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Abstract 

In Ergonomics, interaction system between human with some object or machine starts from the stimulation of the 
object to the head through the eyes. Therefore, the eyes position on the head when receiving the stimulation is very 
important. The eyes’ ability in receiving stimulation from the object depends on a person’s head and neck movement. 
Measuring the ability of the head and neck movement is very important, however explaining this matter to the students 
is complicated. In consequently, to make a simple way in explaining to the students, a head and neck anthropometry 
model or Head Mannequin design that can be moved in simulation of the visual design is needed.      This research is 
aimed to assess the behavior and limitation movement of the human head and neck. A head model of mannequin is 
made and developed to make a simulation for ergonomic movement learning using Solid work software. The 
components of construction movement are analyzed by kinematic analysis using MATLAB to convince the simulation 
of human head movement. The results of the study show that head mannequin is able to simulate the human head 
movement. The kinematic models of head movement based on limitations are generated and the analysis is presented 
in the full paper. 
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1. Introduction 

Head mannequin prototype and the ability of movements are needed for learning system process. Firstly, in 
Ergonomics to understand about head movement system and limitation. Secondly, in mechatronics to understand the 
components of design and the control mechanism of movements. The strength and flexibility of the neck are important 
to design a mannequin that adopts a person’s behavior. However, to design the head and neck movement the 
mathematics model analysis should be done first. Those are kinematic analysis and dynamics analysis. From this 
analysis, the constrain of movement was obtained. In this research, the study of head and neck movement will not talk 
about the problems of head or neck injuries caused by spinal nerves but more about head and neck movements and its 
limitations. Analysis results from various head and neck movements with directions and angles that have limitation 
range will be applied as the basis of design for the movement simulation of the mannequin head prototype. The 
movement system will result on the movement mechanism design and the machine components that compose it. The 
mannequin head prototype and its movement ability are really needed for Ergonomic studies about the understanding 
of head movement system and its limitations and Mechatronic studies about component design and movement 
mechanism control for students of the Industrial Technology Faculty of University of Atma Jaya Yogyakarta. Apart 
from that, all mannequin prototypes that are able to do movements like human beings especially the mannequin head 
have never been made in Indonesia. Because of that, to support the technology development in robotics, this research 
has to be done. Coakwell MR, et.al. [1] did a research where the injured neck is made primary attention on pilots. The 
recent report shows hurt cervical spinal related to an action when increasing speed. From NATO and other 
organization's researches that are involved in technology, it is advised that the neck muscles need to be treated in order 
to be strong to reduce pain. The research method involves analysis of: biomechanics, ergonomics, orthopedics, 
neurology, neurosurgery, rehabilitative medicine, and aerospace medicine. Its descriptive objective is about muscle 
problems that are involved with head and neck movements. Research in head and neck movement analysis sector for 
various needs have been carried out by lots of people and is generally related with health. There are researches done 
because there is pain in the neck then it is advised to do certain movements to the head and neck to reduce the pain. 
But there are also researches that are related with the possibility of pain to the neck caused by certain movements of 
the head and neck so it is advised to do certain changes on how to move or give safe zones for its movement limitations.  

Daniel A Sierra and John D Enderle [2], did a research about 3D dynamic model for complex movements of the 
head and neck. Here, the complex dynamic analysis is used because this head and neck movement is oriented with 
eye velocity. 
To make a model of the head and neck and its movement with the help of software programs, the Head and Neck with 
its parts Anthropometry Data is needed. The use of anthropometry data and biomechanics model development in 
designing equipment or product is important for the effort of uniting human and equipment, especially in 
manufacturing. 

2. Method 

This research has two goals. The first is to find the constraints of movements based on kinematics analysis. These 
constrains are important as a basic of algorithm for controlling head movements. Second is to find the stability of head 
movement model.  

2.1. Simulation model 

The three models of head movements were developed and investigated within their limitations. From the first 
research of Kristyanto, et.al [3] it was found that the range of movement (ROM) based on references was 144 20° 
for Rotation and 122 20° for Flexion or Extension. While research shows 140° for Rotation and 130° for Flexion or 
Extension. The total ROM for Rotation is greater than the total ROM for Flexion or Extension. Here an assumption 
has been made, that women and men are same because the result of measurements were quite similar. To perform 
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those movements the components of mechanism have been composed as follows in Fig. 1 for simulation. Fig. 2 shows 
the head movements at 3 directions. 

