THE SHEAR STRENGTH CHARACTERISTIC
OF
LIME AND FLY-ASH STABILIZED CLAY

Final Project

Prepared by:
Andreas Dhony Indrawan
Std. No.: 11 13 14030

CIVIL ENGINEERING INTERNATIONAL PROGRAM
FACULTY OF TECHNIC
UNIVERSITAS ATMA JAYA YOGYAKARTA
YOGYAKARTA
April 2015

APPROVAL

Final Project

THE SHEAR STRENGTH CHARACTERISTIC

OF

LIME AND FLY-ASH STABILIZED CLAY

Prepared by:
Andreas Dhony Indrawan
Std. No.: 11 13 14030

Has been corrected and approved
Yogyakarta, ...June 18, 2005...

Supervisor

(Ir. John Tri Hatmoko, M.Sc.)

Approved by:

Head of Civil Engineering International Program

(Januar Sudjati, ST., MT.)
APPROVAL

Final Project
THE SHEAR STRENGTH CHARACTERISTIC OF LIME AND FLY-ASH STABILIZED CLAY

Prepared by:
Andreas Dhony Indrawan
Std. No.: 111314030

Has been examined and approved by examination committee

Chairperson: Ir. John Tri Hatmoko, M.Sc.

Member: Dr. Ir. Ade Lisantono, M.Eng.

Member: Ir. Pranawa Widagdo, MT.

Signature Date

18/06/2015

18/06/2015

22/06/2015
STATEMENT

I am undersigned bellow:

Name : Andreas Dhony Indrawan

Std. Number : 11 13 14030 PPS : GEOTECHNICAL

Stated that I did final project by myself and did not conduct act of plagiarism on my final project with title:

"THE SHEAR STRENGTH CHARACTERISTIC OF LIME AND FLY-ASH STABILIZED CLAY"

If later it is proven that my final project was done by others or I am conduct act of plagiarism, than my final project will be disqualified by academic committee.

Yogyakarta, June 25th, 2015

(Andreas Dhony Indrawan)
PREFACE

First and foremost, the author would like to thanks to God for His blessing that had been given to the author, so that the author could prepare and finish this final project report. This report was arranged, due to finish the S1 degree at Faculty of Engineering, Department of Civil Engineering, Universitas Atma Jaya Yogyakarta.

The author would like to say thank you to:

1. Prof. Yoyong Arfiadi, M.Eng, Ph.D as the Dean of Engineering Faculty, University of Atma Jaya Yogyakarta.

2. J. Januar Sudjat, ST, MT, as the head of Civil Engineering Program in the University of Atma Jaya Yogyakarta.

3. Anastasia Yunika, ST, M.Eng, as the coordinator of International Civil Engineering Program in the University of Atma Jaya Yogyakarta.

4. Ir. John Tri Hatmoko, MSc as advisor of final project

The writer realized that this report has many mistake, misspelling, etc. For that, the writer will accept all of the critics and suggestion which will make this report better. Finally the writer hopes this report could give any advantages for the readers.

Yogyakarta, May 2015

Andreas Dhony Indrawan
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVER</td>
<td>i</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>LEGALIZATION</td>
<td>iii</td>
</tr>
<tr>
<td>PREFACE</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ix</td>
</tr>
</tbody>
</table>

CHAPTER I : INTRODUCTION
1.1 Background ... 1
1.2. Problem Statement 3
1.3. Problem Scope .. 3
1.4. Objective .. 3
1.5. Research Originality 4

CHAPTER II : LITERATURE REVIEW 5

CHAPTER III : BASE THEORY 9
III.1. Clay ... 9
III.2. Fly Ash .. 10
III.3. Lime ... 12
III.4. Soil Stabilization 13

CHAPTER IV : METHODOLOGY 15
IV.1. Introduction .. 15
IV.2. Research Flow Chart 15
IV.3. Materials ... 17
IV.4. Tools ... 17
IV.5. Experiments ... 20
IV.5.1 Water Content 20
IV.5.2 Specific Gravity Test 20
IV.5.3 Grain Size Distribution Analysis 21
IV.5.4 Liquid Limit Test 21
IV.5.5 Plastic Limit Test 21
IV.5.6 Standard Proctor Compaction Test 22
IV.5.7 Sampling Process 22
IV.5.8 Direct Shear Test 23
IV. 6. Difficulties ... 23

CHAPTER V : DISCUSSION AND ANALYSIS 24
V.1. Moisture Content Test 24
V.2. Specific Gravity Test 24
V.3. Grain Size Distribution 25
LIST OF FIGURE

