EQUALITY ON WORKLOAD ALLOCATION IN PERTAMINA GAS STATION SPBU 74.94205 DIPONEGORO, PALU

THESIS

Submitted as Partial Fulfill of the Requirements to Obtain the Bachelor of International Industrial Engineering Degree

Written by:

M. CAKRA ZSANDHIKA PRATAMA Student Number: 08 14 05559

INTERNATIONAL INDUSTRIAL ENGINEERING PROGRAM
FACULTY OF INDUSTRIAL TECHNOLOGY
UNIVERSITAS ATMA JAYA YOGYAKARTA
YOGYAKARTA
2012

STATEMENT OF WORK'S ORIGINALITY

I honestly declare that this thesis, which I wrote, does not contain the works or parts of the works of other people, except those cited in the quotations and bibliography, as a scientific paper should.

Yogyakarta, July 17, 2012

The writer,

M. Cakra Zsandhika Pratama

INTERNATIONAL INDUSTRIAL ENGINEERING THESIS On

EQUALITY ON WORKLOAD ALLOCATION IN PERTAMINA GAS STATION SPBU 74.94205 DIPONEGORO, PALU

Has Been Examined and Approved on July 23, 2012

Adviser,

Co-Adviser,

Luciana Triani Dewi, S.T., M.T.

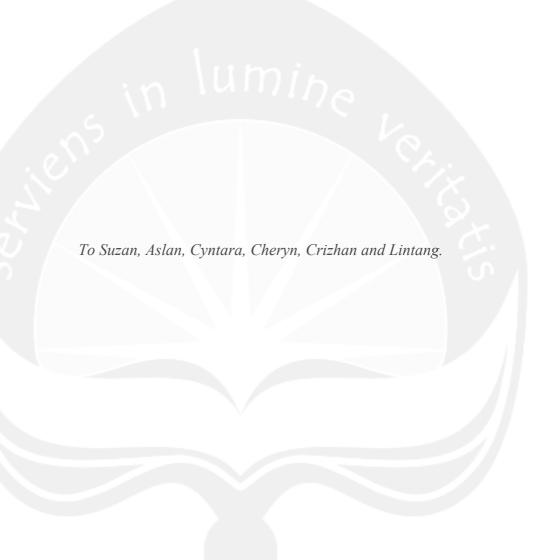
Yosephine Suharyanti, S.T., M.T.

Board of Examiners, Chairman,

Luciana Triani Dewi, ST., MT

// 11000an/

Ir. B. Kristyanto, M.Eng., Ph.D.


ember,

Yosef Daryanto, S.T., M.Sc.

Member,

Yoqyakarta, July 27, 2012
Dean of Faculty of Industrial Technology
Universitas Atma Jaya Yoqyakarta

Ir. B. FAXUIAS INTERNATION M. Eng., Ph.D.

ACKNOWLEDGMENT

I would like to thank to Allah swt. at first, for the opportunity that has been given to me to conduct this research and arrange and write this report. I am so blessed to finally finish my study and this journey has been always meaningful, and it somehow has turned me into who I am right now. I would also like to thank to all people from Universitas Atma Jaya Yogyakarta that have supported me through these four years and without them, I believe I would not be where I am standing at this point. I would like to thank to:

- 1. Ir. B. Kristyanto, M.Eng., Ph.D., Dean of Faculty of Industrial Technology,
- 2. The Jin Ai, S.T., M.T., D.Eng., Head of Industrial Engineering Study Program,
- 3. Ririn Diar Astianti, S.T., M.M.T., D.Eng.,
 Coordinator of International Industrial
 Engineering Program,
- 4. Luciana Triani Dewi, S.T., M.T. as Adviser of my research for helping me from the very beginning until this research report was done and for patiently teaching and educating me not only for this research but also for four years of my study,
- 5. Yosephine Suharyanti, S.T., M.T. as Co-Adviser of my research for helping me to arrange this research report from the very first time when this was only an idea in *Research Methodology* subject until what we can see at the last page of this research report,

- 6. Drs. Ign. Luddy Indra Purnama, M.Sc., for also helping me to develop this research in *Research Methodology* subject,
- 7. Hadisantono, S.T., M.T., Vice Dean III of Faculty of Industrial Technology and former Coordinator of International Industrial Engineering Program, and
- 8. All lecturers and staffs of Faculty of Industrial Technology.
- I would also like to thank to my friends and colleagues, with whom I spent these insane four years with in Universitas Atma Jaya Yogyakarta.
- 1. International Industrial Engineering (IIE) 2008 students: Chris, Toni, Jojo, Tatas, Sita, Dosq, and Yoas. Thank you for the support, the memories, the craziness, the awkwardness and the friendship from my very first day in UAJY,
- 2. Former members of Senat Mahasiswa FTI UAJY especially Bella, Bambang, Ayu, Ade, Carol, Shella, Advent, Suryo, Norma, Shasi, Edo, Sunu, Yosep, Robby, Rika, Chacha, Dina and Adith. Thank you for the "not easy" experiences. You guys have given me so many stories from the most beautiful until the most fragile one. How patience I was is one that turns me into who I am right now and I always thank for that,
- 3. Alumni and current IIE students especially batch 2007 and 2009. I am so honored to ever work with you all and thank you for the greatest stories and experiences, and
- 4. All students in Faculty of Industrial Technology.

