#### REFERENCES

- Assaf, S.A. and Al-Heiji (2006). Causes of Delays in Large Construction Projects.
   International Journal of Project Management.
- 2. Atkinson, A.R. (1999) "The role of human error in construction defects", Structural Survey, 17(2), 231-236.
- 3. Callahan, M. T., D. G. Quackenbush, and J. E. Rowings (1992) "Construction Project Scheduling", McGraw-Hill, USA.
- Chris Hendrickson, 1998, Project Management for Construction, Fundamental Concepts for Owners, Engineers, Architects and Builders, Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh
- 5. Desai Megha, Dr Bhatt Rajiv, 2013, A Methodology for Ranking of Causes of Delay for Residential Construction Projects in Indian Context, International Journal of Emerging Technology and Advanced Engineering.
- Droit francophone (2007). Anoukret organisant la passation des Marchés Publics au Cambodge, KHM1995LOI14(DF).
- Emmitt, S. and Gorse, C. 2003, Construction Communication, Blackwell Publishing Ltd. Engy Serag and Amr Oloufa, 2007, CHANGE ORDERS IMPACT ON PROJECT COST, American Society for Engineering Education 2007-3039
- 8. Guideline for Establishing Construction Contract Duration, Florida Department of Transportation, July 2010

- Kang Sik (2010). Causes, Effects And Methods Of Minimizing Delays In Construction Projects. Universiti Teknologi Malaysia
- 10. Kartam, S. (1999) "Generic Methodology For Analyzing Delay Claims", Journal of Construction Engineering and Management, Vol. 125, No. 6 pp.409-419
- 11. Kelleher, T. J. (2005) "Smith, Currie & Hancock LLP's common sense construction law: a practical guide for the construction Professional", John Wiley, New Jersey, USA.
- 12. Lenard, D. and Eckersley, Y. 1997, Driving Innovation: the Role of the Client and the Contractor, Report No. 11, Construction Industry Institute, Adelaide, Australia. Louzolo-Kimbembe and Euloge Mbani, 2012, New approach of delay penalties formulation: Application to the case of construction projects in the Republic of Congo Paul, Journal of Civil Engineering and Construction Technology Vol. 4(1), pp. 6-22
- 13. Love, P.E.D., and Smith, J. (2003) "Benchmarking, Bench-action and Benchlearning: Rework Mitigation in Projects", Journal of Management in Engineering, 19(4), 147-159.
- 14. Li, Heng and Chan, Neo and Guo, H.L. and Lu, Weisheng and Skitmore, Martin (2009) Optimizing construction planning schedules by virtual prototyping enabled resource analysis. Automation in Construction, 18(7). pp. 912-918.
- 15. Mackinder, M. and Marvin, H. 1982, 'Design: Decision Making in Architectural Practice', in BRE Information Paper, Ip 11/82, July.

- 16. Majid, I.A. (2006). Causes and Effects of Delays in Aceh Construction Industry.
  Master of Science in Construction Management. Universiti Teknologi Malaysia.
  2006
- 17. Marchés de l'Etat, Marchés publics. Brazzaville, République du Congo. Imprimerie du Journal Officiel, p. 50.
- 18. M. Haseeb, Xinhai-Lu, Aneesa Bibi, Maloof-ud-Dyian, Wahab Rabbani, 2011, Problems Of Projects And Effects Of Delays In The Construction Industry Of Pakistan, Australian Journal of Business and Management Research Vol.1 No.5 [41-50]
- 19. Mubarak, S. (2005) "Construction Project Scheduling and Control", Pearson Prentice Hall, USA.
- 20. Murali Sambasivan and Yau Wen Soon, 2007, Causes and effects of delays in Malaysian construction industry, Graduate School of Management, Universiti Putra Malaysia
- 21. Nguyen, L. D. (2007) "The Dynamics of Float, Logic, Resource Allocation, and Delay Timing in Forensic Schedule Analysis and Construction Delay Claims", Ph. D. Dissertation Thesis, Department of Engineering-Civil and Environmental Engineering, University of California, Berkeley.
- 22. Odeh AM, Battainch HT. Causes of construction delay: traditional contracts, Int J Project Manage 2002; 20:67-73
- 23. Palaneeswaran, E., Kumaraswamy, M.M., Ng, T.S.T., and Love, P.E.D. (2005) "A framework for monitoring rework in building projects", In: Tall Buildings