Figure 4.1. Flow chart procedure of the research methodology 16
Figure 5.1 Grain Size Distribution of Soil Samples 25
Figure 5.2 Liquid Limit Test Result .. 26
Figure 5.3 Standard Proctor Compaction Test Result 29
Figure 5.4 Direct Shear Test Result of Clay .. 30
Figure 5.5 Direct Shear Test of Clay and 4% Lime 0 day 31
Figure 5.6 Direct Shear Test of Clay and 6% Lime 0 day 31
Figure 5.7 Direct Shear Test of Clay and 8% Lime 0 day 32
Figure 5.8 Direct Shear Test of Clay and 4% Lime 7 day 32
Figure 5.9 Direct Shear Test of Clay and 6% Lime 7 day 32
Figure 5.10 Direct Shear Test of Clay and 8% Lime 7 day 33
Figure 5.11 Direct Shear Test of Clay and 4% Lime 14 day 33
Figure 5.12 Direct Shear Test of Clay and 6% Lime 14 day 33
Figure 5.13 Direct Shear Test of Clay and 8% Lime 14 day 34
Figure 5.14 Direct Shear Test of Clay, 6% Lime and 10% Fly-ash 0 day 35
Figure 5.15 Direct Shear Test of Clay, 6% Lime and 15% Fly-ash 0 day 35
Figure 5.16 Direct Shear Test of Clay, 6% Lime and 20% Fly-ash 0 day 35
Figure 5.17 Direct Shear Test of Clay, 6% Lime and 10% Fly-ash 0 day 36
Figure 5.18 Direct Shear Test of Clay, 6% Lime and 15% Fly-ash 0 day 36
Figure 5.19 Direct Shear Test of Clay, 6% Lime and 20% Fly-ash 0 day 36
Figure 5.20 Direct Shear Test of Clay, 6% Lime and 10% Fly-ash 0 day 37
Figure 5.21 Direct Shear Test of Clay, 6% Lime and 15% Fly-ash 0 day 37
Figure 5.22 Direct Shear Test of Clay, 6% Lime and 20% Fly-ash 0 day 37
Figure 5.23 Cohesion Values of Samples ... 40
Figure 5.24 Friction Angle of Samples ... 41
Figure 5.25 Direct Shear Results Comparison in 4 kg of Load 42
Figure 5.25 Direct Shear Results Comparison in 4 kg of Load 42
Figure 5.25 Direct Shear Results Comparison in 4 kg of Load 42
Figure 5.25 Direct Shear Results Comparison in 4 kg of Load 44
LIST OF APPENDIX

Water Content Result
Specific Gravity Result
Sieve Analysis Result
Hydrometer Analysis Result
Liquid Limit Test Result
Plastic Limit Test Result
Standard Proctor Test Result
Direct Shear Test Result
Pictures During Experiment
ABSTRACT

"THE SHEAR STRENGTH CHARACTERISTIC OF LIME AND FLY-ASH STABILIZED CLAY" prepared by Andreas Dhony Indrawan, Std.No 11 13 14030, International Program of Civil Engineering Department, Faculty of Engineering, Universitas Atma Jaya Yogyakarta.

This research investigates the shear strength characteristic of lime and fly-ash stabilized clay. Research consists of two processes: identifying soil properties and observing shear strength characteristic of soil. Observing shear strength characteristic had done by doing direct shear test. Initially, the optimum values of lime mixture were observed, samples were the soil mixture with 4%, 6%, and 8% of lime content. The optimum percentage of lime was used to create other variation by mix it with certain amount of fly-ash: 10%, 15%, and 20%. Research found that that all samples with 4%, 6%, or 8% of lime content have increasing cohesion value (c) along the time curing periods. In the other hands samples that mixed with 6% Lime and 10% Fly-ash; 6% Lime and 15% Fly-ash; 6% Lime and 20% Fly-ash shows that the cohesion value is decreasing along the time curing periods. Soil samples that mixed with lime only additive have decreasing friction angle value (ϕ) along curing periods but, all samples that added with lime and fly-ash show the increasing value of friction angle along the time curing. The result of direct shear test shows that sample booth lime only also lime and fly-ash sample indicates the improvement of shear strength (τ). The shear strength of clay which is added by lime mixed with fly ash is provides better result than lime only additive. Result of direct shear concludes that clay with 6% Lime and 15% Fly-ash content provides optimum value of shear strength (τ) which is reaching 0,629 kg/cm².

Keywords: Clay, lime, fly-ash, direct shear, cohesion, friction angle, shear strength