I would also like to thank to my best friend Novi Fitria Suarmantha and Adriani Sarastasya Zenitha for the greatest experiences from senior high school until where we are now. Thank you for the unconditional support and for the friendship. How blessed I am as a person to have both of you as my true best friends. Also, thank to Vidya Meisyal Annisha for the friendship from my first "rough" year in high school.

My thank you also goes to all operators in Pertamina SPBU 74.94205, Diponegoro, Palu for the contribution on this research and to all supervisors and staffs for helping me collecting and arranging all data for this research.

I would like to also dedicate this research to my late grandfather, Bochari. It was just like yesterday when we watched TV in the morning with a glass of milk and tea, and bunch of bread then we walked down the street in the morning just to get me scared of neighbor's crazy dog. I would also like to thank to my late uncle, Sigit Wiryawan, and without him I would be totally lost in this city. My thank you also goes to late Pak Bejo for riding me to college for the first two and half years of my study.

Last but not least, I would also like to thank to the most important people in my life. Simply, I am no one without them.

 Suzan Bochari. Thank you for being the greatest mother ever. Thank you for the unconditional love and support that you always give whenever I need them,

- 2. Aslan Said. Thank you for being the super dad. Thank you for teaching me about life by examples and for being a great figure for my entire life,
- 3. Sebastian Lintang Kusuma Sumirat. Thank you for the unconditional support, trust, encouragement, and for always be here for me. I love you, kid!, and
- 4. Cyntara Adwinda, Cheryn Atriza and Crizhan Aditya.

 Thank you for being my "rival", my best friends
 whenever I am dying in boredom, and my wonderful
 sisters and brother.

I also would like to apologize if there are any mistakes I possibly make in this research. Thus, all suggestions and criticism are very well accepted in order to make this research report better. I also wish that this research would give benefit for the readers especially for those who majorly study about Industrial Engineering.

Yogyakarta, June 2012

M. Cakra Zsandhika Pratama

TABLE OF CONTENTS

Title Page		I
Statement o	of Work's Originality	II
Approval		III
Dedication		IV
Acknowledgm	nent	V
Table of Co	nent Ontents Oles	IX
List of Tab	oles	X
List of Fig	gures	XII
List of App	pendices	XIII
Abstract		XIV
Chapter 1	Introduction	1
	1.1. Background	1
	1.2. Problem Statement	3
	1.3. Research Objectives	3
	1.4. Scope of Research	
	1.5. Research Methodology	4
Chapter 2		6
Chapter 3	_	10
	3.1. Workload and Equality	10
	3.2. NASA Task Load Index	11
	3.3. Workload Unit	15
	3.4. Work Shift	15
Chapter 4	Data	20
	4.1. Initial Condition	20
	4.2. Data	23
Chapter 5	_	34
	5.1. Workload Unit Assessment	34
	5.2. Workload Calculation	34
	5.3. Work Shift Revision	46
Chapter 6	Conclusion and Suggestion	64
	6.1. Conclusion	64
_ 12 2 1	6.2. Suggestion	65
Bibliograph	пy	68
Annendices		70

LIST OF TABLES

Table Table Table	3.2.	NASA TLX Rating Scale and Definitions Typical Working Hours in Shift Work Operators' Work Schedule in January 2012	11 16 20
Table	4.2.	Total Number of 4-Wheeled Vehicles Served by All Operators in January 2012	24
Table	4.3.	Total Number of 2-Wheeled Vehicles Served by All Operators in January 2012	25
Table	4.4.	Total Number of Heavy Vehicles Served by All Operators in January 2012	26
Table	4.5.	Total Number of Vehicles Served by All Operators in January 2012	27
Table	4.6.	Percentage of Operators' Attendance in January 2012	28
Table	4.7.	Total Number of Vehicles Served during January 2012	29
Table Table		The Average of Vehicles Served per Day Workload Unit Assessment for 2-Wheeled Vehicles	30 31
Table	4.10.	Workload Unit Assessment for 4-Wheeled Vehicles	31
Table	4.11.	Workload Unit Assessment for Heavy Vehicles	33
Table Table		Operators' Workload in January 2012 Operators' Workload with Assumption of 100% Attendance	36 38
Table	5.3.	Workload Assigned at All Stations during January 2012	40
Table	5.4.	Workload Assigned in Morning Shift during January 2012	42
Table	5.5.	Workload Assigned in Day Shift during January 2012	42
Table	5.6.	Workload Assigned in Night Shift during January 2012	43
Table	5.7.	Average of Workload Assigned at All Stations per Day	45
Table	5.8.	New Work Shift Dividing Hour based on Workload Assigned for 8M-10D-6N Model	46
Table	5.9.	Number of Operators Required per Shift for 8M-10D-6N Model	48