- From Engineering To Sustainability, World Scientific, Hong Kong, Editors: Y K Cheung
- 24. Robert J. Heinzman, Sept. 2009, Effective Lump Sum Contracting, Camargen Engineering, Inc. eNews Report
- 25. Sugiharto Alwi and Keith Hampson (2003), Identifying The Important Causes Of Delays In Building Construction Projects, The 9th East Asia-Pacific Conference on Structural Engineering and Construction, Bali, Indonesia
- 26. Textes (2006). Commission Centrale des Marchés de l'Etat, Marchés publics. Brazzaville, République du Congo. Imprimerie du Journal Officiel, p. 50.
- 27. The Chartered Institute of Building (CIOB) 2007, Managing the Risk of Delayed Completion in the 21st Century
- 28. Tony Farrow, 2007, Developments in the Analysis of Extensions of Time, Journal Of Professional Issues In Engineering Education And Practice
- 29. Trauner, T. J., W. A. Manginelli, J. S. Lowe, M. F. Nagata and B. J. Furniss (2009) "Construction Delays: Understanding Them Clearly, Analyzing Them Correctly", Elsevier Inc., USA.
- 30. Walker, I. and Wilkie, R. (2006), Commercial Management in Construction, Blackwell Science Ltd, Oxford.
- 31. Youngjae Kim, Kyunrai Kim and Dongwoo Shin, 2005, Delay Analysis Using Delay Section, Journal of Construction Engineering and Management @ ASCE





## **QUESTIONNAIRE**

# IDENTIFYING THE MAIN FACTORS AND EFFECTS OF DELAYS IN INTERNATIONAL FUNDING PROJECTS IN YOGYAKARTA TO RESULT IN

### BETTER ELABORATION OF PLANNING SEQUENCES

This questionnaire consists of 5 sections:

**SECTION A:** Respondent Background

**SECTION B:** Factors that Contributing to Causes of Construction Delays

**SECTION C:** Effects of Construction Delays

**SECTION D:** Methods of time-risk management and their effectiveness

**SECTION D:** The Master Schedules

#### Purpose of the study is to:

- a. Identify the main causes of delays in construction industry in Indonesia and test the importance as well in small and large projects.
- b. Find out the effects of delays to all the participants of the projects so that suggestions could be given about time control issues.
- c. Determine the use of available technology in time management methods
- d. Planning the established sequence of works

STUDENT NAME : Armella Miariambinina Rabearitsoa

SUPERVISOR : Ir. A. Koesmargono, M. Const. Mgt., PhD

#### NOTE:

Your answer will be treated confidentially. The findings of the study will be used for academic purposes. Your name is optional in this questionnaire.

Thank you for your corporation

## **SECTION A**

# **Respondent Background**

| Organ  | ization/ Company name:               |                                     |                          |            |
|--------|--------------------------------------|-------------------------------------|--------------------------|------------|
| 1.     | State respondent organization/com    | pany type.                          |                          |            |
|        | □ Client                             | ☐ Contractor                        |                          |            |
|        | □ Consultant                         | Others:                             |                          |            |
|        |                                      |                                     |                          |            |
| 2.     | State respondent position in the org |                                     |                          |            |
|        | □ Director                           | ☐ Engineer/ Des                     | •                        |            |
|        | ☐ Site Manager                       | ☐ Project Manag                     | ger                      |            |
| 2      |                                      |                                     |                          |            |
| 3.     | State the number of year responder   |                                     | n construction industry. |            |
|        | □ < 5 years                          | $\Box$ 11-15 years $\Box$ >15 years |                          |            |
|        | □ 5-10 years                         | □ >15 years                         |                          |            |
| 4.     | State the number of construction p   | roject that involved                | by respondent.           |            |
|        | ☐ 1-3 projects                       | ☐ 4-6 projects                      | 1                        |            |
|        | □ 7-9 projects                       | □ >9 projects                       |                          |            |
|        |                                      |                                     |                          |            |
| 5.     | State the number of project delays   |                                     | espondent.               |            |
|        | □ 1 - 3 projects                     | ☐ 4 - 6 projects                    |                          |            |
|        | □ 7 - 9 projects                     | $\square > 9$ projects              |                          |            |
|        |                                      |                                     |                          |            |
|        |                                      |                                     |                          |            |
|        |                                      |                                     |                          |            |
|        |                                      | SECTION B                           |                          |            |
|        | <b>Factors that Contrib</b>          | uting to Causes of                  | f Construction Delay     | S          |
| * Plea | se tick and fill in the blanks if yo | u select others.                    |                          |            |
| • Ea   | ch scale represents the frequency    | of occurrence:                      | (4) Always               | (3) Often  |
|        |                                      |                                     | (2) Sometimes            | (1) Rarely |
| • Ea   | ch scale represents the degree of    | severity:                           | (4) Extreme              | (3) Great  |
|        |                                      |                                     | (2) Moderate             | (1) Little |

