMPIRAN 2
TATA LETAK KOMPONEN RANGKAIAN
RECEIVER DAN DRIVER DMX 512
LAMPIRAN 4
FOTO RANGKAIAN RECEIVER
DAN DRIVER DMX 512
LAMPIRAN 5
PROGRAM LISTING RECEIVER
MANULATOR DMX 512

;Rudy Suryawan
;03 06 03926
;DMX 512 Receiver

;********** Inisialisasi data**************
ADDRESS EQU 7FH ;memori alamat dmx 512
CURBYTE EQU 7BH ;data byte #

;********** Intrupsi vektor ***************
ORG 00H ;alamat set dan reset
SJMP START
ORG 23H ;alamat intrupsi serial
SJMP REBYTE

;********** program utama ***************
CRG 30h ;alamat program utama dimulai
START:
SJMP SETUP ;set inisialisasi serial

RON:
MOV A, 30H ;masukkan nilai pada alamat 30h ke A
ANL A, #80H ;and nilai data dengan 80h

60
CJNZ A,#128,SATU ;bandingkan akumulator dengan 128d
CLR P2.6 ;nyalakan p2.6

SATU:
MOV A,#31h ;masukkan nilai pada alamat 30h ke A
ANL A,#80h ;and nilai data dengan 80h
CJNE A,#128,DUA ;bandingkan akumulator dengan 128d
CLR P2.7 ;nyalakan p2.7

DUA:
JMP RUN ;tunggu untuk proses looping sampai ada interupsi

------------------ Inisialisasi serial ------------------
SETUP:
MOV RO,#7Fh ;masukkan address ke R0
CLEAR:
MOV 8R0,#0
DJNZ RO,CLEAR
MOV PCON,#80h ;pengeset baud rate 250Kb (8 Mhz XTAL/32)
MOV SCON,#98h ;serial pada mode 2
MOV IE,#90h ;aktifkan intrupsi penerima serial

61
MOV ADDRESS,FO ;pengambilan data dari dip's
SJMP RUN ;Dalik ke label run

********** penerima data dma ******************

RECBYTE:

 PUSH PSW
 PUSH ACC
 CLR RI ;mokan data pada RI
 JB RBB,REC ;RBB=1 (start code),RBB=0 (break)
 MOV CURBYTE,$00H ;proses break
 MOV R1,$30H ;masukkan 30h ke R1
 MOV P2,$0FH ;masukkan OFFh ke P2 (reset p2)

SJMP OUTI ;keluar dari interrupt

REC:

 MOV A,CURBYTE ;spindahkan data ke akumulator
 CJNE A,$00H,RECD ;bandingkan A dgn 00H
 MOV A,SSUF ;spindahkan data yang diterima ke akumulator
 CJNE A,$00H,OUTI ;pengecekan jika byte = 0
 INC CURBYTE ;tambahkan data cur_byte dengan 1

SJMP OUTI

 62
RECD:
; menerima data
MOV A,CURBYTE
; masukkan data curbyte ke
akumulator
CJNE A,ADDRESS,NOTA
; bandingkan data akumulator dgn
data alamat
JMP OUTPUT
; panggil lebel output
NOTA:
INC CURBYTE
; masukkan data cur byte ke
akumulator
OUTI:
POP ACC
POP PSW
RETI
; looping intrupsi

;*************** OUTPUT BYTE ***********************

OUTPUT:
CJNE R1,#32h,BACA
; bandingkan R1 dengan 32h
JMP OUTI

BACA:
MOV @R1,SRUF
; pindahkan data serial ke R1
INC R1
; naikkan nilai R1
JMP OUTI

;*************** THE END ***********************

END
; END PROGRAM OF FILE

63
Features

- Compatible with MCS®-51 Products
- 9K Bytes of In-System Programmable (ISP) Flash Memory
 - Endurance: 10,000 Write/Erase Cycles
- 4.0V to 5.5V Operating Range
- Fully Static Operation: 0 Hz to 33 MHz
- Three-level Program Memory Lock
- 256 x 8-bit Internal RAM
- 32 Programmable I/O Lines
- Three 16-bit Timers/Counters
- Eight interrupt Sources
- Full Duplex UART Serial Channel
- Low-power Idle and Power-down Modes
- Interrupt Recovery from Power-down Mode
- Watchdog Timer
- Dual Data Pointer
- Power-off Flag
- Fast Programming Time
- Flexible ISP Programming (Byte and Page Mode)
- Green (Pb/Halide-free) Packaging Option

1. Description

The AT89S52 is a low-power, high-performance CMOS 8-bit microcontroller with 8K bytes of in-system programmable Flash memory. The device is manufactured using Atmel's high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with in-system programmable Flash on a monolithic chip, the Atmel AT89S52 is a powerful microcontroller which provides a highly-flexible and cost-effective solution to many embedded control applications.

The AT89S52 provides the following standard features: 8K bytes of Flash, 256 bytes of RAM, 32 I/O lines, Watchdog timer, two data pointers, three 16-bit timers/counters, a six-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and clock circuitry. In addition, the A189S52 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timers/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset.

AT89S52

8-bit Microcontroller with 8K Bytes In-System Programmable Flash

AT89S52

10140-MICRO-45B

64
2. Pin Configurations

2.1 40-lead PDIP

2.2 44-lead TQFP

2.3 44-lead FLCC

AT89S52

10100-0000C-858
3. Block Diagram
4. Pin Description

4.1 VCC
Supply voltage.

4.2 GND
Ground.

4.3 Port 0
Port 0 is an 8-bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL inputs. When 1's are written to port 0 pins, the pins can be used as high-impedance inputs. Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups. Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. External pull-ups are required during program verification.

4.4 Port 1
Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1's are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (Ih) because of the internal pull-ups.

In addition, P1.0 and P1.1 can be configured to be the timer/clock 2 external count input (P1.0/T2) and the timer/clock 2 trigger input (P1.1/T2EX), respectively, as shown in the following table.

Port 1 also receives the low-order address bytes during Flash programming and verification.

