COMPRESSIVE STRENGTH AND MODULUS OF ELASTICITY OF GEOPOLYMER CONCRETE WITH METAKAOLIN AND SILICA FUME

Final Project Report

as one of requirement to obtain S1 degree from

Universitas Atma Jaya Yogyakarta

By:

GARUDEA MARTHA HANDYANINGTYAS

NPM: 111313777

INTERNATIONAL S1 PROGRAM

DEPARTMENT OF CIVIL ENGINEERING

FACULTY OF ENGINEERING

UNIVERSITAS ATMA JAYA YOGYAKARTA

YOGYAKARTA

2015

STATEMENT

I signed below stating that the final project with the title:

"COMPRESSIVE STRENGTH AND MODULUS OF ELASTICITY OF GEOPOLYMER CONCRETE WITH METAKAOLIN AND SILICA FUME"

It is the result of my own work and not a result of plagiarism of other people's work. Ideas, research data, and quotes directly or directly derived from the writings or ideas of others expressly provided in this Final Project. If it is proven later that this Final Project is the result of plagiarism, the graduation certificate that I received will be canceled and returned to UniversitasAtma Jaya Yogyakarta.

Yogyakarta,

Who made the remarks,

TERAL MPE 42ADF217938 **RIBU RUPIAH**

Garudea Martha Handyangingtyas

APPROVAL

Final Project

COMPRESSIVE STRENGTH AND MODULUS OF ELASTICITY OF GEOPOLYMER CONCRETE WITH METAKAOLIN AND SILICA FUME

By:

Garudea Martha Handyaningtyas

111313777

Has been approved

Yogyakarta, April 17, 2015

Advisor,

(Dr. Ir. A.M. Ade Lisantono., M.Eng)

Approved by:

Head of Civil Engineering Department,

(J. Januar Sudjati, ST., MT) iii

APPROVAL

Final Project

COMPRESSIVE STRENGTH AND MODULUS OF ELASTICITY OF GEOPOLYMER CONCRETE WITH METAKAOLIN AND SILICA FUME

By:

GARUDEA MARTHA HANDYANINGTYAS

111313777

Has been examined and approved by the examination committee

		Name	Signature	Date
Chairperson	:	Dr. Ir. A.M. Ade Lisantono., M.Eng	12m	17/04/2015-
Member	:	Prof. Ir. Yoyong Arfiadi, M.Eng., Ph.D	Ann	-P/04/2015

Member

: Ir. Pranawa Widagdo, MT

Kraugo 17/04 2015

There is surely a future hope for you, And your hope will not be cut off.... (Proverbs 23:18)

Truly I tell you, if you have faith as small as a mustard seed, you can say to this mountain, 'Move from here to there,' and it will move. Nothing will be impossible for you.

(Matthew 17:20)

I dedicated this Final Project to my Lord and my Family

ACKNOWLEDGEMENTS

Thank you to my Lord Jesus, because of His blessings, the final project can be finished on time and without any serious problem. The purpose of the final project with the title "Compressive Strength and Modulus of Elasticity of Geopolymer Concrete with Metakaolin and Silica Fume" is to complete the requirement of undergraduate program (S-1) in Faculty ofInternational Civil Engineering Program, UniversitasAtma Jaya Yogyakarta.For the completion of this final project, I also would like to express my gratitude towards:

- 1. Dr. Ir. A.M. Ade Lisantono., M.Eng.as my advisor for his advice and counseling. His constant support and advice have been invaluable.
- 2. Prof. Ir. Yoyong Arfiadi, M.Eng., Ph.D as a Dean and an Examiner of my final project for his advice.
- 3. Anastasia Yunika, S.T., M. Eng. as Coordinator and Lecturer of International Civil Engineering who always care about me.
- 4. J. Januar Sudjati, ST., MT. as the head of Civil Engineering Department of UniversitasAtma Jaya Yogyakarta.
- 5. Ir. Pranawa Widagdo, MT as an examiner of my final project for his advice.
- 6. Angelina Eva Lianasari, ST, MT., for her advice, support and help in my final project.
- 7. V. Sukaryantara as a staff of Construction Material Technology Laboratory who always supports me and helps me in a whole process of the research.
- 8. All the lecturers and staffs in the civil engineering program, especially the International program and Construction Materials Laboratory.
- 9. My lovely parents; Mr.Johan S. and Mrs. OnengTyas D.E., Sandy, Putri and Pamungkas who always pray for me, support me and cheer me up.
- 10. Justi, Eka, Dhony, Pras, Dicky, Arnold chong, Sigit, Paul, Johan, Wira, and Halim who always give a support and help me in the process of the research.
- 11. Danila, Putri, Natalie, Eirene, Fiesta, Melisa, Agnes, Brenna, Tika, Arif, Nicho, Fandy, Stephen, Jojo, Jimmy, Jerry, Erik, Okie, Eko, Agung, Fajar, Liki, Nathan, and Petrus who always give a support and suggestion for me, pray for me and always cheer me up.
- 12. All of my friends, seniors and juniors especially in the international civil engineering program.

