Analisis Finite Elemen pada material EVA Rubber DuaLayer pada Aplikasi Insole Sepatu Orthotic

TUGAS AKHIR Diajukan untuk memenuhi sebagian persyaratan mencapai derajat Sarjana Teknik Industri

Fransiskus Andre Cahya Gunawan 11 06 06423

PROGRAM STUDI TEKNIK INDUSTRI
FAKULTAS TEKNOLOGI INDUSTRI
UNIVERSITAS ATMA JAYA YOGYAKARTA
YOGYAKARTA
2016

HALAMAN PENGESAHAN

Tugas Akhir berjudul

ANALISIS FINITE ELEMEN PADA MATERIAL EVA RUBBER DUA LAYER PADA APLIKASI INSOLE SEPATU ORTHOTIC

yang disusun oleh

Fransiskus Andre Cahya Gunawan

11 06 06423

Dinyatakan telah memenuhi syarat pada tanggal 12 Januari 2016

Dosen Pembimbing 1,

Paulus Wisnu Anggoro, S.T., M.T.

Tim Penguji,

Penguji 1,

Paulus Wisnu Anggoro, S.T., M.T.

17

A. Tonny Yumiarto, S.T., M.Eng.

Penguji 2,

Penguji 3,

Baju Bawono, S.T., M.T.

Yogyakarta, 12 Januari 2016

Universitas Atma Jaya Yogyakarta,

Fakultas Teknologi Industri,

Dekan,

Dr. A. Teguh Siswantoro, M.Sc.

PERNYATAAN ORIGINALITAS

Saya yang bertanda tangan di bawah ini:

Nama

: F. Andre Cahya G

NPM

: 11 06 06423

Dengan ini menyatakan bahwa tugas akhir saya dengan judul "Analisis Finite Elemen pada material EVA Rubber Dua Layer pada Aplikasi Insole Sepatu Orthotic" merupakan hasil penelitian saya pada Tahun Akademik 2015/2016 yang bersifat original dan tidak mengandung plagiasi dari karya manapun.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku termasuk untuk dicabut gelar Sarjana yang telah diberikan Universitas Atma Jaya Yogyakarta kepada saya.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Yogyakarta, 04 Januari 2016 Yang menyatakan,

F. Andre Cahya G

6000

KATA PENGANTAR

Puji syukur penulis panjatkan kepada Tuhan yang Maha Esa atas berkat dan kasih karunia-Nya sehingga penulis dapat menyelesaikan Tugas Akhir ini. Laporan tugas akhir ini disusun untuk memenuhi salah satu syarat mencapat derajat Sarjana Teknik di Program Studi Teknik Industri, Fakultas Teknologi Industri, Universitas Atma Jaya Yogyakarta.

Pelaksanaan Tugas Akhir dari awal hingga selesai tidak lepas dari bantuan dari beberapa pihak, baik secara langsung maupun tidak langsung. Pada kesempatan ini, penulis ingin mengucapkan terima kasih yang kepada:

- 1. Orang tua dan kakak penulis atas doa dan dukunganyang diberikan.
- Bapak Paulus Wisnu Anggoro, S.T., M.T., atas kesediaannya menjadi pembimbing penulis dan memberikan arahan, kritik, dan saran yang membangun dalam pengerjaan Tugas Akhir ini.
- 3. Keluarga besar dosen, laboran, dan asisten peminatan CAD/CAM yang selalu memberikan dukungan dan bantuan dalam pelaksanaan Tugas Akhir.
- 4. Keluarga besar Lab PP TI UAJY yaitu Mas Budi, Mbak Yuli, Black, Ive, Jupri, Arnind, Putro, Cendy, Veve, Abet, Jesung, Dedy, Yanda, Slamet, Nyoman, Musang, dan yang tidak dapat disebutkan satu per satu atas dukungan doa yang diberikan.
- 5. Semua teman-teman penulis yaitu Culai Grup dan KKN Blekonang 1 (Yoshua, Adi, Gio, Erik, Farizki, Okqi, David, Aliong, jupri, neri, ferdi, herman, myra, sisca, tea, cyntia) dan yang tidak dapat disebutkan satu-satu atas dukungan doa yang diberikan.

Penulis menyadari bahwa penulisan Tugas Akhir ini masih jauh dair sempurna karena keterbatasan pengalaman dan pengetahuan yang dimiliki penulis, maka kritik dan saran yang membangun sangat diharapkan dari semua pihak.

