REVERSE ENGINEERING APPROACH IN MAKING EMIRATE LARGE PLATE (DIA-25CM) DESIGN AT PT. DOULTON

A THESIS

Submitted in Partial Fulfillment of the Requirement for the Bachelor Degree of Engineering in Industrial Engineering

LUNA LAMANDAU 10 14 06107

INTERNATIONAL INDUSTRIAL ENGINEERING PROGRAM DEPARTMENT OF INDUSTRIAL ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY UNIVERSITAS ATMA JAYA YOGYAKARTA 2015

IDENTIFICATION PAGE

A THESIS ON

REVERSE ENGINEERING APPROACH IN MAKING EMIRATE LARGE PLATE (DIA-25CM) DESIGN AT PT. DOULTON

Submitted by Luna Lamandau 10 14 06107

Was examined and approved on March 6th, 2015

Faculty Supervisor,

TB. Hanandoko, S.T., M.T.

Board on Examiners, Chair,

TB. Hanandoko, S.T., M.T.

Member,

Member,

Dr. Drs. A. Teguh Siswantoro, M.Sc.

Baju Bawono, S.T., M.T.

Yogyakarta, March 6th, 2015 Dean of Faculty of Industrial Technology Universitas Atma Jaya Yogyakarta

Dr. Drs. A. Teguh Siswantoro, M.Sc.

DECLARATION OF ORIGINALITY

I certify that the research entitled "Reverse Engineering Approach In Making Emirate Large Plate (Dia-25cm) Design at PT. Doulton" in this thesis has not been submitted for any other degree.

I certify that to the best of my knowledge and belief, this thesis which I wrote does not contain the works of parts of the works of other people, except those cited in the quotations and bibliography, as a scientific paper should.

In addition, I certify that I understand and abide the rule stated by the Ministry of Education and Culture of The Republic of Indonesia, subject to the provisions of Peraturan Menteri Pendidikan Nasional Republik Indonesia Nomor 17 Tahun 2010 tentang Pencegahan dan Penanggulangan Plagiat di Perguruan Tinggi.

Signature

DF21630990

Student name Student ID Date Luna Lamandau 10 14 06107 February 24th, 2015

ACKNOWLEDGEMENT

The author conducted the research on Reverse Engineering Approach In Making Emirate Large Plate (Dia-25cm) Design At PT. Doulton to fulfill partial requirement for bachelor degree of Industrial Engineer of Universitas Atma Jaya Yogyakarta.

The author would like to deliver highest appreciation to Mr. Hanandoko, S.T., M.T. as the faculty supervisor for the guidance while author is conducting this research.

Special gratitude delivers to Mr. Paulus Wisnu Anggoro, S.T., M.T. and Mr. Tonny Yuniarto, S.T., M. Eng. for guidance and support while author studied in university.

The deepest appreciation for love and dedication goes to the author's parents, Mr. Tonny Lamandau and Mrs. Titi Nofiah. Their love and dedication for the author give spirit to start, conduct and finally finish this research.

Special appreciation also given to author's sisters, Tania Siera Lamandau and Diana Cesar Lamandau for their support and help to author starts from the beginning of this research, conducting the research, and finally finish this research.

Great gratitude also given to Mr. Zulkifli as Area Manager of New Product Introduction Department, Mr. Oka Oktavianus as Department Manager of New Product Introduction, Mr. Kris Nugraha Heprbudi as author's supervisor during internship for his support, and guidance on conducting this research with great patience.

Author is expressing special gratitude to Manufacturing Process Laboratory Work Assistant for all the supports and helps given to author during conducting this thesis.

Big appreciation goes to author's family, relatives and friends especially from Industrial Engineering batch 2010 for all the supports given to the author to finish this thesis. Last but not least, author is amicable for suggestions that boost the motivation for the next research.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	Title Page	
	Identification Page	ii
	Statement of Originality	iii
	Acknowledgement	iv
	Table of Content	v
	List of Table	vii
	List of Figure	ix
	Abstract	xi
1	Introduction	1
	1.1. Background	୍ କୁ
	1.2. Problem Formulation	2
	1.3. Research Objectives	3
	1.4. Scope and Limitation	3
2	Literature Review and Basic Theory	5
	2.1. Literature Review	5
	2.2. Gap Analysis	8
	2.3. Basic Theory	8
3	Research Methodology	30
	3.1. Research Steps	30
	3.2. Identify Problem	33
	3.3. Literature Review	33
	3.4. Collecting Data	33
	3.5. 3D CAD Making	33
	3.6. Trial	34
	3.7. Measuring	34
	3.8. Inspection	34
	3.9. Redesign	35
	3.10. 3D CAD Making (Redesign)	35
	3.11. Line Comparison	35

3.12. Send Sample to United Kingdom (UK)	35
3.13. United Kingdom (UK) Inspection	36
3.14. Cost Calculation	36

Data	37
4.1. Company Profile	37
4.2. Data	44
Data Analysis	57
5.1. Measure Existing Product	57
5.2. 3D CAD Making	57
5.3. Inspection	71
5.4. 3D CAD Making (Redesign)	71
5.5. Cost Calculation	77
Conclusion and Suggestion	82
6.1. Conclusion	82
6.2. Suggestion	83
References	84