13. All of my friends in KA GKIN who always support me and pray for me.

I realize, this report may be flawed. Therefore I accept any form of suggestion for further improvement. Thank you

Yogyakarta, March 2015 Author Garudea Martha Handyaningtyas (111313777)

TABLE OF CONTENT

Title	i
Statement	ii
Approval	iii
Motto	v
Acknowledgement	vi
Table of Content	viii
List of Table	xi
List of Figures	xii
List of Equation	xiv
Abstract	xv
CHAPTER I INTRODUCTION	

1.1. General Background	1
1.2. Problem Statement	4
1.3. Problem Limitation	4
1.4. Objectives	5
1.5. Final Project Originality	6

CHAPTER II LITERATURE REVIEW

2.1. Theories	7
2.2. Another Research to Compare	8
2.2.1 Thesis Research	10

CHAPTER III BASIC THEORY

3.1. Geopolymer Concrete	11
3.2. Metakaolin	13
3.2.1 Advantages of Metakaolin	14
3.2.2 Use of Metakaolin	15
3.3. Silica Fume	15
3.4. Alkali Activator	16
3.5. Aggregate	17
3.6. Distilled Water	19
3.7. Compressive Strength	19
3.8. Modulus of Elasticity	21
3.9. Slump Value	21
3.10. Workability	21
3.11. The Age of Concrete	23

CHAPTER IV RESEARCH METHODOLOGY

4.1. Research Methodology	24
4.2. Specification of Specimen	25
4.3. Research of Framework	25
4.4. Materials	26
4.5. Tools	31
4.6. Material Testing	44

4.6.1 Fine Aggregate	44
4.6.2 Coarse Aggregate	48
4.7. Specimen Testing	50
4.8. Slump Test	53
4.9. Curing Process	54
4.10. Compressive Strength and Modulus of Elasticity Tests	54
4.11. Schedule of the Final Project	54

CHAPTER V DISCUSSION

5.1. Result and Discussion of Material Investigation	56
5.1.1 Investigate the Fine Aggregate to Obtain the Results	56
5.1.2 Investigate the Coarse Aggregate to Obtain the Results	59
5.2. Slump Test	61
5.3. Weight Density of Concrete	62
5.4. Compressive Strength of Concrete	65
5.5. Modulus Elasticity of Concrete.	69

CHAPTER VI CONCLUSION AND SUGGESTION

6.1. Conclusion	 	72
6.2. Suggestion	 	73

REREFENCES	75
APPENDIX	77

LIST OF TABLES

Table 4.1.The Amount of Specimens	51
Table 4.2.Schedule of the Research	55
Table 5.1. Relationship Between the Color of the Solution and Organic	
Mater Content	56
Table 5.2.Investigation of Mud in the Sand	57
Table 5.3.Result of the Density and Observation Test of Fine Aggregate	58
Table 5.4. Investigation of Mud in the Coarse Aggregate	59
Table 5.5.Result of the Density and Observation Test of Coarse	
Aggregate	60
Table 5.6. The Result of Slump Test at 14 days and 28 days	62
Table 5.7. Specification of Weight Density Concrete	62
Table 5.8. Average Weight Density in 14 Days	63
Table 5.9. Average Weight Density in 28 Days	64
Table 5.10.Compression Strength Test	65
Table 5.11.Composition of the Contents	67
Table 5.12.Compressive Strength of Lisantono and Hatmoko Research	68
Table 5.13.Compressive Strength of the Test	68
Table 5.14.Modulus of Elasticity Test	70
Table 5.15. Average of Modulus of Elasticity Test	70