Akhir kata, penulis berharap semoga Tugas Akhir ini dapat bermanfaat bagi semua pihak yang memerlukan.

Yogyakarta, 04 Januari 2016

F.Andre Cahya G

DAFTAR ISI

BAB	JUDL	JL	HAL
	Halan	man Judul	i
	Halaman Pengesahan		ii
	Perny	yataan Originalitas	iii
	Kata	Pengantar	iv
	Dafta	ır İsi	V
	Dafta	r Tabel	vii
	Dafta	r Gambar	viii
	Dafta	r Lampiran	xi
	Intisa	ari	xii
1	Penda	ahuluan	') 1
	1.1.	Latar Belakang	1
	1.2.	Perumusan Masalah	3
	1.3.	Tujuan Penelitian	3
	1.4.	Batasan Masalah	3
2	Tinjau	uan Pustaka dan Dasar Teori	i ii iii iiv v v viii viii xi xii xii
	2.1.	Penelitian Terdahulu	5
	2.2.	Penelitian Sekarang	6
	2.3.	Teori Dasar Analisis Elemen Hingga (FEA)	7
	2.4.	Computer Aided Engineering (CAE)	7
	2.5.	Elastomers	7
	2.6.	Fitur Dasar <i>Elastomer</i> s	8
	2.7.	Jenis-jenis <i>Elastomers</i>	9
	2.8.	Material Hyperelastic	11
	2.9.	Karakteristik Hyperelastic	14
	2.10.	Kontak Hyperelastic	17
3	Metodologi Penelitian		19
	3.1.	Data Penelitian	19
	3.2.	Alat dan Bahan Penelitian	19
	3.3.	Metodologi Penelitian	21

	3.4.	Identifikasi Masalah	22	
	3.5.	Studi Pustaka	23	
	3.6.	Pengembangan Model	23	
	3.7.	Parameter Model	25	
	3.8.	Pemodelan dalam FEA dengan software Abaqus 6.13	26	
	3.9.	Pre Processing	26	
	3.10.	Pembahasan	28	
	3.11.	Kesimpulan	29	
4	Data		30	
7	4.1.	Laboratorium Proses Produksi Teknik Industri UAJY	30	
	4.2.	Software Abaqus 6.13	31	
	4.3.	Spesifikasi Komputer untuk Software Abagus 6.13	31	
	4.4.	Ethylene Vinyl Acetate (EVA)	34	
	7.7.	Laryiene vingritectate (Evity	04	
5	Pemod	delan Kasus Kontak dengan Metode Elemen Hingga	35	
	5.1.	Tujuan Penggunaan Software Abaqus dalam Penelitian	35	
	5.2.	Flow Chart Pemodelan dalam FEA Abaqus 6.13.	36	
	5.3.	Spesifikasi Masalah dan Geometri	38	
	5.4.	Langkah-langkah Pemodelan	39	
	5.5.	Hasil dan Analisis Kontak Material EVA dan NORA SLW	59	
	5.6.	Hasil Verifikasi EVA vs NORA SLW dengan Variasi	60	
		Ketebalan 5mm, 10mm, 15mm, 20mm, 30mm		
	5.7.	Pengaruh Variasi Geometri pada EVA Rubber	63	
	5.8.	Rekapitulasi Hasil Penelitian	66	
6		pulan dan Saran	68	
	6.1.	Kesimpulan	68	
	6.2.	Saran	68	
Daftar	Pustak	a	70	
Lampi	Lampiran			

DAFTAR TABEL

Standar Spesimen untuk Tensile Testing Tabel 2.1.