LIST OF TABLE

Table 2.1.	Comparison Between Previous and Current Research	6
Table 4.1.	Wedgewood Products	41
Table 4.2.	Royal Doulton Products	42
Table 4.3.	Waterford Products	43
Table 4.4.	Shape Feasibility	41
Table 4.5.	CMM priXa 1588 Specification	47
Table 4.6.	Trial Data 1 - Biscuit	48
Table 4.7.	Trial Data 1 - Glost	49
Table 4.8.	Trial Data 1 - Glost for Approval	50
Table 4.9.	Trial Data 2 - Biscuit	51
Table 4.10.	Trial Data 2 - Glost	52
Table 4.11.	Trial Data 3 - Biscuit	53
Table 4.12.	Trial Data 3 - Glost	54
Table 4.13.	Trial Data 3 - Biscuit Reduce Weight	55
Table 4.14.	Trial Data 3 - Glost Reduce Weight	56
Table 4.15.	Standard Cost	56
Table 5.1.	Material Needed	79
Table 5.2.	First Trial Cost Calculation	80
Table 5.3.	Second Trial Cost Calculation	80
Table 5.4.	Third Trial Cost Calculation	80
Table 5.5.	Third Trial Cost Calculation Reduce Weight	81
Table 5.6.	Total Cost	81

LIST OF FIGURE

Figure 2.1.	Coordinate Measuring Machine (CMM)	18
Figure 2.2.	CMM Bridge Type	20
Figure 2.3.	CMM Gantry Type	21
Figure 2.4.	CMM Cantilever Type	22
Figure 2.5.	CMM Horizontal Arm Type	22
Figure 2.6.	CMM Articulated Arm Type	23
Figure 3.1.	Methodology	31
Figure 4.8.	Emirate Large Plate (Dia-25cm)	45
Figure 4.9.	Emirate Large Plate (Dia-25cm) Specification	46
Figure 5.1.	PowerSHAPE 2013	57
Figure 5.2.	Emirate Large Plate (Dia-25cm) Technical Drawing	58
Figure 5.3.	Scaling	59
Figure 5.4.	Line Approaching	60
Figure 5.5.	Top Part Surface	60
Figure 5.6.	Bottom Part Surface	61
Figure 5.7.	Model Analysis Smooth Shading	61
Figure 5.8.	Emboss Projection	62
Figure 5.9.	Break Surface	63
Figure 5.10.	Selected Surface Deleted	63
Figure 5.11.	Repoint Curve	64
Figure 5.12.	Surface using Smart Surfacer	64
Figure 5.13.	Move/Copy Feature	65
Figure 5.14.	Offset Feature	65
Figure 5.15.	Surface Result from Move and Offset Process	66
Figure 5.16.	Prototype Model with Emboss	66
Figure 5.17.	Fire Size	67
Figure 5.18.	Model Size	67
Figure 5.19.	Milling Model	68
Figure 5.20.	Identity	69
Figure 5.21.	Model Identity	69
Figure 5.22.	Prototype Model	70
Figure 5.23.	Plaster Case	70
Figure 5.24.	CMM Manager 3.0 Software	72

Figure 5.25.	Coordinate Point Making	72
Figure 5.26.	Scan Process	73
Figure 5.27.	Top Part	73
Figure 5.28.	Bottom Part	74
Figure 5.29.	PowerSHAPE 2013	74
Figure 5.30.	Import Scanned Data	75
Figure 5.31.	Vector from Point Clouds	75
Figure 5.32.	Combining Curve	76
Figure 5.33.	Line Comparison	77
Figure 6.1.	3D CAD Data Emirate Large Plate (Dia-25cm)	82
Figure 6.2.	Milling Model Design of Emirate Large Plate (Dia-25cm)	83

ABSTRACT

The thesis entitled "Reverse Engineering Approach in Making Emirate Large Plate (Dia-25cm) Design at PT. Doulton" began with problem in transfer product in NPI Department. Transferred product came with two data, technical drawing and existing product. Existing product's diameter was below the customers' standard. Technical drawing is chosen for make the 3D CAD data. Trial result based on technical drawing had different shape with existing product. According to literature review, reverse engineering is used to get data from existing product. Thus, the contribution of this research was shown that reverse engineering approach can be used develop design of Emirate Large Plate (Dia-25cm) which has complete data but needs adjustment from geometric shape of existing product. The objective in this research is proposing reverse engineering approach to make the design of Emirate Large Plate (Dia-25cm) that can be accepted for both customer and market.

To fulfill all regulations, processes were developed by making 3D CAD data from technical drawing used PowerSHAPE 2013 software, scanning existing product used CMM and CMM Manager 3.0 Software, combining two data used PowerSHAPE 2013.

The results from those processes are 3D CAD data and the milling design data for company documentation. The design was accepted and ready to be produce in production. The trial cost calculation showed that \$ 2132.576 was needed to develop trial process. Therefore, around \$392.428 can be safe from trial process with reverse engineering approach.

Keywords : reverse engineering, ceramic, CAD, design, PowerSHAPE, CMM.