2.2. Solidwork model 

 Here Solid work software has been used to develop the components for simulation as seen in Fig. 1.  The model was 
built to be able to conduct movements like the head movements mentioned in Fig. 2. Based on those movements, there 
are 3 degrees of freedom (dof) involved in the system. The model is shown in Fig. 3. 

 
 
 

 
 
                      a                                                                   b                                                         c 

Fig. 1 (a) flexion; (b) rotation; (c) extension 
 
 
 
 
 
 
 
 
  
 

 
                            a.                                                                                   b.             
 

Fig. 2.  Model 1 (a) top view; (b) 3D view 
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Fig. 3. Model 2 (motor on center), 3 D view 

3. Kinematics Model 

3.1 Model 1 

 Two models have been analysis for kinematics. First model base on the actuator that use motor installed outside 
of main arm (main link) as see in Fig. 4, which diagram as seen in Fig. 5. The second model used actuator base with 
motor direct installed on the basis main arm as seen in Fig. 6. 

 

Fig. 4. Configuration for Model I. 



363 Bernadus Kristyanto et al.  /  Procedia Manufacturing   4  ( 2015 )  359 – 372 

 
Fig. 5. Cross section of actuator E  (structure base) 

 
 The base actuator of the mannequin robot is depicted in Fig. 5. In this figure, there is active actuator A that is 
energized by a motor. Here, motor A performs an inclination angle A ; the angular velocity of actuator A is 
symbolized as  A . The other joints are passive ones: joint B performs angle  under angular velocity B ; joint C 
performs angle C  under angular velocity C ; joint D performs angle D  under angular velocity D ; and joint E 
performs angle E  under angular velocity E . The length of rigid links AL , BL , CL , and DL  are constant. In 
addition, we define Bv , Cv , and Dv  as the velocities applied to the links AL , BL , CL , respectively. The inclination 
angles of Bv , Cv , and Dv  with respect to global X-axis are symbolized as B , C , and D , respectively. 

 Let 
B

v  be the tangential velocity of link AL  with respect to rotation center A. According to Chakravarthy and 
Ghose [4], since A is static point, it is straightforward that 

 ABBvv sin
B

. (1) 

Since   AB , and AAB
Lv , Eq. (1)  becomes 

 AALvB . (2) 

Let 
C

v  be the tangential velocity of link BL  with respect to rotation center of the passive joint B and be formulated 
as 

 BBBBCC vvLv sinsinBBC
. (3) 

Substituting (2) to (3) yields 

 BC
C

BB L

V

L

L
sinsin

BB

AA
B . (4) 

We define 
D

v  as the tangential velocity of link DL  with respect to rotation center of the passive joint C and be 
formulated as 

 CCCCDD vvLv sinsinCCD
. (5) 

Substituting (4) and (5) and considering that 0C  yields 

 BBCDDC
CBCB

C LLvv sinsin
2

cos
2

sin2 AABB . (6) 

The tangential velocity 
D

v  can be formulated with respect to passive joint E as: 

 EDDvLv sinEDD
. (7) 

Also, the motion of link DL  leads to the formulation of point E’s motion with respect to point D as follows: 

B
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 DDDvLv sinDDE
. (8) 

Substitution of (7) to (6) and considering that ED  (which can be proven geometrically from Fig. 3) yields 

 D
DC

D
DC

C
CBCB

C vv
2

cos
2

sin
2

cos
2

sin  

  EDAABB sin
2
1

LLL BB . (9) 

From Fig. 5, it can be derived that the relationship between E  and D  is 

 DE . (10) 

Therefore, Eq. (10) can be rewritten as 

 DDDvLv sinEDD
. (11) 

Also, Eq. (8) can be reformulated as 

 DDDvLv sinDDE
. (12) 

Eqs. (11) and (12) lead to the following relationship: 

