PROSIDING

SEMINAR NASIONAL ILMU KOMPUTER
UNIVERSITAS DIPONEGORO
2014

Sabtu, 18 Oktober 2014
Hotel Santika Premier Semarang
PROSIDING

SEMINAR NASIONAL ILMU KOMPUTER
UNIVERSITAS DIPONEGORO
2014

Inovasi Komputasi dan Teknologi Informasi dalam Meningkatkan Pelayanan Publik pada Era Digital

Hotel Santika Premier Semarang
Sabtu, 18 Oktober 2014

EDITOR:
SUTIKNO
HELMIE ARIF WIBAWA

Jurusan Ilmu Komputer/ Informatika
Fakultas Matematika dan Ilmu Pengetahuan Alam
Universitas Diponegoro
TIM REVIEWER:

- Prof. Dr. T. Basarudin, M.Sc. Ph.D
 Universitas Indonesia

- Prof. Dr. Ir. Aniati Murni Arymurthy, M.Sc
 Universitas Indonesia

- Hisar Maruli Manurung, S.Kom., Ph.D.
 Universitas Indonesia

- Prof. Drs. Ec. Ir. Rianarto Sarno, M.Sc., Ph.D
 Institut Teknologi Sepuluh Nopember

- Prof. Dr. Ir. Eko Sediyono
 Universitas Kristen Satya Wacana

- Dr. Retno Kusumaningrum, M.Kom
 Universitas Diponegoro
SUSUNAN PERSONALIA
SEMINAR NASIONAL ILMU KOMPUTER
UNIVERSITAS DIPONEGORO 2014

PENANGGUNG JAWAB

Dr. Muhammad Nur, DEA
Dekan FSM UNDIP
Dr. Agus Subagio, M.Si
Pembantu Dekan I FSM UNDIP
Dr. Widowati, M.Si
Pembantu Dekan II FSM UNDIP
Nuradin Bahtiar, S.Si, MT
Ketua Jurusan Ilmu Komputer

PANITIA KEHORMATAN

Prof. Drs. Ec. Ir. Riyanarto Sarno, M.Sc.,Ph.D.
Guru Besar FTI ITS
Prof. Dr. Ir. Marimin, M.Sc
Guru Besar FTP IPB
Prof. Dr. Ir. Eko Sediyono, M.Kom
Guru Besar Informatika UKSW
Prof. Dr. T. Basarudin, M.Sc. Ph.D
Guru Besar Fasilkom Universitas Indonesia
Prof. Dr. Ir. Aniati Murni Aryanurthy, M.Sc.
Guru Besar Fasilkom Universitas Indonesia
Hisar Maruli Manurung, S.Kom., Ph.D.
Koord. Bidang Ilmu Komputer (MIK / DIK) Fasilkom Universitas Indonesia
Drs. Bayu Surarso, M.Sc, Ph.D
Ketua Program Magister Sistem Informasi UNDIP

PANITIA

Sukmawati Nur Endah
Priyo Sidik Sasongko
Helmie Arif Wibawa
Beta Noranita
Panji Wisnu Wirawan
Indriyati
Indra Waspada
Putut Sri Warsito
Khodijah
Kushartantya
Djalal Er Riyanto
Eko Adi Sarwoko
Aris Sugiharto
Suhartono
Satriyo Adhy
Sutikno
Ragil Saputra
Retno Kusumaningrum
DAFTAR ISI

Halaman Judul.. i
Tim Reviewer.. ii
Susunan Panitia.. iii
Kata Pengantar .. v
Daftar Isi ... vii

MAKALAH UTAMA

1. INOVASI KOMPUTASI DAN TEKNOLOGI INFORMASI DALAM MENINGKATKAN
 PELAYANAN PUBLIK DI ERA DIGITAL (I)
 Rylanarto Sarno.. A-1

2. DUKUNGAN SISTEM PENGAMBILAN KEPUTUSAN CERDAS UNTUK
 PENINGKATAN EFEKTIVITAS DAN EFISIENSI KEBIJAKAN PELAYANAN PUBLIK
 Marimin.. B-1

