CHAPTER 8 CONCLUSION

After conducting two solution model for inventory policy with decreasing demand problem by using some lot sizing technques in Microsoft[®] Excel, the conclusions of this research are drawn.

- a. Decrasing demand problem becomes important to be solved in order to minimize the total cost from ordering and holding cost because of over number of order and inventory.
- b. Decreasing demand problem for dependent demand characteristic can be solved by using Material Requirement Planning approach with lot sizing techniques.
- c. The characteristic of decreasing demand problem can be seen from the demand trend with decreasing pattern and follows Exponential distribution.
- d. Solution model 1 with Lot for Lot technique for HGAs and 5 different lot sizing technique for Suspensions represents that Incremental method provides the lowest total cost.
- e. Solution model 2 with 5 different lot sizing technique for HGAs and Suspensions represents the same result, Incremental method provides the lowest total cost.
- f. The appropriate lot sizing technique for decreasing demand problem is Incremental method. This method attemps to make the ordering cost and holding cost remain equal per period of time.

REFERENCE LIST

- Benkherouf, L. (1995). On an inventory model with deteriorating items and decreasing time-varying demand and shortages, *2217*(1994).
- Benkherouf, L. (1998). Note on a deterministic lot-size inventory model for deteriorating items with shortages and a declining market, *25*(1), 63–65.
- Chu, P., & Chen, P. S. (2002). A note on inventory replenishment policies for deteriorating items in an exponentially declining market, *29*, 1827–1842.
- Goyal, S. K., & Giri, B. C. (2003). A simple rule for determining replenishment intervals of an inventory item with linear decreasing demand rate, 83, 139– 142.
- Hill, R. M., Omar, M., & Smith, D. K. (1999). Stock replenishment policies for a stochastic exponentially-declining demand process, *116*, 374–388.
- Ouyang, L., & Wu, K. (2005). An Inventory Model For Deteriorating Items With Exponential Declining Demand And Partial Backlogging, *15*(2), 277–288.
- Pujawan, N., & Kingsman, G. (2003). Properties of lot sizing rules under lumpy demand. International Journal of Production Economics, 81 – 82(1), 295 – 307.
- Sicilia, J., San-José, L. a., & García-Laguna, J. (2011). An inventory model where backordered demand ratio is exponentially decreasing with the waiting time. *Annals of Operations Research*, 199(1), 137–155. doi:10.1007/s10479-011-0944-x.
- Tersine, Richard J. (1994). Principles of Inventory and Materials Management. New Jersey: Prentice – Hall International, Inc.
- Wee, Hui Ming (1995). a deterministic lot-size inventory model for deteriorating items with shortages and a, 22(3), 345–356.
- Yang, J., Zhao, G. Q., & Rand, G. K. (2004). An eclectic approach for replenishment with non-linear decreasing demand. *International Journal of Production Economics*, 92(2), 125–131. doi:10.1016/j.ijpe.2003.09.017.

Zhao, G. Q., Yang, J., & Rand, G. K. (2001). Heuristics for replenishment with linear decreasing demand, *69*.