# **Question**:

Which of the following related factors stated below that contribute to causes of delays of construction project in Yogyakarta?

| CATEGORIES |       | CAUSES OF DELAY                                                             |   | y | Severity      |   |   |   |   |   |
|------------|-------|-----------------------------------------------------------------------------|---|---|---------------|---|---|---|---|---|
| CATEG      | UKIES | CAUSES OF DELAY                                                             | 1 | 2 | 3             | 4 | 1 | 2 | 3 | 4 |
|            | 1     | Original contract duration is too short                                     |   |   |               |   |   |   |   |   |
| ب          | 2     | Legal disputes b/w various parts                                            |   |   |               |   |   |   |   |   |
| Project    | 3     | Inadequate definition of substantial completion                             |   |   |               |   |   |   |   |   |
| Pro        | 4     | Ineffective delay penalties                                                 |   |   |               |   |   |   |   |   |
|            | 5     | Type of construction contract                                               |   |   |               |   |   |   |   |   |
|            | 6     | Type of project bidding and award (negotiation, lowest bidder.)             |   |   |               |   |   |   |   |   |
|            | 1     | Delay in progress payments by owner                                         |   |   |               |   |   |   |   |   |
|            | 2     | Delay to furnish and deliver the site to the contractor by the owner        |   |   |               |   |   |   |   |   |
|            | 3     | Change orders by owner during construction                                  |   |   |               |   |   |   |   |   |
| _          | 4     | Late in revising and approving design documents by owner                    |   |   |               |   |   |   |   |   |
| Owner      | 5     | Delay in approving shop drawings and sample materials                       |   |   |               |   |   |   |   |   |
| »O         | 6     | Poor communication and coordination by owner and other parties              |   |   |               |   |   |   |   |   |
|            | 7     | Slowness in decision making process by owner                                | 0 |   |               |   |   |   |   |   |
|            | 8     | Conflicts between joint-ownership of the project                            | 1 |   |               |   |   |   |   |   |
|            | 9     | Unavailability of incentives for contractor for finishing ahead of schedule |   |   |               |   |   |   |   |   |
|            | 10    | Suspension of work by owner                                                 |   |   |               |   |   |   |   |   |
|            | 1     | Difficulties in financing project by contractor                             |   |   | 9/            |   |   |   |   |   |
|            | 2     | Conflicts in sub-contractors schedule in execution of project               |   |   |               |   |   |   |   |   |
|            | 3     | Rework due to errors during construction                                    |   |   |               |   |   |   |   |   |
|            | 4     | Conflicts b/w contractor and other parties (consultant and owner)           |   |   |               |   |   |   |   |   |
|            | 5     | Poor site management and supervision by contractor                          |   |   |               |   |   |   |   |   |
| tor        | 6     | Poor communication and coordination by contractor with other parties        |   |   |               |   |   |   |   |   |
| Contractor | 7     | Ineffective planning and scheduling of project by contractor                |   |   |               |   |   |   |   |   |
| ont        | 8     | Improper construction methods implemented by contractor                     | _ |   |               |   |   |   |   |   |
| 3          | 9     | Delays in sub-contractors work                                              |   |   |               |   |   |   |   |   |
|            | 10    | Inadequate contractor's work                                                |   |   |               |   |   |   |   |   |
|            | 11    | Frequent change of sub-contractors because of their inefficient work        |   |   |               | 1 |   |   |   |   |
|            | 12    | Poor qualification of the contractor's technical staff                      |   |   |               |   |   |   |   |   |
|            | 13    | Delay in site mobilization                                                  |   |   | $\mathcal{A}$ |   |   |   |   |   |
|            | 14    | Delay in performing inspection and testing by consultant                    |   |   |               |   |   |   |   |   |
|            | 15    | Delay in approving major changes in the scope of work by consultant         |   |   |               |   |   |   |   |   |
| ant        | 16    | Inflexibility (rigidity) of consultant                                      |   |   |               |   |   |   |   |   |
| Consultar  | 17    | Poor communication/coordination between consultant and other parties        |   |   |               |   |   |   |   |   |
| ons        | 18    | Late in reviewing and approving design documents by consultant              |   |   |               |   |   |   |   |   |
| Ū          | 19    | Conflicts between consultant and design engineer                            |   |   |               |   |   |   |   |   |
|            | 20    | Inadequate experience of consultant                                         |   |   |               |   |   |   |   |   |
|            | 1     | Mistakes and discrepancies in design documents                              |   |   |               |   |   |   |   |   |
|            | 2     | Delays in producing design documents                                        |   |   |               |   |   |   |   |   |
|            | 3     | Unclear and inadequate details in drawings                                  |   |   |               |   |   |   |   |   |
| gu         | 4     | Complexity of project design                                                |   |   |               |   |   |   |   |   |
| Design     | 5     | Insufficient data collection and survey before design                       |   |   |               |   |   |   |   |   |
|            | 6     | Misunderstanding of owners requirements by design engineer                  |   |   |               |   |   |   |   |   |
|            | 7     | Inadequate design-team experience                                           |   |   |               |   |   |   |   |   |
|            | 8     | Un-use of advanced engineering design software                              |   |   |               |   |   |   |   |   |
|            | 0     | on use of advanced engineering design software                              |   | 1 | 1             | 1 |   |   |   |   |