 DE . (13) 

Other constraints can be obtained from the fact that all of the links are static in length. Therefore, we have the 
following equations: 

 BBBBCC vv coscos , (14) 

 CCCCDD vv coscos . (15) 

Also, we have 

 0cos
B ABBvv , (16) 

which yields  

 
2
1

kDD , ,...1,0,1...,k  (17) 

Substitution of Eq. (7) to Eq. (17) gives us the following equation: 

 EDLvD . (18) 

Since DE , and in consideration of Eq. (18), we can conclude that: 

 
D

DE L

VD . (19) 

Substituting Eq. (19) to Eq. (9) and using Eq. (4) gives: 

 CBC
CBCB

C Vsin
2

cos
2

sin2  

  ED2
cos

2
sin21 LDC

D
DC . (20) 
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It can be proven from Figure 3 that  

 CBC . (21) 

Also, we substitute (2) to (14) and obtain 

 BBBCC LV coscos AA . (22) 

By substituting (21) and (22) to (20), we obtain the relationship between E  and A  as: 

 
� E

�A

=
�tan

�C

2

�

�
�

�

�
÷+ tan �C ��B( )

�

�
�

�

�
÷cos �B ��B( )LA

1+2sin
�C +�D

2

�

�
�

�

�
÷��D

�

�
�

�

�
÷cos

�C ��D
2

�

�
�

�

�
÷+ cos �D ��C( ) tan

�C

2

�

�
�

�

�
÷

�

�
�

�

�
÷LD

. (23) 

 

 

 

 

 

 

 

3.2 Model 2 
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Fig. 6. Main link of model 2 
 

Fig. 6 reveals the coordinates of the main links of the mannequin robot. Let E , F , and G  be defined as the 
angle between the angle between Ez  and , Fz  and Gz , and, Gz  and Hz , respectively. The transformation from 
frame E to frame F, F to G, and G to H  can be respectively formulated as expressed by Krodkiewski [5], Xi and Xu 
[6], Zarkandi and Danieli [7]  

Fz
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1000

00

00

00

EE

EEE

EEE

E Ls

scs

ssc

T , (24) 

 

1000

00

00

00

FF

FFF

FFF

F Ls

scs

ssc

T , (25) 

 

1000

00

00

00

GG

GGG

GGG

G Ls

scs

ssc

T , (26) 

where the symbols s  and c  represent sin  and cos , respectively. From (24) to (26), the transformation from 
frame E to H can be expressed as 
 

11 4,43,42,41,4

4,33,32,31,3

4,23,22,21,2

4,13,12,11,1

E

E

E

H

H

H

z

y

x

TTTT

TTTT

TTTT

TTTT

z

y

x

, (27) 
where 

 GFEEGFE sssscccT 1,1  (28a) 

 GFFE ssscT 2,1  (28b) 

 GGFEEGFE scssssccT 3,1 , (28c) 

 EEFFFEG ssLsscLT 4,1  (28d) 

 GFEEGFE sssccssT 1,2  (28e) 

 GFFE ssssT 2,2  (28f) 

 GGFEEGFE scsscsssT 3,2  (28g) 

 EFFEG LsssLT 4,2  (28h) 

 GFE cssT 1,3  (28i) 

 GFFE sscsT 2,3  (28j) 

 GGFE ssssT 3,3  (28k) 

 EFFEG LscsLT 4,3  (28l) 

 03,42,41,4 TTT  (28m) 

 14,4T  (28n) 

 
3.3.  Model Analysis 
 Model developed were simulated using MATLAB. The first simulation has been carried out to analysis model 1 
(Fig. 4). Constant Input for angular velocity was given at motor A, sec/10A . The initial condition for each 
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joint were: 150A , 30B  , 315C , 280D , and 100E . With angle of arm support  was 
85C .  

 The simulation results can be seen in Fig. 7 and Fig. 8. Simulation shows that there is no continuities problem at 
the joints A,B, and C. The problem was only found at joint D that as increasing degree about 50 ,the discontinuity 
was occurred. The physical impact of this problem is that motor can not be program beyond 50  caused of limitation 
of arm supported has constant angle of  85C . Therefore this model 1 could not be used for this robot mannequin. 
Then Model 2 was used for this robot mannequin by using equation 30 for function transferring.  