MAKALAH SIDANG PARALEL

3. IMPLEMENTASI KRIPTOGRAFI KUNCI PRIVAT UNTUK KEAMANAN LAMPIRAN
 SURAT ELEKTRONIK
 Veronica Lustana, Budi Hartono.. 1

4. APLIKASI KRIPTOGRAFI SUARA MENGGUNAKAN ALGORITMA ADVANCED
 ENCRYPTION STANDARD (AES)
 Riswan Saputra, Sukmawati Nur Endah, Ragil Saputra .. 10

5. IMPLEMENTASI ALGORITMA KRIPTOGRAFI DENGAN S-BOX DINAMIS
 BERGANTUNG PADA KUNCI UTAMA BERBASIS ADVANCED ENCRYPTION
 STANDARD (AES)
 Herdaya Adiyasa, Putut Sri Wasito, Satriyo Adhy.. 15

6. PENGENALAN WAJAH SECARA REAL TIME DENGAN SMARTPHONE ANDROID
 Yullius Harjoseputro, Suyoto, B.Yudi Dwiantyianta... 24

7. SEGMENTASI DAN PENGENALAN POLA NOTASI BALOK UNTUK
 MENGHASILKAN NADA BERIRAMA BERBASIS IOS
 Ozzi Suria, Suyoto, B.Yudi Dwiantyianta... 30

8. APLIKASI SPEECH TO TEXT BERBAHASA INDONESIA MENGGUNAKAN MEL
 FREQUENCY CEPSTRAL COEFFICIENTS DAN HIDDEN MARKOV MODEL (HMM)
 Eko Widyanto, Sukmawati Nur Endah, Satriyo Adhy, Sutikno... 39

9. PENGENALAN KARAKTER HURUF KOREA (HANGEUL) MENGGUNAKAN
 JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION
 Suprehatini, Sukmawati Nur Endah, Indriyati ... 45
10. FALSE ACCEPTANCE RATE DAN FALSE REJECTION RATE PADA HASIL PENGENALAN WAJAH DENGAN GRAY LEVEL CO-OCCURRENCE MATRIX DAN PROBABILISTIC NEURAL NETWORK
Toni Wijanarko Adi Putra. .. 51

11. APLIKASI SPEECH RECOGNITION BAHASA INDONESIA DENGAN METODE MEL FREQUENCY CEPSTRAL COEFFICIENTS DAN LINEAR VECTOR QUANTIZATION UNTUK PENGENDALIAN GERAK ROBOT
Anggoro Wicaksono, Sukmaadi Nur Endah, Satriyo Adhy, Sutikno .. 61

12. SISTEM PENDUKUNG KEPUTUSAN PENAMBANGAN STOK OBAT MENGGUNAKAN MODEL FUZZY SUGENO (STUDI KASUS: PUSKESMAS KARANGANYAR KEBUMEN)
Nuki Saefudin Zuhri, Priyo Sidik Sasongo, Eko Adi Sarwoko .. 67

13. ANALISIS DESAIN SISTEM PENDUKUNG KEPUTUSAN PERMOHONAN PINJAMAN PADA KOPERASI DENGAN ANALISA KREDIT BERBASIS 5C
Teguh Wahyono, Ariya Dwika Cahyono.. 75

14. DECISION SUPPORT SYSTEM PENERIMAAN KARYAWAN BARU DAN PROMOSI JABATAN MENGGUNAKAN METODE PROFILE MATCHING (STUDI KASUS : PT. BFI FINANCE INDONESIA TBK JAMBI)
Lucy Simorangkir, Novhirtamely Kahar, Rullyanto .. 81

15. DECISION SUPPORT SYSTEM PEMILIHAN JENIS BANTUAN LOGISTIK PANGAN UNTUK KEBUTUHAN KORBAN BENCANA ALAM
Wivien Hadikurniawati, Agung Prihando. .. 88