DAFTAR GAMBAR

Gambar 2.1.	Bentuk Dasar Struktur Macromolecule	8
Gambar 2.2.	Struktur ikatan kimia natural rubber	10
Gambar 2.3.	Struktur ikatan kimia styrene-butadiene rubber	10
Gambar 2.4.	Struktur ikatan kimia poly-butadiene rubber	11
Gambar 2.5.	Grafik Tegangan-Regangan Elastic dan Hyperelastic	12
Gambar 2.6.	Grafik Hubungan Engineering Stress dengan	13
	Extension Ratio untuk Beberapa Jenis Elastomers	
Gambar 2.7.	Uniaxial Test	14
Gambar 2.8.	Planar shear test	15
Gambar 2.9.	Spesimen Biaxial	16
Gambar 2.10.	Kurva Eksperimental Tegangan-Regangan untuk	17
	Elastomers	
Gambar 3.1.	Spesifikasi PC di Laboratorium Proses Produksi	19
	UAJY yang diinstalasi dengan software Abaqus 6.13	
Gambar 3.2.	Spesifikasi Grafik PC yang Diinstalasi Software	20
	Abaqus 6.13	
Gambar 3.3.	Spesifikasi Laptop yang diinstalasi software	20
	Abaqus 6.13	
Gambar 3.4.	Spesifikasi Grafik Laptop yang diinstalasi Software	20
	Abaqus 6.13	
Gambar 3.5.	Flowchart Metodologi Penelitian	22
Gambar 3.6.	Tampilan awal Abaqus 6.13	27
Gambar 4.1.	Denah Laboratorium Proses Produksi UAJY	30
Gambar 4.2.	Spesifikasi Umum yang Digunakan Instalasi	32
	Abaqus 6.13	
Gambar 4.3.	Spesifikasi Operating System yang Digunakan	32
	untuk Instalasi Abaqus 6.13	
Gambar 4.4.	Spesifikasi Operating System yang digunakan	33
	untuk instalasi Abaqus 6.3 – 14 (lanjutan)	
Gambar 4.5.	Spesifikasi lain yang Digunakan untuk Instalasi Abaqus 6.13	33
Gambar 5.1.	Flow Chart Pemodelan dalam FEA Abaqus 6.13	36
Gambar 5.2.	Analisis Pembebanan Kontak Model sebuah <i>Indenter</i>	38

	Balinose HSS pada Permukaan Material EVA Rubber	
Gambar 5.3.	Menu Create PartMaterial	39
Gambar 5.4.	Menetapkan <i>Dimensi</i> Material	40
Gambar 5.5.	Material Jadi	40
Gambar 5.6.	Menu Create Part Indenter	41
Gambar 5.7.	Menetapkan Dimensi Indenter	41
Gambar 5.8.	<i>Indenter</i> Jadi	42
Gambar 5.9.	Sifat Material Uji	42
Gambar 5.10.	Sifat Material Indenter	43
Gambar 5.11.	Create Section	44
Gambar 5.12.	Edit Section	44
Gambar 5.13.	Section assignment material Uji	44
Gambar 5.14.	Part Uji yang Sudah berhasil pada proses	45
	Section assignment	
Gambar 5.15.	Edit Section Indenter	45
Gambar 5.16.	Section assignment Indener	45
Gambar 5.17.	Part Sudah Memiliki Sifat dari Material Indenter	46
Gambar 5.18.	Assembly Indenter dan Rubber	46
Gambar 5.19	Create step	47
Gambar 5.20.	Create Field Output	48
Gambar 5.21.	Create Interaction	49
Gambar 5.22.	Hasil Interaction antar Surface	49
Gambar 5.23.	Edit interaction dan Contact Property	49
Gambar 5.24.	Penentuan Friction Coeff	50
Gambar 5.25.	Reference Point	50
Gambar 5.26.	Create Rigid Body	51
Gambar 5.27.	Hasil Rigid Body	51
Gambar 5.28.	Create Load	52
Gambar 5.29.	Pemberian bagian yang diberi tekanan	52
Gambar 5.30.	Edit Load	53
Gambar 5.31.	Create Boundary Condition	53
Gambar 5.32.	Pemilihan Line pada Rubber untuk Penentuan	54
	Kondisi Batas	
Gambar 5.33.	Kondisi Batas yang Telah Jadi	54
Gambar 5.34.	Pembagian E <i>lement</i> pada <i>Part Rubber</i>	54