<table>
<thead>
<tr>
<th>Port Pin</th>
<th>Alternate Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1.0</td>
<td>T2 (external count input to Timer/Counter 2), clock-out</td>
</tr>
<tr>
<td>P1.1</td>
<td>T2EX (Timer/Counter 2 capture/reload trigger and direction control)</td>
</tr>
<tr>
<td>P1.5</td>
<td>MOSI (used for In-System Programming)</td>
</tr>
<tr>
<td>P1.6</td>
<td>MISO (used for In-System Programming)</td>
</tr>
<tr>
<td>P1.7</td>
<td>SCK (used for In-System Programming)</td>
</tr>
</tbody>
</table>

4.5 Port 2
Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1's are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (Ih) because of the internal pull-ups.

Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when writing 1's. During accesses to external data memory that use 8-bit addresses (MOVX @ R1), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.
4.6 Port 3

Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1’s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_H) because of the pull-ups.

Port 3 receives some control signals for Flash programming and verification.

Port 3 also serves the functions of various special features of the AT89S52, as shown in the following table.

<table>
<thead>
<tr>
<th>Port Pin</th>
<th>Alternate Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3.0</td>
<td>RXD (serial input)</td>
</tr>
<tr>
<td>P3.1</td>
<td>TXD (serial output)</td>
</tr>
<tr>
<td>P3.2</td>
<td>INT0 (external interrupt 0)</td>
</tr>
<tr>
<td>P3.3</td>
<td>INT1 (external interrupt 1)</td>
</tr>
<tr>
<td>P3.4</td>
<td>T0 (timer 0 external input)</td>
</tr>
<tr>
<td>P3.5</td>
<td>T1 (timer 1 external input)</td>
</tr>
<tr>
<td>P3.6</td>
<td>WR (external data memory write strobe)</td>
</tr>
<tr>
<td>P3.7</td>
<td>RT (external data memory read strobe)</td>
</tr>
</tbody>
</table>

4.7 RST

Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives high for 98 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address $08H$) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled.

4.8 ALE/PROG

Address Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.

In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location $08H$. With the bit set, ALE is active only during a MOVC or MOVC instruction. Otherwise, the pin is weakly pulled high.

Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.
4.9 PSEN

Program Store Enable (PSEN) is the read strobe to external program memory.

When the AT89S52 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.

4.10 EA/VPP

External Access Enable (EA) must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset.

EA should be strapped to Vcc for internal program executions.

This pin also receives the 12-volt programming enable voltage (Vpp) during Flash programming.

4.11 XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

4.12 XTAL2

Output from the inverting oscillator amplifier.

5. Special Function Registers

A map of the on-chip-memory area called the Special Function Register (SFR) space is shown in Table 5-1.

Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read activities to these addresses will in general return random data, and write accesses will have an indeterminate effect.

User software should not write to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

Timer 2 Registers: Control and status bits are contained in registers T2CON (shown in Table 5-2) and T2MOD (shown in Table 10-2) for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in 16-bit capture mode or 16-bit auto-reload mode.

Interrupt Registers: The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the six interrupt sources in the IP register.

AT89S52
Table 5-1. AT89S52 SFR Map and Reset Values

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>00H</td>
<td>B</td>
<td>00000000</td>
</tr>
<tr>
<td>01H</td>
<td>0</td>
<td>0FFH</td>
</tr>
<tr>
<td>02H</td>
<td>0</td>
<td>0FFH</td>
</tr>
<tr>
<td>03H</td>
<td>ACC</td>
<td>00000000</td>
</tr>
<tr>
<td>04H</td>
<td>0</td>
<td>0FFH</td>
</tr>
<tr>
<td>05H</td>
<td>PSW</td>
<td>00000000</td>
</tr>
<tr>
<td>06H</td>
<td>0</td>
<td>0FFH</td>
</tr>
<tr>
<td>07H</td>
<td>TCON</td>
<td>XXXX0000</td>
</tr>
<tr>
<td>08H</td>
<td>TR/MOD</td>
<td>00000000</td>
</tr>
<tr>
<td>09H</td>
<td>RCAPSEL</td>
<td>00000000</td>
</tr>
<tr>
<td>0AH</td>
<td>RCAPSH</td>
<td>00000000</td>
</tr>
<tr>
<td>0BH</td>
<td>TL0</td>
<td>00000000</td>
</tr>
<tr>
<td>0CH</td>
<td>TH0</td>
<td>00000000</td>
</tr>
<tr>
<td>0DH</td>
<td>0</td>
<td>0FFH</td>
</tr>
<tr>
<td>0EH</td>
<td>P3</td>
<td>11111111</td>
</tr>
<tr>
<td>0FH</td>
<td>IE</td>
<td>00000000</td>
</tr>
<tr>
<td>10H</td>
<td>AUXR</td>
<td>XXXX0000</td>
</tr>
<tr>
<td>11H</td>
<td>SBUF</td>
<td>XXXX0000</td>
</tr>
<tr>
<td>12H</td>
<td>P1</td>
<td>11111111</td>
</tr>
<tr>
<td>13H</td>
<td>TMOD</td>
<td>00000000</td>
</tr>
<tr>
<td>14H</td>
<td>TL1</td>
<td>00000000</td>
</tr>
<tr>
<td>15H</td>
<td>TH1</td>
<td>00000000</td>
</tr>
<tr>
<td>16H</td>
<td>AUXR</td>
<td>XXXX0000</td>
</tr>
<tr>
<td>17H</td>
<td>0</td>
<td>0FFH</td>
</tr>
<tr>
<td>18H</td>
<td>P0</td>
<td>11111111</td>
</tr>
<tr>
<td>19H</td>
<td>SP</td>
<td>00000111</td>
</tr>
<tr>
<td>1AH</td>
<td>DPOL</td>
<td>00000000</td>
</tr>
<tr>
<td>1BH</td>
<td>DP0H</td>
<td>00000000</td>
</tr>
<tr>
<td>1CH</td>
<td>DPHL</td>
<td>00000000</td>
</tr>
<tr>
<td>1DH</td>
<td>DPHH</td>
<td>00000000</td>
</tr>
<tr>
<td>1EH</td>
<td>PCON</td>
<td>00000000</td>
</tr>
</tbody>
</table>

AT89S52

1995© MOSO-609

70
Table 5-2. T2CON - Timer/Counter 2 Control Register

<table>
<thead>
<tr>
<th>Bit Address</th>
<th>TF2</th>
<th>EXF2</th>
<th>RCLK</th>
<th>TCLK</th>
<th>EXEN2</th>
<th>T2I2</th>
<th>C/T2</th>
<th>CP/REL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Symbol	Function
TF2 | Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set even if either RCLK = 1 or TCLK = 1.