 

Fig. 7. Simulation results of joint angle motions from model 1 
 

 
Fig.  8.  Simulation results of changing ranges of angle B , C , and D  at model 1 

 
 For model 2 the coordinate system used was Cartesian which EEE zyx ,, , as a center of motion and called as a BASE, 
then trajectory which are produced by end effector will be measured based on coordinate BASE.   
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X

Y

Z

 
Fig. 9. Coordinate BASE system of neck mannequin robot  

 Simulation on kinematics model 2 will be carried out for 3 standard motions or movements of head. Nod motion 
when  0E , 0F , and 0G . And look up when 0E , 0F , and 0G .  While left tilt motion 
when 0E , 0F , and 0G  and right tilt when 0E , 0F , and 0G . Turn left motion when 

0E , 0F , and 0G , and turn right when 0E , 0F , and 0G . 
 In this simulation some assumption have been taken such as  m1GFE LLL . And initial angle 

0GFE  rad. Simulation also was run for absolute angular velocity sec/10 . Those all the results 
of simulation can be shown at Fig. 10, 11, 12, 13, and 14 as consecutive.  

 
(a)                                                                                           (b) 

Fig. 10. Trajectory for left flexion (CW) for Model 2: (a) for planes X-Y, X-Z, and Y-Z ; (b) 3-D plane 
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(a)                                                                                            (b) 

Fig. 11. Trajectory for right flexion (CCW) for Model 2: (a) for planes X-Y, X-Z, and Y-Z; (b) 3-D plane 
 

 
(a) (b) 

Fig. 12. Trajectory for look down extension for Model 2: (a) for planes X-Y, X-Z, and Y-Z ; (b)3-D plane 
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(a)                                                                                        (b) 

Fig. 13. Trajectory for look up extension of Model 2: (a) for planes X-Y, X-Z, and Y-Z ; (b) 3-D plane 

 

 
(a) (b) 

Fig. 14. Trajectory for left rotation of Model 2: (a) for planes X-Y, X-Z, and Y-Z; (b) 3-D plane 

 

-1 -0.8 -0.6 -0.4 -0.2
-1.1

-1

-0.9
Trajectory X-Y

X

Y

-3 -2 -1 0 1 2

1

1.5

2
Trajectory X-Z

X

Z

-3 -2 -1 0 1

1

1.5

2
Trajectory Y-Z

Y

Z

-2 -1 0 1 2

-0.8
-0.6
-0.4
-0.2

0

Trajectory X-Y

X

Y

-2 -1 0 1 2
1

1.5

2
Trajectory X-Z

X

Z

-2 -1 0 1
1

1.5

2
Trajectory Y-Z

Y

Z

-3
-2

-1
0

1
2

3

-2

0

2

-2

0

2

4

X

Trajectory 3D

Y

Z

-3
-2

-1
0

1
2

3

-2

0

2

-2

0

2

4

X

Trajectory 3D

Y

Z



371 Bernadus Kristyanto et al.  /  Procedia Manufacturing   4  ( 2015 )  359 – 372 

 
(a)                                                                                              (b) 

Fig. 15. Trajectory for right rotation of Model 2: (a) for planes X-Y, X-Z, and Y-Z , (b) 3-D plane 

 

3. Conclusion 

Through design process and analysis using MATLAB simulation can be concluded that mechanic design for head 
and neck movement that is flexible applied on model 2. Based on the kinematics simulation that have been carried out 
this mechanic design gave range of motion (ROM) its angle greater than mechanic design 1. Through this simulation 
also can be concluded that based on the kinematic analysis design model 2 more stable for given constant angular 
velocity. 
Some researchers have been recommended for next futures such as: 

a. Anthropometric characteristics mapping into DH parameters of neck mannequin robots. This researches need 
dynamics analysis  

b. Inverse kinematics Exploration to produce the right algorithm control and proportional. 
c. Stability analysis based on dynamics  
d. Control system design based kinematics and dynamics 
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