LIST OF FIGURES

Fig.3.1. Cylinder Sample		20
Fig.4.1. Flowchart of Research Frame	work	26
Fig.4.2. Fine Aggregate		26
Fig.4.3. Coarse Aggregate		27
Fig.4.4. Metakaolin		27
Fig.4.5. Silica Fume		28
Fig.4.6.NaOH		28
Fig.4.7. Na ₂ SiO ₃		29
Fig.4.8. Distilled Water		29
Fig.4.9. Sulfur		30
Fig.4.10. Oil		30
Fig.4.11. Caliper		31
Fig.4.12. Digital Scale		31
Fig.4.13. Measuring Cup		32
Fig.4.14. Gardener Standard Colors		32
Fig.4.15. Erlenmeyer Flask		33
Fig.4.16. Sieve and Sieve Machine		33
Fig.4.17. Beaker Glass		34
Fig.4.18. Sticky Plastic		34
Fig.4.19. Abrams Cone		35
Fig.4.20. Mortar		35
Fig.4.21. Cylinder Mold		36
Fig.4.22. Oven		36
Fig.4.23. Universal Testing Machine		37

Fig.4.24. Brush	37
Fig.4.25. Capping	38
Fig.4.26. Plastic Bucket	38
Fig.4.27. Pan	39
Fig.4.28. Plate	39
Fig.4.29. Ruler	40
Fig.4.30. Wagon	40
Fig.4.31. Shovel	41
Fig.4.32. Hammer	41
Fig.4.33. Iron to Pound the Mixture	42
Fig.4.34. Plastic Bag	42
Fig.4.35. Stationer	43
Fig.5.1.Weight Density in 14 Days Chart	63
Fig.5.2. Weight Density in 14 Days Chart	64
Fig.5.3. Compressive Strength Column Chart	66
Fig.5.4. Compressive Strength Line Chart	66
Fig.5.6. Modulus of Elasticity Chart	69

LIST OF EQUATION

2-1. Poly-condensation Process	9
3-1. Area of Cylinder	19
3-2. Magnitude of the Compressive Strength	20
4-1. The Amount of Mud of Sand	45
4-2. Water Content of Fine Aggregate	47
4-3. The Amount of Mud of Coarse Aggregate	48
4-5. Water Content of Coarse Aggregate	50
5-1. Calculation of the Amount of Mud in Sand	57
5-2. Calculation of the Amount of Mud in Coarse Aggregate	59

ABSTRACT

COMPRESSIVE STRENGTH AND MODULUS OF ELASTICITY OF GEOPOLYMER CONCRETE WITH METAKAOLIN AND SILICA FUME, Garudea Martha Handyaningtyas, Student Number 111313777, year of 2015, Structural engineering, Civil Engineering International Program, Faculty of Engineering, UniversitasAtma Jaya Yogyakarta.

Geopolymer concrete is concrete which uses different materials and are environmental friendly during the production process. There are several advantages of geopolymer concrete; such as anti-fire, used as a cover material for the exterior of mechanical equipment, durable and environment friendly. Geopolymer also produced by the chemical reaction of alumina-silicate oxides (Si2O5, Al2O2) with alkali Poly-silicate yielding polymeric Si–O–Al bonds. Geopolymer concrete is concrete without cement as a bond but, geopolymer concrete uses alkali activator as a bond of the concrete.

This research studies about compressive strength and modulus of elasticity of geopolymer concrete with metakaolin and silica fume as solid materials. The proportions of solid material are 25%, 50% and 75% for the metakaolin, while the proportion of silica fume is 5%. The alkali activators in this research are NaOH and Na₂SiO₃. The proportions of NaOH and Na₂SiO₃ are 2:1. The aggregates in this research are coarse aggregate (split) and fine aggregate (sand) with the proportion of 2:1. The samples in this research are 18 samples. 9 samples cylinder with the size are 70mm x 140mm and the other 9 samples cylinder with the size are 150mm x 300mm. Compressive strength test is done at the age of 14 days and 28 days. The compressive strength test is using Universal Testing Machine (UTM).

Based on the compression strength test that has been done, the value of the average compressive strength at 28 days with comparative precursor (metakaolin:silica fume) 25:5, 50:5, 75:5 are 1.149 MPa, 0.641 MPa and 0.178 MPa, respectively. Based on modulus of elasticity test that has been done, the value of the average modulus of elasticity at 28 days with comparative precursor (metakaolin:silica fume) 25:5, 50:5, 75:5 are 2.866 MPa, 2.371 MPa and 1.143 MPa, respectively.

Key Words: Geopolymer Concrete, Metakaolin, Silica Fume