EXF2 | Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1.
When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. (If CP/REL = 0 causes an interrupt in yield/stop mode, EXEN2 = 1).

RCLK | Receive clock enable. When set, causes the serial port to use Timer 2 overflow pulses to its receive clock in serial port Mode 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.

TCLK | Transmit clock enable. When set, causes the serial port to use Timer 2 overflow pulses to its transmit clock in serial port Mode 1 and 3. TCLK = 0 causes Timer 1 overflow to be used for the transmit clock.

EXEN2 | Timer 2 overflow enable. When set, allows capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.

T2I2 | Start/stop control for Timer 2. T2I2 = 1 starts the timer.

C/T2 | Capture/Timer select. C/T2 = 0 for timer function. C/T2 = 1 for external event counter (falling edge triggered).

CP/REL2 | Capture/Reload select. CP/REL2 = 0 causes captures to occur on negative transitions at T2EX if EXEN2 = 1. CP/REL2 = 1 causes automatic reloads to occur when Timer 2 overflows or negative transitions occur at T2EX when EXEN2 = 0. When either RCLK or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.

AT89S52

18160-08CH0-058
Table 9-3. AUXR: Auxiliary Register

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIDLE</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>DISRTO</td>
<td>–</td>
<td>–</td>
<td>DISALE</td>
</tr>
<tr>
<td>Reserved for future expansion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Operating Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIE is emitting at a constant rate of 1/6 the oscillator frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIE is active only during a MOVX or MOVC instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RESET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset pin is driven High after WDT timer out</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset pin is Input only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIDLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WIDLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WDT continues to count in IDLE mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WDT hails counting in IDLE mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dual Data Pointer Registers: To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers are provided: DP0 at 82H-8FH address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPH = 1 selects DP1. The user should **ALWAYS** initialize the DPH bit to the appropriate value before accessing the respective Data Pointer Register.

Power Off Flag: The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to '1' during power up. It can be set and reset under software control and is not affected by reset.

Table 5-4. AUXR1: Auxiliary Register

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved for future expansion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selects DPTR Registers DP0L, DP0H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selects DPTR Registers DP1L, DP1H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19950. W010-580

72
6. Memory Organization

MCS-51 devices have a separate address space for Program and Data Memory. Up to 64K bytes each of external Program and Data Memory can be addressed.

6.1 Program Memory

If the EA pin is connected to GND, all program fetches are directed to external memory.

On the AT89S52, if EA is connected to VCC, program fetches to addresses 0000H through 1FFFH are directed to internal memory and fetches to addresses 2000H through FFFFH are to external memory.

6.2 Data Memory

The AT89S52 implements 256 bytes of on-chip RAM. The upper 128 bytes occupy a parallel address space to the Special Function Registers. This means that the upper 128 bytes have the same addresses as the SFR space but are physically separate from SFR space.

When an instruction accesses an internal location above address 7FH, the address mode used in the instruction specifies whether the CPU accesses the upper 128 bytes of RAM or the SFR space. Instructions which use direct addressing access the SFR space.

For example, the following direct addressing instruction accesses the SFR at location 0A0H (which is P2).

MOV A,A0H, rdata

Instructions that use indirect addressing access the upper 128 bytes of RAM. For example, the following indirect addressing instruction, where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).

MOV 0R0, rdata

Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space.

7. Watchdog Timer (One-time Enabled with Reset-out)

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upsets. The WDT consists of a 14-bit counter and the Watchdog Timer Reset (WDTRST) SFR. The WDT is defaulted to disable from exiting reset. To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, it will increment every machine cycle while the oscillator is running. The WDT timeout period is dependent on the external clock frequency. There is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST pin.

7.1 Using the WDT

To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, the user needs to service it by writing 01EH and 0E1H to WDTRST to avoid a WDT overflow. The 14-bit counter overflows when it reaches 16383 (FFFFH), and this will reset the device. When the WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycles. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write-only register. The WDT counter cannot be read or written. When
WDT overflows, it will generate an output RESET pulse at the RST pin. The RESET pulse duration is 96xTOSC, where TOSC = 1/FC5C. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

7.2 WDT During Power-down and Idle

In Power-down mode the oscillator stops, which means the WDT also stops. While in Power-down mode, the user does not need to service the WDT. There are two methods of exiting Power-down mode; by a hardware reset or via a level-activated external interrupt which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally does whenever the AT89S52 is reset. Exiting Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service for the interrupt used to exit Power-down mode.

To ensure that the WDT does not overflow within a few states of exiting Power-down, it is best to reset the WDT just before entering Power-down mode.

Before going into the IDLE mode, the WDIDLE bit in SFR AUXR is used to determine whether the WDT continues to count if enabled. The WDT keeps counting during IDLE (WDIDLE bit = 0) as the default state. To prevent the WDT from resetting the AT89S52 while in IDLE mode, the user should always set up a timer that will periodically exit IDLE, service the WDT, and reenter IDLE mode.

With WDIDLE bit enabled, the WDT will stop to count in IDLE mode and resumes the count upon exit from IDLE.

8. UART

The UART in the AT89S52 operates the same way as the UART in the AT89C51 and AT89C52. For further information on the UART operation, please click on the document link below:

9. Timer 0 and 1

Timer 0 and Timer 1 in the AT89S52 operate the same way as Timer 0 and Timer 1 in the AT89C51 and AT89C52. For further information on the timers’ operation, please click on the document link below:

10. Timer 2

Timer 2 is a 16-bit Timer/Counter that can operate as either a timer or an event counter. The type of operation is selected by bit CT2 in the SFR T2CON (shown in Table 9-2). Timer 2 has three operating modes: capture, auto-reload (up or down counting), and baud rate generator. The mode is selected by bits T2CN0-T2CN2, as shown in Table 10-1. Timer 2 consists of two 8-bit registers, TH2 and TL2. In the Timer function, the TH2 register is incremented every machine cycle. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency.

<table>
<thead>
<tr>
<th>Table 10-1.</th>
<th>Timer 2 Operating Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCLK + TCLK</td>
<td>CPU/REL</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

In the Capture function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T2. In this function, the external input is sampled during SS2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during SS1 of the cycle following the one in which the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle.