| CATEGORIES |    | CALISES OF DELAY                                                                     | Frequency |   |    |   | Severity |   |   |   |
|------------|----|--------------------------------------------------------------------------------------|-----------|---|----|---|----------|---|---|---|
|            |    | CAUSES OF DELAY                                                                      |           | 2 | 3  | 4 | 1        | 2 | 3 | 4 |
|            | 1  | Shortage of construction materials in market                                         |           |   |    |   |          |   |   |   |
|            | 2  | Changes in material types and specifications during construction                     |           |   |    |   |          |   |   |   |
| als        | 3  | Delay in material delivery                                                           |           |   |    |   |          |   |   |   |
| Materials  | 4  | Damage of sorted material while they are needed urgently                             |           |   |    |   |          |   |   |   |
| Š          | 5  | Delay in manufacturing special building materials                                    |           |   |    |   |          |   |   |   |
|            | 6  | Late procurement of materials                                                        |           |   |    |   |          |   |   |   |
|            | 7  | Late in selection of finishing materials due to availability of many types in market |           |   |    |   |          |   |   |   |
|            | 1  | Equipment breakdowns                                                                 |           |   |    |   |          |   |   |   |
| Equipment  | 2  | Shortage of equipment                                                                |           |   |    |   |          |   |   |   |
| ipin       | 3  | Low level of equipment-operators skill                                               |           |   |    |   |          |   |   |   |
| Equ        | 4  | Low productivity and efficiency of equipment                                         |           |   |    |   |          |   |   |   |
|            | 5  | Lack of high-technology mechanical equipment                                         | \ \ \ \ \ |   |    |   |          |   |   |   |
|            | 1  | Shortage of labors                                                                   |           |   |    |   |          |   |   |   |
| δ          | 2  | Unqualified workforce                                                                |           |   | `  |   |          |   |   |   |
| Labors     | 3  | Nationality of labors                                                                |           |   | Υ. |   |          |   |   |   |
| ت          | 4  | Low productivity level of labors                                                     |           |   | Λ  |   |          |   |   |   |
|            | 5  | Personal conflicts among labors                                                      |           |   |    |   |          |   |   |   |
|            | 1  | Effects of subsurface conditions (e.g., soil, high water table, etc.)                |           |   | U  |   |          |   |   |   |
|            | 2  | Delay in obtaining permits from municipality                                         |           |   |    |   |          |   |   |   |
|            | 3  | Hot weather Effects on construction activities                                       |           |   |    |   |          |   |   |   |
|            | 4  | Rain effects on construction activities                                              |           |   |    |   |          |   |   |   |
| =          | 5  | Unavailability of utilities in site (such as, water, electricity, telephone, etc.)   |           |   |    |   |          |   |   |   |
| Externa    | 6  | effect of social and cultural factors                                                |           |   |    |   |          |   |   |   |
| Ext        | 7  | Traffic control and restriction at job site                                          |           |   |    | 1 |          |   |   |   |
| _          | 8  | Accident during construction                                                         |           |   |    |   |          |   |   |   |
|            | 9  | Differing site (ground) conditions                                                   |           |   |    |   |          |   |   |   |
|            | 10 | Changes in government regulations and laws                                           |           |   | 1  |   |          |   |   |   |
|            | 11 | Delay in providing services from utilities (such as water, electricity)              |           |   |    |   |          |   |   |   |
|            | 12 | Delay in performing final inspection and certification by a third party              |           |   |    |   |          |   |   |   |

# SECTION C: EFFECTS OF CONSTRUCTION DELAYS

Question: What is the effect of construction delays?