Gambar 5.35.	Hasil Akhir <i>Mesh</i> pada <i>Indenter</i>	55
Gambar 5.36.	Hasil Akhir Mesh pada Rubber	55
Gambar 5.37.	Create job	56
Gambar 5.38.	Job Manager	56
Gambar 5.39.	Proses Running atau Iterasi	57
Gambar 5.40.	Hasil Visualization	57
Gambar 5.41.	Menunjukan Area Tegangan Konsentrasi Tertinggi	58
Gambar 5.42.	Perbandingan Kurva SEF pada Material EVA dan NORA SLW	59
Gambar 5.43.	Bar Chart Tegangan – Regangan Material	61
	EVA VS NORA SLWdengan Ketebalan 5 mm	
Gambar 5.44.	Bar Chart Tegangan – Regangan Material	61
	EVA VS NORA SLWdengan Ketebalan 10 mm	
Gambar 5.45.	Bar Chart Tegangan – Regangan Material	62
	EVA VS NORA SLWdengan Ketebalan 15 mm	
Gambar 5.46.	Bar Chart Tegangan – Regangan Material	62
	EVA VS NORA SLWdengan Ketebalan 20 mm	
Gambar 5.47.	Bar Chart Tegangan – Regangan Material	63
	EVA VS NORA SLWdengan Ketebalan 30 mm	
Gambar 5.48.	Pengaruh Geometri Indenter Terhadap Kedalaman	64
	Indentasipada Material EVA dengan Ketebalan 5 mm	
Gambar 5.49.	Pengaruh Geometri Indenter Terhadap Kedalaman	64
	Indentasipada Material EVA dengan Ketebalan 10 mm	
Gambar 5.50.	Pengaruh Geometri Indenter Terhadap Kedalaman	65
	Indentasipada Material EVA dengan Ketebalan 15 mm	
Gambar 5.51.	Pengaruh Geometri Indenter Terhadap Kedalaman	65
	Indentasipada Material EVA dengan Ketebalan 20 mm	
Gambar 5.52.	Pengaruh Geometri Indenter Terhadap Kedalaman	66
	Indentasipada Material EVA dengan Ketebalan 30 mm	

DAFTAR LAMPIRAN

Lampiran 1. Pemodelan Material Ethylene Vinyl Acetate (EVA)

Lampiran 2. Pemodelan Material NORA SLW

Lampiran 3. Data Kurva SEF pada Material SRCGF VS Sil8800 dan

Data Pengaruh Geometri Indenter Terhadap Kedalaman Indentasi

INTISARI

Indonesia merupakan negara dengan perkebunan karet terluas di dunia, Luas areal perkebunan karet di Indonesia mencapai 3.262.291 hektar dan sekarang telah mencapai sekitar 34 juta hektar. Material karet yang paling banyak digunakan dalam industri manufaktur adalah pembuatan sepatu pada bagian sol. Ada tiga jenis sole sepatu, yaitu *outsole, middlesole, insole*.Bagian insole sepatu ini merupakan bagian yang mengalami kontak langsung dengan kaki manusia.Penggunaan kaki dalam aktivitas sehari-hari menanggung semua beban tubuh terutama pada telapak kaki baik dalam berjalan, berlari, meloncat, dll. Hal ini lah yang dapat menyebabkan kelainan pada telapak kaki manusia sehingga menyebabkan ketidaknyamanan pada saat aktivitas menggunakan kaki.Untuk memperbaiki fungsi kaki yang mengalami kelainan maka digunakanlah insole sepatu orthotic.

Insole sepatu orthoticmerupakan bagian dalam sepatu yang dirancang khusus untuk memperbaiki fungsi kaki yang mengalami kelainan. Material *rubber* yang digunakan sebagai insole sepatu orthotic dalam industri manufaktur selama ini adalah *Ethylene Vinyl Acetate* (EVA). Selama ini proses pengerjaan insole sepatu orthotic masih bersifat konvensional dimanasaat proses permesinan berlangsung terjadi kontak antara alat potong yaitu *Ballnose HSS* dengan material EVA yang menghasilkan produk yang tidak presisi. Penelitian ini bertujuan untuk mengetahui fenomena kontak yang terjadi antara alat potong (*indenter*) dengan material, sehingga nantinya dari hasil yang didapatkan akan mengetahui bagaimana karakteristik yang dialami oleh EVA *rubber* saat terjadi kontak dengan *indenter*.

Metode *Finite Element Analysis* (FEA)digunakan dalam penelitian kali ini karena dapat digunakan untuk mensimulasikan perilaku dari sebuah material sehingga dapatmengetahui karakteristik dari EVA *rubber* tersebutyang nantinya dapat mengurangi jumlah percobaan yang diperlukan.

Hasil penelitian yang didapatkan menggunakan software Abaqus 6.13 berupa pemodelan tekanan EVA *rubber*dengan *indenter Ballnose HSS* yang dibuat *rigrid* untuk mengkondisikan sesuai dengan proses permesisan yang asli. Dan nantinya akan menghasilakan kontur dan regangan maksimal dalam bentuk kurva.