10.1 Capture Mode

In the capture mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 is a 16-bit timer or counter, which upon overflow sets bit TF2 in T2CON. This bit can then be used to generate an interrupt. If EXEN = 1, Timer 2 performs the same operation, but x1-to-0 transition at external input T2EX also causes the current value in TH2 and TL2 to be captured into RCAP2H and PCAP2L, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can generate an interrupt. The capture mode is illustrated in Figure 10-1.

0.2 Auto-reload (Up or Down Counter)

Timer 2 can be programmed to count up or down when configured in its 16-bit auto-reload mode. This feature is invoked by the DCEN (Down Counter Enable) bit located in the SFR T2MOD (see Table 10-2). Upon reset, the DCEN bit is set to 0 so that timer 2 will default to count up. When DCEN is set, Timer 2 can count up or down, depending on the value of the T2EX pin.

AT89S52
Figure 10-1. Timer in Capture Mode

Table 10-2. T2MOD — Timer 2 Mode Control Register

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Not implemented, reserved for future</td>
</tr>
<tr>
<td>T2OE</td>
<td>Timer 2 Output Enable bit</td>
</tr>
<tr>
<td>DCEN</td>
<td>When set, this bit allows Timer 2 to be configured as an up/down counter</td>
</tr>
</tbody>
</table>

Figure 10-2 shows Timer 2 automatically counting up when DCEN = 0. In this mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 counts up to 0FFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16-bit value in RCAP2H and RCAP2L. The values in Timer in Capture Mode RCAP2H and RCAP2L are preset by software. If EXEN2 = 1, a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Both the TF2 and EXF2 bits can generate an interrupt if enabled.

Setting the DCEN bit enables Timer 2 to count up or down, as shown in Figure 10-2. In this mode, the T2EX pin controls the direction of the count. A logic 1 at T2EX makes Timer 2 count up. The timer will overflow at 0FFFFH and set the TF2 bit. This overflow also causes the 16-bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, T1H2 and T1L2, respectively.

A logic 0 at T2EX makes Timer 2 count down. The timer underflows when T1H2 and T1L2 equal the values stored in RCAP2H and RCAP2L. The underflow sets the TF2 bit and causes 0FFFFH to be reloaded into the timer registers.

The EXF2 bit toggles whenever Timer 2 overflows or underflows and can be used as a 17'th bit of resolution. In this operating mode, EXF2 does not flag an interrupt.
11. Baud Rate Generator

Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Table 5-2). Note that the baud rates for transmit and receive can be different if Timer 2 is used for the receiver or transmitter and Timer 1 is used for the other function. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 11-1.

The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

The baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate according to the following equation.

\[\text{Modes 1 and 3 Baud Rates} = \frac{\text{Timer 2 Overflow Rate}}{16} \]

The Timer can be configured for either timer or counter operation. In most applications, it is configured for timer operation (CNT/TE = 1). The timer operation is different for Timer 2 when it is used as a baud rate generator. Normally, as a timer, it increments every machine cycle (at 1/12 the oscillator frequency). As a baud rate generator, however, it increments every state time (at 1/2 the oscillator frequency). The baud rate formula is given below.

\[\text{Baud Rate} = \frac{\text{Oscillator Frequency}}{32 \times (65536 - \text{RCAP2H} \times \text{RCAP2L})} \]

where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

Timer 2 as a baud rate generator is shown in Figure 11-1. This figure is valid only if RCLK or TCLK = 1 in T2CON. Note that a rollover in TH2 does not set TF2 and will not generate an interrupt. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus, when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt.

Note that when Timer 2 is running (TR2 = 1) as a timer in the baud rate generator mode, TH2 or TL2 should not be read from or written to. Under these conditions, the Timer is incremented every state time, and the results of a read or write may not be accurate. The RCAP2 registers may be read but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The Timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers.
12. Programmable Clock Out

A 50% duty cycle clock can be programmed to come out on P1.0, as shown in Figure 12-1. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed to input the external clock for Timer/Counter 2 or to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz (for a 16-MHz operating frequency).

To configure the Timer/Counter 2 as a clock generator, bit C/T2 (T2CON.1) must be cleared and bit T2OE (T2MOD.1) must be set. Bit TR2 (T2CON.2) starts and stops the timer.

The clock-out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L), as shown in the following equation.

\[
\text{Clock-Out Frequency} = \frac{\text{Oscillator Frequency}}{4 \times (\text{RCAP2H}, \text{RCAP2L})}
\]

In the clock-out mode, Timer 2 rollovers will not generate an interrupt. The behavior is similar to when Timer 2 is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and clock-out frequencies cannot be determined independently from one another since they both use RCAP2H and RCAP2L.

AT89S52
13. Interrupts

The AT8952 has a total of six interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (Timers 0, 1, and 2), and the serial port interrupt. These interrupts are all shown in Figure 13-1.

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once.

Note that Table 13-1 shows that bit position IE.6 is unimplemented. User software should not write a 1 to this bit position, since it may be used in future AT89 products.

Timer 2 interrupt is generated by the logical OR of the TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and then will have to be cleared in software.

The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S9P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag, TF2, is set at S9P2 and is polled in the same cycle in which the timer overflows.
Table 13-1. Interrupt Enable (IE) Register

<table>
<thead>
<tr>
<th>(MSB)</th>
<th>ET2</th>
<th>ES</th>
<th>ET1</th>
<th>EX1</th>
<th>ET0</th>
<th>EX0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA</td>
<td>–</td>
<td></td>
<td>ET2</td>
<td>ES</td>
<td>ET1</td>
<td>EX1</td>
</tr>
</tbody>
</table>

Enable Bit = 1 enables the interrupt.
Enable Bit = 0 disables the interrupt.

Symbol	Position	Function
EA | IE.7 | Disable all interrupts. If EA = 0, any interrupt is acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.
– | IE.6 | Reserved.
ET2 | IE.5 | Timer 2 interrupt enable bit.
ES | IE.4 | Serial Port interrupt enable bit.
ET1 | IE.3 | Timer 1 interrupt enable bit.
EX1 | IE.2 | External interrupt 1 enable bit.
ET0 | IE.1 | Timer 0 interrupt enable bit.
EX0 | IE.0 | External interrupt 0 enable bit.

User software should never write 1s to reserved bits, because they may be used in future AT89 products.

Figure 13-1. Interrupt Sources

![Interrupt Sources Diagram]

AT89S52
14. Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 16-1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 16-2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

15. Idle Mode

In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.