- (5) Always
- (4) Mostly
- (3) Sometimes
- (2) Seldom
- (1) Never

|            | Effects of delays | 1 | 2 | 3 | 4 | 5 |
|------------|-------------------|---|---|---|---|---|
| 1          | Overtime          |   |   |   |   |   |
| 2          | Overcost          |   |   |   |   |   |
| 3          | Disputes          |   |   |   |   |   |
| 4          | Arbitration       |   |   |   |   |   |
|            | Total abandonment |   |   |   |   |   |
| $\epsilon$ | Litigation        |   |   |   |   |   |
| 7          | Negotiations      |   |   |   |   |   |
| 8          | Lawsuits          |   |   |   |   |   |



# **SECTION D**

# Methods of time-risk management and their effectiveness

\* Tick the boxes and select few from below

Purpose: Determine the use of available technology in time management methods

Qu

| uesti | ion: | How respondents are managing a current project? |
|-------|------|-------------------------------------------------|
| 1.    | Pro  | ocurement Methods used:                         |
|       |      | Despoke contract                                |
|       |      | Partnering                                      |
|       |      | Lump sum                                        |
|       |      | Design and build                                |
|       |      | Target cost                                     |
|       |      | Re-measure                                      |
|       |      | Construction management                         |
|       |      |                                                 |
| 2.    | Tiı  | me management methods used:                     |
|       |      | Professional services                           |
|       |      | Project management                              |
|       |      | General contracting                             |
|       |      | Specialist trade contractor                     |
|       |      | Other                                           |
|       |      |                                                 |
| 3.    | Ty   | pe of tool used for time management             |
|       |      | A bar-chart                                     |
|       |      | Partially linked network                        |
|       |      | Fully linked network                            |
|       |      | Time chainage diagram                           |
|       |      | Line of balance diagram                         |
|       |      | Flow chart                                      |
|       |      | Minutes of meetings                             |
|       |      | Correspondence                                  |
|       |      |                                                 |

#### **SECTION E**

#### The Master Schedule

\* Tick the boxes and select few from below **Purpose:** Planning the established sequence of works 1. When delay to progress is notified? ☐ The client complains ☐ The contract administrator complains ☐ Liquidated damages are deducted ☐ Sub contractors complain ☐ The schedule is updated and reissued 2. How the planed sequence of work is established? ☐ By writing out a method statement only ☐ By discussion in meetings only ☐ By a discussion and written statement, with the programmer ☐ By a discussion and written method statement ☐ By a discussion with the programmer ☐ By the programmer by reference to other jobs coupled with a method statement ☐ By the programmer alone ☐ By the programmer with reference to other jobs ☐ By reference to other jobs only 3. Parties usually involved in drafting method statements to arrive at planned sequence ☐ Contract manager ☐ Site manager ☐ Foreman □ Tradesman ☐ Sub-contractors ☐ Quantity surveyor □ Programmer ☐ Project manager ☐ Architect ☐ Structural engineer ☐ Mechanical engineer

☐ Client Relevant specialist/subcontractor/supplier

|         | ☐ Electrical engineer                                                    |
|---------|--------------------------------------------------------------------------|
|         |                                                                          |
| 4.      | The application of logic to the planned activities                       |
|         | ☐ By meetings with the construction manager and other interested parties |
|         | ☐ By reference to previous projects of a similar type                    |
|         | ☐ By the planning engineer of project scheduler writing the programme    |
|         | ☐ Logic is not indicated on the schedule                                 |
|         | lumic                                                                    |
| 5.      | The use of date constraints                                              |
|         | ☐ By reference to the contract documents                                 |
|         | ☐ Where the logic cannot be determined                                   |
|         | ☐ To control critically                                                  |
|         | ☐ As the project scheduler writing the schedule chooses                  |
|         |                                                                          |
|         |                                                                          |
| *Pleas  | e state out your comment for any recommendations (OPTIONAL)              |
| _       |                                                                          |
| $\perp$ |                                                                          |
|         |                                                                          |