16. SISTEM PENENTUAN KELOMPOK UANG KULIAH TUNGGAL DI UNIVERSITAS DIPONEGORO MENGGUNAKAN ANALYTICAL HIERARCHY PROCESS (AHP)
Stefanus Sendana, Helmie Arif Wibawa, Sutikno .. 91

17. SISTEM PENDUKUNG KEPUTUSAN PENENTUAN JENIS PERAWATAN KULIT WAJAH DENGAN METODE ANALYTICAL HIERARCHY PROCESS (AHP) (STUDI KASUS : D'JOENA SKIN CARE JAMBI)
Novhirtamely Kahar, Lucy Simorangkir, Rivera Vernanda .. 97

18. MODEL INFORMASI PUBLIK BERBASIS PETA MOBILE SEBAGAI PANDUAN PENCARIAN TEMPAT LAYANAN MASYARAKAT DI KOTA SEMARANG
Arief Tananto, Heribertus Yullanto .. 103

19. SISTEM INFORMASI GEOGRAFIS PENYEBARAN PENDUDUK DI PROVINSI JAWA TENGAH
Anggi Ayu Meidamara, Nuradin Bahtiar, Helmie Arif Wibawa .. 112

20. SISTEM INFORMASI GEOGRAFIS PEMANTAUAN KEMATIAN IBU DAN ANAK DI DINAS KESEHATAN PROVINSI JAWA TENGAH
Iffa Shofia M., Ragil Saputra, Priyo Sidik Sasongo .. 119

21. SISTEM INFORMASI GEOGRAFIS PEMETAAN KEJADIAN LEPTOSPIROSIS DI KOTA SEMARANG BERBASIS WEB
Suwita Imaniar Sitorus, Ragil Saputra, Kushartantiya .. 126
22. REKAYASA INFORMASI DATA STATISTIK DEMOGRAFI SEBAGAI DASAR SELEKSI TINGKAT KEMISKINAN WARGA SERTA PENENTUAN PRONAKIS
Purwatinginingsiyas, Aji Supriyanto.. 133

23. ANALISIS DAN PEMODELAN SISTEM SUPPLY CHAIN MANAGEMENT (SCM) DISTRIBUSI BANTUAN LOGISTIK BENCANA ALAM
Gusti Ayu Sinta Adhyani... 142

24. ADOPSI SISTEM MULTI-AGEN PADA PEMBUATAN MODEL MANAJEMEN RANTAI PASOK ELEKTRONIK: REHABILITASI DAN REKONSTRUKSI PASCABENCANA
Hendrikus Andrianus Kantur.. 150

25. PENGEMBANGAN MODEL DINAMIS UNTUK MENINGKATKAN PRODUKSI BUDIDAYA IKAN KERAPU DALAM KARAMBA JARING APUNG DI KEPULAUAN KARIMUN JAWA, KABUPATEN JEPAKA
Suhatrito, Istiyantra Samidjan, Sardiyatno...................................... 158

26. MODEL E-COMMERCE PADA UMKM HANDICRAFT DAN BATIK DENGAN METODE CMS DAN OPTIMISASI DI MESIN PENCARI INTERNET
Felix Andreas Sutanto, Sri Mulyani.. 164

27. REKAYASA INFORMASI K I A - K B PADA POSYANDU TINGKAT KECAMATAN DENGAN METODE SISTEM MANAJEMEN ISI
Siti Munawaroh, Sri Eniayi... 174

28. PENGUKURAN KINERJA SISTEM INFORMASI KESESUAIANNYA DENGAN STRATEGI TEKNOLOGI INFORMASI (STUDI Kasus: PDAM TIRAWENING)
Sali Alias M.. 184

29. EVALUASI KINERJA SISTEM INFORMASI KANTOR PELAYANAN PAJAK PRATAMA MENGGUNAKAN FRAMEWORK COBIT 4.1 (STUDI Kasus: KPP PRATAMA SALATIGA)
Rycho Christian Pratama, Imanuel Susanto, Agustinus Fritz Wijaya................................. 195