Note that when idle mode is terminated by a hardware reset, the device normally resumes program execution from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when idle mode is terminated by a reset, the instruction following the one that invokes idle mode should not write to a port pin or to external memory.

16. Power-down Mode

In the Power-down mode, the oscillator is stopped, and the instruction that invokes Power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power-down mode is terminated. Exit from Power-down mode can be initiated either by a hardware reset or by an enabled external interrupt. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before Vcc is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

Figure 16-1. Oscillator Connections

Note: 1. C1, C2 = 30 pF ± 10 pF for Crystals
 = 40 pF ± 10 pF for Ceramic Resonators
17. Program Memory Lock Bits

The AT89S52 has three lock bits that can be left unprogrammed (U) or can be programmed (P) to obtain the additional features noted in Table 17-1.

Table 17-1. Lock Bit Protection Modes

<table>
<thead>
<tr>
<th>Program Lock Bits</th>
<th>LE1</th>
<th>LE2</th>
<th>LE3</th>
<th>Protection Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>No program lock features</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>U</td>
<td>U</td>
<td>MOV/c instructions executed from external program memory are disabled, if latch is set; latch overflow is disabled</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>P</td>
<td>U</td>
<td>Same as mode 2, but verify is also disabled</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>Same as mode 3, but external execution is also disabled</td>
</tr>
</tbody>
</table>

When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value and holds that value until reset is activated. The latch value of EA must agree with the current logic level at that pin in order for the device to function properly.
18. Programming the Flash – Parallel Mode

The AT89S52 is shipped with its on-chip Flash memory array ready to be programmed. The programming interface needs a high-voltage (12-volt) program enable signal and is compatible with conventional third-party Flash or EPROM programmers.

The AT89S52 code memory array is programmed byte-by-byte.

Programming Algorithm: Before programming the AT89S52, the address, data, and control signals should be set up according to the “Flash Programming Modes” (Table 22-1) and Figure 22-1 and Figure 22-2. To program the AT89S52, take the following steps:

1. Input the desired memory location on the address lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise \(V_{CC} \) to 12V.
5. Pulse ALE/PROG once to program the Flash array or the lock bits. The byte-write cycle is self-timed and typically takes no more than 50 \(\mu \)s. Repeat steps 1 through 4, changing the address and data for the entire array, until the end of the object file is reached.

Data Poling: The AT89S52 features Data Poling to indicate the end of a byte write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written data on P0.7. Once the write cycle has been completed, the data is valid on all outputs, and the next cycle may begin. Data Poling may begin any time after a write cycle has been initiated.

Ready/Busy: The progress of byte programming can also be monitored by the RDY/ BUSY output signal. P3.0 is pulled high after ALE goes high during programming to indicate BUSY. P3.0 is pulled high again when programming is done to indicate READY.

Program Verify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The status of the individual lock bits can be verified directly by reading them back.

Reading the Signature Bytes: The signature bytes are read in the same procedure as a normal verification of locations 0000H, 1000H, and 2000H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows:

- (0000H) = 1EH indicates manufactured by Atmel
- (1000H) = 00H indicates AT89S52
- (2000H) = 06H

Chip Erase: In the parallel programming mode, a chip erase operation is initiated by using the proper combination of control signals and by pulling ALE/PROG low for a duration of 200 ns - 500 ns.

In the serial programming mode, a chip erase operation is initiated by issuing the Chip Erase instruction. In this mode, the erase is split-timed and takes about 500 ms.

During chip erase, a serial read from any address location will return 00H at the data output.
19. Programming the Flash – Serial Mode

The Code memory array can be programmed using the serial ISP interface while RST is pulled to \(V_{cc} \). The serial interface consists of pins SCK, MOSI (input) and MISO (output). After RST is set high, the Programming Enable instruction needs to be executed first before other operations can be executed. Before a re-programming sequence can occur, a Chip Erase operation is required.

The Chip Erase operation turns the content of every memory location in the Code array into FFH.

Either an external system clock can be supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The maximum serial clock (SCK) frequency should be less than \(1/16 \) of the crystal frequency. With a 33 MHz oscillator clock, the maximum SCK frequency is 2 MHz.

20. Serial Programming Algorithm

To program and verify the AT89S52 in the serial programming mode, the following sequence is recommended:

1. Power-up sequence:
 a. Apply power between VCC and GND pins.
 b. Set RST pin to "H".

2. If a crystal is not connected across pins XTAL1 and XTAL2, apply a 3 MHz to 33 MHz clock to XTAL1 pin and wait for at least 10 milliseconds.

3. Enable serial programming by sending the Programming Enable serial instruction to pin MOSI/PI.5. The frequency of the shift clock supplied at pin SCK/PI.7 needs to be less than the CPU clock at XTAL1 divided by 16.

4. The Code array is programmed one byte at a time in either the Byte or Page mode. The write cycle is self-timed and typically takes less than 0.5 ms at 5V.

5. Any memory location can be verified by using the Read instruction which returns the content at the selected address of serial output MISO/PI.6.

6. At the end of a programming session, RST can be set low to commence normal device operation.

Power-off sequence (if needed):

1. Set XTAL1 to "L" (if a crystal is not used).
2. Set RST to "L".
3. Turn \(V_{cc} \) power off.

Data Polling: The Data Polling feature is also available in the serial mode. In this mode, during a write cycle, an attempted read of the last byte written will result in the complement of the MSB of the serial output byte on MISO.

1. Serial Programming Instruction Set

The Instruction Set for Serial Programming follows a 4-byte protocol and is shown in Table 24-1.

| AT89S52 | 1910D-MC50-056 | 85 |
22. Programming Interface – Parallel Mode

Every code byte in the Flash array can be programmed by using the appropriate combination of control signals. The write operation cycle is self-timed and once initiated, will automatically time itself to completion.

Most major worldwide programming vendors offer support for the Atmel AT89 microcontroller series. Please contact your local programming vendor for the appropriate software revision.