Table	5.10.	Number of Operators Required at Each Station for 8M-10D-6N Model	49
Table	5.11.	Day and Evening Shift Dividing Hour for 8M-[5D-5E]-6N Model	49
Table	5.12.	Number of Operators Required per Shift for 8M-[5D-5E]-6N Model	50
Table	5.13.	Number of Operators Required at Each Station for 8M-[5D-5E]-6N Model	51
Table	5.14.	Maximum Workload Assigned and Work Capacity for 8M-[5D-5E]-6N Model	52
Table	5.15.	Revised Operators' Work Schedule for 8M-[5D-5E]-6N Model	54
Table	5.16.	Expected Total Workload Assigned to All Operators per Month for 8M-[5D-5E]-6N Model	55
Table	5.17.	New Work Shift Dividing Hour based on Workload Assigned for 9M-9D-6N Model	56
Table	5.18.	Number of Operators Required per Shift for 9M-9D-6N Model	57
Table	5.19.	Number of Operators Required at Each Station for 9M-9D-6N Model	57
Table	5.20.	Morning, Day, Afternoon and Evening Shift Dividing Hour for [4M-5D]-[4A- 5E]-6N Model	58
Table	5.21.	Number of Operators Required per Shift for [4M-5D]-[4A-5E]-6N Model	58
Table	5.22.	Number of Operators Required at Each Station for [4M-5D]-[4A-5E]-6N Model	59
Table	5.23.	Maximum Workload Assigned and Work Capacity for [4M-5D]-[4A-5E]-6N Model	59
Table	5.24.	Revised Operators' Work Schedule for [4M-5D]-[4A-5E]-6N Model	60
Table	5.25.	Expected Total Workload Assigned to All Operators per Month for [4M-5D]-[4A-5E]-6N Model	61
Table	5.26.	Workload Comparison between Current Workload and Expected Workload of Two Alternatives	62

LIST OF FIGURES

Figure	1.1.	Research Methodology	5
Figure	3.1.	NASA TLX Pencil and Paper Version Form	14
Figure	3.2.	Flowchart of Key Features of Shift	17
		Systems	
Figure	4.1.	The Layout of Pertamina SPBU	21
		Diponegoro 74.94205	
Figure	5.1.	Operator-Workload Chart during January	3 9
		2012	
Figure	5.2.	Working Hour-Workload Index Chart	41
		during January 2012	
Figure	5.3.	Workload Index-Working Shift per	43
		Station Chart during January 2012	
Figure	5.4.	Total Workload Index-Working Shift	44
		Chart during January 2012	
Figure	5.5.	Operator-Workload Chart for Current	63
		Work Shift and New Work Shift	

LIST OF APPENDICES

Appendix A	Data of Number of Vehicles Served by All
	Operators in January 2012
Appendix B	Data of Number of Incoming Vehicles to All
	Stations in January 2012
Appendix C	Number of Vehicles Served by Operators
	Data Form
Appendix D	Workload Unit Assessment Data Form

ABSTRACT

Workload distribution is one factor that influences operator or labor's performance. In some workplaces, in this case is Pertamina gas station SPBU 74.94205 Diponegoro, Palu, there is a circumstance where the distribution of operators' workload is not equal. It is indicated when there are some operators tend to work more than the other operators. This research is focused on identifying the current workload distribution and revising the work shift (7-hour Morning Shift, 8-hour Day Shift, 9-hour Night Shift), which is one factor that impact workload distribution.

Two alternatives of work shift model, based on Miller's suggestion, are proposed to the company. The expected workload distributions of the proposed models are compared to the current work shift's workload distribution. The result of analysis shows that the current work shift has unequal workload distribution, indicated by its standard deviation, which is higher than the standard deviation of two alternatives of work shift model that have been adjusted. The adjusted work shift model with the lowest standard deviation indicates that the expected workload assigned is more equally allocated. This work shift model is then proposed as the company's new work shift (4-hour Morning Shift, 5-hour Day Shift, 4-hour Afternoon Shift, 5-hour Evening Shift, 6-hour Night Shift). While the current work shift only allocates operators to each shift, the proposed work shift now allocates operators to each station in each shift.