30. PERENCANAAN STRATEGIS SISTEM INFORMASI/TEKNOLOGI INFORMASI MENGGUNAKAN ZACHMAN FRAMEWORK (STUDI Kasus: PERPUSTAKAAN DAN ARSIP DAERAH KOTA SALATIGA)
Adi Kuntoro, Imanuel Susanto, Agustinus Fritz Wijaya.......................... 201

31. MOBILE APPLICATION SEBAGAI MEDIA EDUKASI DAN PENYEBARAN INFORMASI TAKMIR DAN LEMBAGA AMIL ZAKAT MASJID BAHTURAHMAN SEMARANG
Priyo Sidik Sasonko, Helmie Arif Wibawa, Ragil Saputra.............................. 210

32. PENGENDALIAN SUDUT ARAH MOBILE ROBOT MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION
Diah Putu Dwijayanti, Sutikno, Sukmawati Nur Endah, Priyo Sidik Sasonko.................. 216

33. SISTEM PEMANTAUAN AKTIVITAS PENGGUNA PADA JARINGAN CLIENT-SERVER
Siti Khusnul Anisa... 223
34. PENGEMBANGAN SISTEM PEMBELAJARAN PADA ANGKA AKSARA BALI MENGGUNAKAN AUGMENTED REALITY
 Pande Putu Gede Putra Pertama..228
35. PEMANFAATAN MEDIA INTERAKTIF SEBAGAI ALAT BANTU PENGENALAN POTENSI OTAK ANAK USIA 4-6 TAHUN
 R. Sandhika Gath A...235
36. VISUALISASI INFORMASI KEMAJUAN BELAJAR MAHASISWA UNTUK SARANA MONITORING PROSES BELAJAR MENGAJAR
 Sunardi, Sri Mulyani...243
37. AKSESIBILITAS FISIK UNTUK DISABIL pada Bangunan dan Fasilitas Publik di Provinsi DKI Jakarta berbasis WEB
 Endang Sri Rahayu...248
PENGENALAN WAJAH SECARA REAL TIME DENGAN SMARTPHONE ANDROID

Yulius Harjoseputro, Suyoto, B.Yudi Dwiantiyanta

Universitas Atmajaya Yogyakarta, Yogyakarta 55281
yuliusharjoseputro@yahoo.com, suyoto@mail.uajy.ac.id, yudi-dwi@mail.uajy.ac.id

Abstrak

Manusia memiliki kemampuan untuk mengenali wajah dengan akurasi minimal 90% bahkan ketika tidak bertemu dengan wajah tersebut selama puluhan tahun, namun kemampuan seseorang untuk mengidentifikasi orang tersebut tetap tidak mengingat bahkan lupa identitas siapakah orang tersebut. Oleh karena itu diperlukan suatu sistem untuk mengenali wajah seseorang yang dapat digunakan sebagai pengingat apakah seseorang yang dijumpai tersebut sudah pernah dikenal sebelumnya atau belum. Pada tulisan ini, penulis melakukan pengenalan wajah yang menggunakan metode eigenface sebagai metode yang digunakan secara real time. Pada pembuatan sistem ini, penulis menggunakan bahasa pemrograman java dan sistem operasi android sebagai platformnya. Tujuan dalam penulisan ini adalah dapat mengembangkan aplikasi pengenalan wajah berbasis mobile dengan tingkat akurasi dan kecepatan yang lebih baik secara real time. Pada tahap implementasi yang dilakukan, menghasilkan hasil pengenalan yang terbaik yaitu dengan ditangkap akurasi sebesar 66,67% dengan rata-rata waktu pengenalanannya adalah 333,33 ms dengan kondisi pencahayaan yang mengunduk.