Table 22-1: Flash Programming Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>VCC</th>
<th>RST</th>
<th>PSEN</th>
<th>EPC/PROG</th>
<th>VPROG</th>
<th>P2.6</th>
<th>P2.7</th>
<th>P3.3</th>
<th>P3.5</th>
<th>P3.7</th>
<th>P3.7-0</th>
<th>P2-6-0</th>
<th>P1.7-0</th>
<th>Value</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write Code Data</td>
<td>5V</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>DOUT</td>
<td>A12-8</td>
<td>A7-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read Code Data</td>
<td>5V</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>DOUT</td>
<td>A12-8</td>
<td>A7-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write Lock Bit 1</td>
<td>5V</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td>12V</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write Lock Bit 2</td>
<td>5V</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td>12V</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write Lock Bit 3</td>
<td>5V</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td>12V</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read Lock Bits 1, 2, 3</td>
<td>5V</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>p8.2</td>
<td>P8.3</td>
<td>P8.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip Erase</td>
<td>5V</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td>12V</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secure Erase ID</td>
<td>5V</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>12H</td>
<td>X</td>
<td>X052</td>
<td>00H</td>
<td></td>
</tr>
<tr>
<td>Read Device ID</td>
<td>5V</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>52H</td>
<td>X</td>
<td>X001</td>
<td>00H</td>
<td></td>
</tr>
<tr>
<td>Read Secure ID</td>
<td>5V</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>06H</td>
<td>X</td>
<td>X070</td>
<td>00H</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Each PROG pulse is 200 ns - 500 ns for Chip Erase.
2. Each PROG pulse is 20 ns - 500 ns for Write Code Data.
3. Each PROG pulse is 200 ns - 500 ns for Write Lock Bits.
4. RST/CSY signal is output on P3.0 during programming.
5. X = don’t care.
Figure 22-1. Programming the Flash Memory (Parallel Mode)

Figure 22-2. Verifying the Flash Memory (Parallel Mode)

AT89S52
23. Flash Programming and Verification Characteristics (Parallel Mode)

Symbol	Parameter	Min	Max	Units
\(V_{PP} \) | Programming Supply Voltage | 11.5 | 12.5 | V
\(I_{PP} \) | Programming Supply Current | 10 | | mA
\(I_{CC} \) | VCC Supply Current | 30 | | mA
\(f_{O.C.L.} \) | Oscillator Frequency | 3 | 33 | MHz
\(t_{MAX} \) | Address Setup to PROG Low | 48 | | t_{CL,CL}
\(t_{HIGH} \) | Address Hold After PROG | 48 | | t_{CL,CL}
\(t_{DATA} \) | Data Setup to PROG Low | 48 | | t_{CL,CL}
\(t_{DHL} \) | Data Hold After PROG | 48 | | t_{CL,CL}
\(t_{P.7} \) | P2.7 (ENABLE) High to \(V_{PP} \) | 48 | | t_{CL,CL}
\(t_{HSO} \) | \(V_{SS} \) Setup to PROG Low | 10 | | \(\mu \)s
\(t_{HS1} \) | \(V_{SS} \) Hold After PROG | 10 | | \(\mu \)s
\(t_{PWW} \) | PROG Writeln | 0.2 | 1 | \(\mu \)s
\(t_{A} \) | Address to Data Valid | 48 | | t_{CL,CL}
\(t_{DLY} \) | ENABLE Low to Data Valid | 48 | | t_{CL,CL}
\(t_{PD} \) | Data Post After ENABLE | 0 | | t_{CL,CL}
\(t_{P.8} \) | PROG High to BUST LOW | 1.0 | | \(\mu \)s
\(t_{WB} \) | Byte Write Cycle Time | 50 | | \(\mu \)s

Figure 23-1. Flash Programming and Verification Waveforms – Parallel Mode

![Waveform Diagram]

Synthesis: MCHS-692
4. Flash Programming and Verification Waveforms – Serial Mode

Figure 24-L: Serial Programming Waveforms

AT89S52
<table>
<thead>
<tr>
<th>Instruction</th>
<th>Instruction Format</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming Enable</td>
<td>1010 1100 0101 0011</td>
<td>xxxx xxxx</td>
<td>xxxx xxxx</td>
<td>xxxx xxxx</td>
<td>0110 1001 (Output on MOSI)</td>
<td>Enable Serial Programming while RST is high</td>
</tr>
<tr>
<td>Chip Erase</td>
<td>1010 1100</td>
<td>100x xxxx</td>
<td>xxxx xxxx</td>
<td>xxxx xxxx</td>
<td>Chip Erase Flash memory array</td>
<td></td>
</tr>
<tr>
<td>Read Program Memory (Byte Mode)</td>
<td>0010 0000</td>
<td>xxxxxxxx</td>
<td>xxxx xxxx</td>
<td>xxxx xxxx</td>
<td>Read data from Program memory in the byte mode</td>
<td></td>
</tr>
<tr>
<td>Write Program Memory (Byte Mode)</td>
<td>0100 0000</td>
<td>xxxxxxxx</td>
<td>xxxx xxxx</td>
<td>xxxx xxxx</td>
<td>Write data to Program memory in the byte mode</td>
<td></td>
</tr>
<tr>
<td>Write Lock Bits</td>
<td>0100 1100</td>
<td>1110 10xx</td>
<td>xxxx xxxx</td>
<td>xxxx xxxx</td>
<td>Write Lock bits. See Note (1)</td>
<td></td>
</tr>
<tr>
<td>Read Lock Bit</td>
<td>0010 0100</td>
<td>xxxx xxxx</td>
<td>xxxx xxxx</td>
<td>xxxx xxxx</td>
<td>Read back current status of the lock bits (a programmed lock bit reads back as a "1")</td>
<td></td>
</tr>
<tr>
<td>Read Signature Bytes</td>
<td>0010 1000</td>
<td>xxxxxxxx</td>
<td>xxxx xxxx</td>
<td>xxxx xxxx</td>
<td>Read Signature Byte</td>
<td></td>
</tr>
<tr>
<td>Read Program Memory (Page Mode)</td>
<td>0011 0000</td>
<td>xxxxxxxx</td>
<td>Byte 0</td>
<td>Byte 1... Byte 255</td>
<td>Read data from Program memory in the Page Mode (256 bytes)</td>
<td></td>
</tr>
<tr>
<td>Write Program Memory (Page Mode)</td>
<td>0101 0000</td>
<td>xxxxxxxx</td>
<td>Byte 0</td>
<td>Byte 1... Byte 255</td>
<td>Write data to Program memory in the Page Mode (256 bytes)</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. B1 = 0, B2 = 0 → Mode 1, no lock protection
 B1 = 0, B2 = 1 → Mode 2, lock bit 1 activated
 B1 = 1, B2 = 0 → Mode 3, lock bit 2 activated
 B1 = 1, B2 = 1 → Mode 4, lock bit 3 activated

Each of the lock bit modes needs to be activated sequentially before Mode 4 can be executed.

After Reset signal is high, SCK should be low for at least 64 system clocks before it goes high to clock in the enable data bytes. No pulsing of Reset signal is necessary. SCK should be no faster than 1/16 of the system clock at XTAL1.

For Page Read/Write, the data always starts from byte 0 to 255. After the command byte and upper address byte and latched, each byte thereafter is treated as data until all 256 bytes are shifted in/out. Then the next instruction will be ready to be decoded.
25. Serial Programming Characteristics

Figure 25-1. Serial Programming Timing

Table 25-1. Serial Programming Characteristics, T_A = -40°C to 85°C, V_DD = 4.0 - 5.5V (Unless Otherwise Noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>fOSC</td>
<td>Oscillator Frequency</td>
<td>3</td>
<td>33</td>
<td>ns</td>
<td>MHz</td>
</tr>
<tr>
<td>tDCL</td>
<td>Oscillator Period</td>
<td>20</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>tPWH</td>
<td>SCK Pulse Width High</td>
<td>8 tCL</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>tPLH</td>
<td>SCK Pulse Width Low</td>
<td>8 tCL</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>tSHL</td>
<td>MOSI Setup to SCK High</td>
<td>tCL</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>tSHH</td>
<td>MOSI Hold after SCK High</td>
<td>2 tCL</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>tLOV</td>
<td>SCK Low to MSO Valid</td>
<td>16</td>
<td>16</td>
<td>32</td>
<td>ns</td>
</tr>
<tr>
<td>tRAS</td>
<td>Chip Erase Instruction Cycle Time</td>
<td>500</td>
<td>500</td>
<td>ms</td>
<td>ms</td>
</tr>
<tr>
<td>tWBC</td>
<td>Serial Byte Write Cycle Time</td>
<td>64 tCL = 400</td>
<td>pS</td>
<td>pS</td>
<td>pS</td>
</tr>
</tbody>
</table>

AT89S52
26. Absolute Maximum Ratings*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Operating Temperature</th>
<th>Storage Temperature</th>
<th>Voltage on Any Pin</th>
<th>DC Output Current</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-55°C to +125°C</td>
<td>-65°C to +150°C</td>
<td>-4.0V to +4.0V</td>
<td>15.0 mA</td>
</tr>
</tbody>
</table>

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

27. DC Characteristics

The values shown in this table are valid for $T_A = 40°C$ to 85°C and $V_{CC} = 4.0V$ to 5.5V, unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IL}</td>
<td>Input Low Voltage</td>
<td>(Except ED)</td>
<td>-0.5</td>
<td>0.2 V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>Input High Voltage</td>
<td>(Except V_{IH} for ED)</td>
<td>0.5</td>
<td>0.2 V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage</td>
<td>$I_{OH} = 1.6 mA$</td>
<td>0.45</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>$V_{OH,1}$</td>
<td>Output Low Voltage</td>
<td>(Port 1, 2, 3)</td>
<td>0.45</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>$V_{OH,2}$</td>
<td>Output High Voltage</td>
<td>(Ports 1, 2, 3, A, B, C)</td>
<td>2.4</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>I_{OH}</td>
<td>Output High Voltage</td>
<td>(Port in External Bus Mode)</td>
<td>0.9 V_{CC}</td>
<td>0.25 V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>I_{OL}</td>
<td>Logical 0 Input Current</td>
<td>Ports 1, 2, 3</td>
<td>0.9 V_{CC}</td>
<td>0.3 V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>I_{ILO}</td>
<td>Logical 1 to 0 Transition Current</td>
<td>(Ports 1, 2, 3)</td>
<td>20</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>I_{IHI}</td>
<td>Input High-impedance Current</td>
<td>Port 0, ED</td>
<td>0.45 V_{CC}</td>
<td>0.4 V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>I_{PD}</td>
<td>Power Supply Current</td>
<td>Power Down Mode</td>
<td>25</td>
<td>6.5</td>
<td>mA</td>
</tr>
<tr>
<td>I_{EA}</td>
<td>Power Supply Current</td>
<td>Power-down Mode (1)</td>
<td>5.5</td>
<td>5.5</td>
<td>mA</td>
</tr>
</tbody>
</table>

Notes:
1. Under steady state (non-transient) conditions, I_{PD} must be externally limited as follows:
 - Maximum I_{PD} for 16-bit ports: 10 mA
 - Maximum I_{PD} for 8-bit ports:
 - Port 0: 26 mA
 - Ports 1, 2, 3: 15 mA
 - Maximum total I_{PD} for all output pins: 71 mA
 - If I_{PD} exceeds the test condition, V_{CC} may exceed the rated specification. Pins are not guaranteed to sink current greater than the listed test conditions.
2. Minimum V_{CC} for Power-down is 2V.
28. AC Characteristics
Under operating conditions, load capacitance for Port 0, ALE/PROG, and PSEN = 100 pF; load capacitance for all other outputs = 60 pF.

28.1 External Program and Data Memory Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>(12) MHz Oscillator</th>
<th>(12) MHz Oscillator</th>
<th>(12) MHz Oscillator</th>
<th>(12) MHz Oscillator</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCLOCK</td>
<td>Oscillation Frequency</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Unit</td>
</tr>
<tr>
<td>TALE</td>
<td>ALE Pulse Width</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TAVL</td>
<td>Address Valid to ALE Low</td>
<td>0600</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TASH</td>
<td>Address Hold After ALE Low</td>
<td>0600</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TALV</td>
<td>ALE Low to Valid Instruction In</td>
<td>0600</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TALP</td>
<td>ALE Low to PSEN Low</td>
<td>0600</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TPSH</td>
<td>PSEN Pulse Width</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TPLV</td>
<td>PSEN Low to Valid instruction In</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TIAH</td>
<td>Input Instruction Hold After PSEN</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TIDV</td>
<td>Input Instruction Float After PSEN</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TPSV</td>
<td>PSEN Low to Address Valid</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TAAV</td>
<td>Address to Valid Instruction In</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TAPL</td>
<td>PSEN Low to Address Float</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TNID</td>
<td>ND Pulse Width</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TFWH</td>
<td>WR Pulse Width</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TNLV</td>
<td>ND Low to Valid Data In</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TDAH</td>
<td>Data Hold After RD</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TNDV</td>
<td>Data Valid After RD</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TALV</td>
<td>ALE Low to Valid Data In</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TAVH</td>
<td>Address to Valid Data In</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TOAL</td>
<td>ALE Low to RD or WR Low</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TAWR</td>
<td>Address to RD or WR Low</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TDAV</td>
<td>Data Valid to WR Transition</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TAWH</td>
<td>Data Valid to WR High</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TDAH</td>
<td>Data Hold After WR</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TDAV</td>
<td>RD Low to Address Float</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TAPL</td>
<td>RD or WR High to ALE High</td>
<td>0000</td>
<td>2.0ns</td>
<td>33ns</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>
31. External Data Memory Write Cycle