Kata Kunci : eigenface, android, real time

1. LATAR BELAKANG

Pembuatan teknologi di bidang informasi khususnya pada penggunaan mobile sangat tumbuh dengan pesat, sangat banyak sekali berbagai macam aplikasi yang telah dirancang sedemikian rupa untuk menyenangkan para penggunanya. Salah satu sistem operasi yang ada pada mobile adalah android. Android menjadi salah satu pilihan sebagai platform dalam suatu penelitian dikarenakan sistem operasi android itu merupakan produk open source yang diprakarsai oleh google dan dapat berjalan pada CPU x86 [1]. Hal ini juga disampaikan oleh Rayarik, dkk pada tahun 2012, bahwa fitur utama dari sistem operasi android adalah teknologi open source, dukungan java, dan mendukung multitasking, hal ini yang membuat memperkuat dalam pemrograman menggunakan system operasi android [2]. Selain itu jumlah pengguna android di dunia mencapai lebih dari 1 miliar dan jumlah pengguna android di Indonesia itu mencapai 47 juta atau sekitar 14% dari seluruh total pengguna ponsel [3].

Menurut Kremic dan Subasi pada tahun 2011, saat ini ponsel telah menjadi mesin yang running dengan sangat cepat di ukurannya yang medium, di mana pada tingkat aplikasi ada banyak aplikasi yang berjalan dan banyak data yang disimpan [4]. Salah satu aplikasi yang cukup dikenal dalam hal ini adalah aplikasi untuk pengenalan wajah atau dalam hal ini disebut dengan face recognition. Pengenalan wajah merupakan penelitian yang aktif sejak tahun 1980-an [5]. Pengenalan wajah telah menjadi topik penelitian yang populer dalam computer vision [6]. Banyak pekerjaan yang telah dilakukan yang berkaitan dengan pengenalan wajah [7]. Pengenalan wajah dapat digunakan sebagai pengingat apakah kita sudah pernah mengenali orang tersebut atau belum. Terkadang pada saat kita menjumpai seseorang, kita seringkali merasa sebetulnya sudah pernah mengenali atau familiar dengan orang itu tetapi tidak mengingat siapakah orang tersebut. Menurut Bahrick, dkk pada tahun 1975, manusia bisa mengenali wajah-wajah dengan akurasi minimal 90% bahkan ketika beberapa wajah tidak pernah terlihat sampai 50 tahun, namun kemampuan kita untuk mengenali atau mencocokan wajah tersebut agak kurang [8].

Menurut Gobbin dan Haxby pada tahun 2007, pengenalan individu yang familiar sangat penting untuk interaksi sosial yang tepat [9]. Pengenalan wajah-wajah bergantung lebih pada hubungan spasial antara fitur-fitur, fitur yang sangat intern daripada karakteristik featural [10]. Dalam hal ini penulis akan melakukan pengembangan aplikasi pengenalan wajah secara real time dengan menggunakan metode eigenface pada perangkat mobile, sehingga yang tujuan penulis dalam melakukan penelitian ini adalah dapat mengembangkan sebuah aplikasi untuk mengenali wajah familiar yang terdapat dalam album foto.

Dalam penelitian sebelumnya menurut Soliman, dkk pada tahun 2013, telah dilakukan penelitian pengenalan wajah menggunakan aplikasi mobile dengan menggunakan data trainingnya yaitu 3 orang dengan masing-masing orang memiliki 3 bentuk wajah yang tersimpan tanpa variasi wajah atau pose. Hasil penelitianannya tersebut hanya menghasilkan...
tingkat akurasinya 92% dengan rata-rata pengenalannya adalah 0,35 detik [11]. Artikel ini membahas tentang langkah-langkah dalam mengembangkan aplikasi pengenalan wajah berbasis mobile secara real time untuk tingkat akurasi dan waktu pengenalan yang lebih baik.

Untuk menghindari kerancuan dan ketidakjelasan dalam pembahasan, adapat batasan masalahnya sebagai berikut:

a. Metode pengenalan wajah yang digunakan dalam penelitian ini adalah Eigenface

b. Jarak dari kamera dengan target subject maksimal 160 cm.

c. Proses pengujian yang dilakukan pada kondisi ideal yaitu pada siang hari dan pada kondisi pencahayaan yang mendukung.

d. Tools yang digunakan untuk mengembangkan aplikasi ini adalah Eclipse.

e. Sistem operasi digunakan pada aplikasi ini merupakan sistem operasi Android dengan minimal sistem operasi nya yaitu Android 2.3.3.

2. TINJAUAN PUSTAKA

Wajah merupakan sebuah model visual multidimensional yang kompleks dan untuk menggambarkan pengenalan wajah secara komputasi. Pada penelitian Tayal, dkk pada tahun 2013, digunakan sebuah metode eigenface sebagai metode digunakan untuk mengenali wajah, hanya pada akibat ini masih menggunakan input citra yang realtime, atau menggunakan input citra yang ada sebagai input citranya untuk mengenali wajah [12]. Menurut penelitian Georgescu pada tahun 2007, sebuah sistem dapat secara real-time mengenali wajah dalam video stream yang disediakan oleh kamara yang dilaksanakan dan memiliki deteksi real time [13]. Kelebihan dari penelitian ini yaitu dengan melakukan deteksi wajah secara real time pengenalan wajah dan dapat memberikan informasi lembaga-lembaga yang berkепentingan.

Menurut penelitian dari Kumar, dkk pada tahun 2011, penelitian ini membahas arsitektur client server melalui penggunaan teknologi bluetooth melalui fase deteksi wajah yang dapat diimplementasikan [16]. Kelebihan dari penelitian ini adalah dalam CSAB (Client Server Architecture menggunakan Bluetooth) komunikasi antara klien dan server tanpa ketertarungan pada pihak ketiga mana seperti di CSAB (Client Server Architecture menggunakan HTTP) komunikasi antara klien dan server tergantung pada ketersediaan serta keandalan GPRS penyedia layanan. Kelebihan dari penelitian ini CSAB dan CSAB belum dapat dikombinasikan bersama-sama dalam sebuah aplikasi sehingga kinerja dan ketersediaan belum maksimal.

Adapun penelitian tentang pengenalan wajah dengan metode yang berbeda, yakni metode tentang sebuah metode ekstraksi fitur sangat baik efisien, mengunggulkan dengan jaringan syaraf probabilistik (PNN) untuk real-time pengenalan wajah. Metode yang diusulkan dievaluasi pada database wajah ORL [17]. Kelebihan dari penelitian ini adalah otentifikasi pengenalan wajah ini dapat diimplementasikan dengan tingkat pengenalan terbaik, yakni 100%.

Pengenalan Wajah (Face Recognition)
Pengenalan wajah adalah suatu kegiatan yang aktif di bidang biometric [18]. Bagian terpenting dalam pengenalan wajah adalah pendeteksi wajah – bagian dari wajah [19]. Teknik pengenalan wajah secara garis besar dapat dibagi menjadi 3 kategori berdasarkan metodologi akuisisi data wajah [20], diantaranya:

a. Metode yang beroperasi pada intensitas
b. Urutan dalam pengambilan gambar
c. Informasi 3D atau citra inframerah

Pengenalan wajah ini, pada dasarnya digunakan untuk mengidentifikasi orang dari gambar atau video [21].

Algoritma Eigenface
Eigenface adalah salah satu metode pengenalan wajah berbasis bentuk wajah [22] dan merupakan suatu metode yang paling sederhana dan yang paling efisien [15]. Dalam metode eigenface, seri gambar (training set) yang direpresentasikan sebagai vektor. Ide dari egen itu sendiri adalah untuk mengetahui ruang-dimensi yang lebih rendah di mana vektor pendek akan mencerminkan wajah [23]. Metode
eigenface telah ditetapkan untuk mengekstrak wajah dari gambar wajah manusia. Untuk mengekstrak wajah manusia, digunakan teknik yang sering digunakan yaitu Principal Component Analysis (PCA). Cara kerja teknik ini adalah dengan menguraikan citra wajah ke dalam satu set kecil karakteristik gambar dan dilakukan pengenalan dengan memproyeksikan wajah baru ke sebuah eigenspace dimensi rendah lalu dilakukan perhitungan jarak antara gambar yang dihasilkan di eigenspace dengan data yang sudah tersimpan.