32. External Clock Drive Waveforms

33. External Clock Drive

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>fOCx</td>
<td>Oscillator Frequency</td>
<td>0</td>
<td>33</td>
<td>MHz</td>
</tr>
<tr>
<td>tCLO</td>
<td>Clock Cycle</td>
<td>30</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tHClx</td>
<td>High Time</td>
<td>12</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tLClx</td>
<td>Low Time</td>
<td>12</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t Rocx</td>
<td>Rise Time</td>
<td>6</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t Eccx</td>
<td>Fall Time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
34. Serial Port Timing: Shift Register Mode Test Conditions

The values in this table are valid for $V_{CC} = 4.0\text{V}$ to 5.5\text{V} and Load Capacitance = 80 pF.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>12 MHz Osc</th>
<th>Variable Oscillator</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{ACL}</td>
<td>Serial Port Clock Cycle Time</td>
<td>Max: 1.0</td>
<td>Min: 13.1 to V_{CC}</td>
</tr>
<tr>
<td>t_{su}</td>
<td>Output Data Setup to Clock Rising Edge</td>
<td>Max: 100</td>
<td>Min: 10 to V_{CC}</td>
</tr>
<tr>
<td>t_{sh}</td>
<td>Output Data Hold After Clock Rising Edge</td>
<td>Max: 50</td>
<td>Min: 2 to V_{CC}</td>
</tr>
<tr>
<td>t_{rc}</td>
<td>Input Data Hold After Clock Rising Edge</td>
<td>Max: 0</td>
<td>Min: 0</td>
</tr>
<tr>
<td>t_{ih}</td>
<td>Clock Rising Edge to Input Data Valid</td>
<td>Max: 700</td>
<td>Min: 10 to V_{CC}</td>
</tr>
</tbody>
</table>

55. Shift Register Mode Timing Waveforms

6. AC Testing Input/Output Waveforms

- $V_{IL} = 0.05\text{V}$
- $V_{IH} = 0.8\text{V}$

Note: AC inputs driving signals are driven at $V_{CC} = 0.5\text{V}$ for a logic 0 and 0.4V for a logic 1. Timing measurements are made at V_{CC} min. for a logic 1 and V_{CC} max. for a logic 0.

7. Float Waveforms

- $V_{FA} = 0.1\text{V}$
- $V_{FB} = 0.1\text{V}$

Note: For timing purposes, a port pin is no longer floating when a 100 mV change from its float voltage occurs. A port pin begins to float when a 100 mV change from the selected V_{CC}/V_{IL} level occurs.

© atmel-69
38. Ordering Information

38.1 Green Package Option (Pb/Halide-free)

<table>
<thead>
<tr>
<th>Speed (MHz)</th>
<th>Power Supply</th>
<th>Ordering Code</th>
<th>Package</th>
<th>Operation Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>4.0V to 5.5V</td>
<td>AT89S52-24AU</td>
<td>44A</td>
<td>Industrial (-40°C to 85°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT89S52-24JU</td>
<td>44J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT89S52-24P6</td>
<td>40P6</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>4.5V to 5.5V</td>
<td>AT89S52-334K</td>
<td>44A</td>
<td>Industrial (-40°C to 85°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT89S52-33JU</td>
<td>44J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT89S52-33P6</td>
<td>40P6</td>
<td></td>
</tr>
</tbody>
</table>

Package Types

- **44A**: 44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)
- **44J**: 44-lead, Plastic J-Leadless Chip Carrier (PLCC)
- **40P6**: 40-pin, 0.600" Wide, Plastic Dual In-line Package (PDIP)
39. Packaging Information

39.1 44A – TQFP

COMMON DIMENSIONS (Units of measure: mm)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>1.60</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0.05</td>
<td>-</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>0.25</td>
<td>1.05</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>11.75</td>
<td>12.00</td>
<td>12.25</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>9.30</td>
<td>10.00</td>
<td>10.10</td>
<td>Note 2</td>
</tr>
<tr>
<td>E1</td>
<td>9.20</td>
<td>10.00</td>
<td>10.10</td>
<td>Note 4</td>
</tr>
<tr>
<td>B</td>
<td>0.30</td>
<td>-</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.09</td>
<td>-</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.45</td>
<td>-</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>0.90</td>
<td>-</td>
<td>-</td>
<td>TYP</td>
</tr>
</tbody>
</table>

Notes:
1. This package conforms to JEDEC reference MS-026, Issue 01C, Revision ACB.
2. Dimensions D1 and E1 do not include mold projection. Allowable projection is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body dimensions including mold projection.
3. Lateral ovality is 0.10 mm maximum.

TITLE:
44A, 44-lead, 10 x 10 mm Body Size, 1.6 mm Body Thickness, 0.6 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

DRAWING NO.: 44A

REV.: B

DATE: 10/5/2001

Amel

2325 Orchard Parkway
San Jose, CA 95131

Note:

1. This package conforms to JEDEC reference MS-026, Issue 01C, Revision ACB.
2. Dimensions D1 and E1 do not include mold projection. Allowable projection is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body dimensions including mold projection.
3. Lateral ovality is 0.10 mm maximum.

Amel

2325 Orchard Parkway
San Jose, CA 95131

Note:

1. This package conforms to JEDEC reference MS-026, Issue 01C, Revision ACB.
2. Dimensions D1 and E1 do not include mold projection. Allowable projection is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body dimensions including mold projection.
3. Lateral ovality is 0.10 mm maximum.
AT89S52
Notes:
1. This package conforms to JEDEC reference MS-011, Variation AC.
2. Dimensions D and E1 do not include mold flash or protrusion. Mold flash or protrusion shall not exceed 0.010" (0.25 mm) (JEDEC).