3. METODOLOGI PENELITIAN

Langkah penelitian yang dibuat pada tulisan ini dapat dilihat pada gambar dibawah ini:

Gambar 1. Alur langkah penelitian untuk pengenalan wajah.

Pada gambar 1 diatas proses penelitian dimulai dari input image, yang dalam hal ini dilakukan menggunakan kamera smartphone android, setelah itu akan dilakukan proses deteksi wajah, yang akan mendeteksi apakah inputan citra yang dimasukkan itu berupa gambar wajah atau bukan. Setelah terdeteksi sebagai gambar wajah, maka hal yang akan dilakukan kembali adalah proses preprocessing, dimana pada proses ini akan dilakukan proses perubahan image warna ke image grayscale. Setelah itu, lalu dilakukan perhitungan nilai eigennya. Setelah nilai eigen tersebut diketahui, lalu langkah selanjutnya yang dilakukan adalah proses pengenalan wajah. Pada proses ini akan dilakukan pencarian dari eigen vector dari database wajah yang paling mendekati dengan nilai eigen dari citra input. Dalam hal ini penulis menggunakan library opencv untuk melakukan proses face detection dan face recognition.

Hal yang berbeda yang dilakukan pada penelitian ini dibandingkan pada penelitian Tayal, dkk pada tahun 2013 adalah pada saat mendapatkan input citranya yang masih belum menggunakan camera real time [12]. Pada penelitian ini cara untuk mendapatkan input citranya adalah dengan cara real time pada camera smartphone android jadi dalam 1 detik itu akan menghasilkan berapa frame per second (fps). Dari hasil frame per second (fps) tersebut, itu yang akan menjadi inputan citra nya yang akan di deteksi dan dilakukan preprocessing untuk selanjutnya dilakukan pengenalan. Selain itu pada penelitian ini menggunakan beberapa variasi pose yang belum pernah dilakukan pada penelitian Soliman, dkk pada tahun 2013 [11]. Variasi pose yang digunakan dalam penelitian ini menggunakan 3 macam variasi pose, yakni menggunakan 3 variasi pose, 5 variasi pose, dan 9 variasi pose. Selain itu pada penelitian ini juga menggunakan smartphone android, dimana penelitian penelitian ini pada smartphone android digunakan untuk mendapatkan input citra yang dibutuhkan untuk pengenalan wajah, serta smartphone android ini digunakan penulis untuk melakukan proses komputasi dalam melakukan proses perhitungan dalam pengenalan wajah.

Metode yang digunakan dalam pelaksanaan penelitian ini adalah sebagai berikut:

a. Metode Observasi

Metode ini dilakukan dengan cara pengumpulan data dengan mengadakan pengamatan dan pencatatan secara langsung dan sistematis terhadap objek atau proses yang terjadi.

b. Metode Penelitian Kepustakaan (Library Research)

Metode ini dilakukan dengan cara mempelajari literatur, buku, atau jurnal yang ada kaitannya dengan obyek yang diteliti.

c. Metode Dokumentasi

Metode ini dilakukan dengan cara mengumpulkan data dan informasi yang diperlukan dari sumber-sumber.

d. Metode Pembangunan Perangkat Lunak

Metode ini dilakukan dengan cara melakukan implementasi dan desain sistem yang akan dibuat.

4. HASIL DAN PEMBAHASAN

Pada hasil dan pembahasan ini akan ditunjukan database wajah asli yang tersimpan serta hasil pengujian menggunakan citra uji yang telah disiapkan untuk mengukur dari tingkat akurasi dan waktu yang dibutuhkan dalam mengenali wajah. Dalam penelitian ini, database wajah yang tersimpan adalah 15 wajah yang berbeda dengan masing - masing wajah memiliki 3 variasi, 5 variasi, dan 9 variasi bentuk yang didapatkan dari camera real time pada saat gambar didapatkan. Ukuran citra yang digunakan dalam penelitian ini adalah 256x256
Pada gambar 2 diatas merupakan citra uji, yang digunakan untuk menentukan apakah citra uji tersebut dengan citra yang tersimpan di dalam database tidak. Dalam percobaan ini, akan dilakukan pembuatan selama 1 detik, untuk mengujilah dalam 1 berapa frame per second (fps) yang dihasilkan memiliki tingkat akurasi berapa. Citra uji diatas dahuflah akan di lakukan proses preprocessing sehingga dahulu sebelum dikenal. Citra yang akan diproses dalam database merupakan citra yang sudah di dalam database merupakan citra yang sudah dipercepatan proses preprocessing terlebih dahulu. Pada pengujian, akan dibagi menjadi 3 pengujuan : 1. Pengujian menggunakan database citra wajah dengan 3 variasi pose. 2. Pengujian menggunakan database citra wajah dengan 5 variasi pose. 3. Pengujian menggunakan database citra wajah dengan 9 variasi pose.

Berdasarkan hasil penelitian, pada pengujian yang dilakukan, dari proses pengambilan selama 1 detik dapat menghasilkan 5 frame per second (fps). Dari 5 frame per second (fps) yang dihasilkan dari kamera tersebut, setelah dilakukan pengenalan wajah maka dapat ditarik kesimpulan dari 5 hasil citra uji yang terdeteksi tersebut, menghasilkan pengenalan wajah yang benar sebanyak 2 citra. sedangkan citra yang tidak menghasilkan pengenalan wajah yang benar adalah 3 citra. Oleh karena itu, tingkat akurasi yang dihasilkan pada percobaan secara real time selama 1 detik menghasilkan akurasi sebesar 40% dengan rata-rata pengenalannya per frame adalah 200 ms.

Dengan penelitian pada pengujian yang dilakukan, maka dapat ditarik kesimpulan bahwa pengujian secara real time selama 1 detik, dapat menghasilkan 4 frame per second (fps). Dari 4 hasil citra uji yang terdeteksi tersebut, menghasilkan pengenalan wajah yang benar sebanyak 2 citra. sedangkan citra yang tidak menghasilkan pengenalan wajah yang benar adalah 2 citra. Oleh karena it, tingkat akurasi yang dihasilkan pada percobaan secara real time selama 1 detik menghasilkan akurasi sebesar 50% dengan rata-rata pengenalannya per frame adalah 250 ms.

Gambar 4. Grafik Rata-Rata Waktu Pengenalan per frame dari 3 percobaan.
5. KESIMPULAN DAN SARAN

Berdasarkan percobaan diatas, dapat ditarik kesimpulan bahwa dalam pengenalan wajah secara real time, untuk menghasilkan tingkat akurasi yang tinggi dibutuhkan sample citra wajah yang tersimpan di database semakin banyak semakin tingkat akurasi yang dihasilkan juga semakin baik. Tetapi semakin banyak pula citra wajah yang tersimpan di database, maka waktu pengenalan wajah pun juga akan semakin lama. Hal itu ditunjukkan pada percobaan diatas, dengan menggunakan citra ukuran 256x256 dan dilakukan 3 kali percobaan, yakni pada percobaan pertama dengan menggunakan 3 variasi pose, lalu percobaan kedua dengan menggunakan 5 variasi pose, dan percobaan ketiga dengan menggunakan 9 variasi pose, yang menunjukkan bahwa pada percobaan ketiga dengan menggunakan 9 variasi pose mendapatkan tingkat akurasi yang lebih baik tetapi membutuhkan rata-rata waktu pengenalan per frame nyi juga lebih lama dibanding percobaan pertama dan kedua. Selain itu permasalahan faktor pencahanaya juga harus diperhatikan, karena jika pencahanaya yang dilakukan pada saat melakukan pengujian itu tidak sesuai atau kondisi pencahanaya tidak bagus, maka hasil pengenalan yang didapatkan juga baik. Oleh karena itu, penulis mengharapkan pada penelitian berikutnya dapat dilakukan peningkatan dalam tingkat akurasi pada pengenalan wajah.

6. DAFTAR PUSTAKA

