BAB II
TINJAUAN PUSTAKA

A. Pewarna Makanan

Warna makanan adalah salah satu faktor yang menentukan apakah makanan tersebut akan diterima atau ditolak oleh konsumen. Oleh karena itu berbagai usaha diupayakan untuk mempertahankan agar makanan tetap mempunyai warna yang menarik. Salah satu cara yang sejak jaman dahulu diterapkan untuk memberi warna yang menarik pada makanan adalah dengan menambahkan pewarna makanan (Jonie et al., 1994a).

Pewarna merupakan bahan tambahan makanan yang berfungsi untuk memberikan warna sehingga diperoleh produk yang mempunyai kesempatan yang lebih baik dan juga mesingkatkan keanekaragaman produk (Fauzi, 1995). Warna merupakan salah satu faktor yang menentukan keputusan konsumen dalam memilih makanan, maka pengolahan bahan makanan sering ditambahkan bahan pewarna tertentu baik yang alami maupun yang sintetis (Anonim, 1985).

A. 1. Pewarna Sintetis

Pertimbangan segi teknis dan ekonomis menyebabkan penggunaan bahan pewarna buatan pada pengolahan bahan makanan dan minuman menjadi sangat luas, hingga ke daerah-daerah pelosokpun penggunaan bahan tersebut sudah sangat biasa. Hal ini menyebabkan ketergantungan Indonesia terhadap bahan
pewarna buatan menjadi sangat besar meskipun belum ada produsen dalam negeri yang memproduksinya (Paramawati, 1981).

Fauzi (1995), juga menyorutkan pewarna makanan terdiri atas pewarna alami dan pewarna sintetis, yakni pewarna sintetis mempunyai tingkat keamanan yang lebih rendah dari pewarna alami bahkan beberapa di antaranya dapat menyebabkan karsinogen.
A. 2. Pewarna Alami

Meskipun relatif lebih aman akan tetapi bila dibandingkan dengan pewarna sintetis, bahan pewarna alami memiliki kelemahan-kelemahan yaitu:
1. Memberikan aroma dan rasa khas yang tidak diinginkan
2. Konsentrasi pigmen rendah
3. Stabilitas pigmen rendah
4. Keseragaman warna kurang baik

B. Angkak

Dr. David Heber, seorang Direktur Center for Human Nutrition di California Los Angeles (UCLA) mengemukakan bahwa makanan tambahan dan ekstraksi angkak yang disebut Cholestirin dapat menurunkan tingkat kolesterol orang dewasa sehat. Ekstrak Cholestirin, berdasarkan beberapa penelitian di Cina, dilaporkan bisa menolong mereka yang tingkat kolesterolnya moderat (200-239 miligram per dl) diminurkan sampai pada tingkat yang lebih sehat (Kompas, 1998).

Kestabilan zat warna angkak dalam larutan dipengaruhi oleh suhu, lama pemanasan, cahaya matahari, pH, reduktor, dan oksidator. Hasil percobaan menunjukkan bahwa angkak dalam bentuk bubuk lebih tahan terhadap pengaruh suhu dibanding dalam bentuk pekat dan masih stabil pada pemanasan 100°C selama 1 jam (Mitrajanty, 1994).

Percobaan Broder dan Krehler (1980), menunjukkan bahwa pigmen kompleks yang terlarut dalam sir sangat stabil pada perubahan pH larutan. Demikian juga dengan penelitian Paramawati (1981), yang menelurkan bahwa penabahan warna angkak relatif tidak berarti pada setap penurunan atau kenaikan pH. Penurunan pH akan sedikit menurunkan Optical Density (OD), dan
sebaliknya kenaikan pH cenderung akan menaikkan OD dalam tingkat yang sangat kecil. Angkak lebih stabil pada pH basa dan netral serta sedikit asam, namun larutan yang terlalu asam akan dapat menurunkan kestabilan zat warna angkak (Mitrajanty, 1994).

Pigmen angkak mempunyai kelarutan yang tinggi pada pelarut metanol, etanol, dan kloroform serta sedikit larut dalam air (Sudarsono, 1990). Kelarutan pigmen semakin meningkat sebanding dengan peningkatan suhu air pelarut. Pada suhu 80°C dan 100°C kelarutan tidak berbeda nyata dan lebih baik daripada suhu 60°C (Jenie et al., 1994a, 1994b).

\[R-NH_3 \rightarrow \text{Gambar 1. Zat warna yang terbentuk oleh reaksi dengan protein} \]

(Sumber: Shepherd, 1977 dalam Kanoni dan Astutii, 1988)

Gambar 2. Pigmen Monascus sp. yang dibentuk secara biosintesis
(Sumber: Shepherd, 1977 dalam Kanoni dan Astuti, 1988)

Lain halnya dengan pigmen-pigmen yang dibentuk secara reaksi kimia
yaitu menasco rubramine dan rubropunctamine yang berwarna merah dapat
dibentuk dengan menggantikan atom O pada cincin pirano group, seperti terlihat

Gambar 3. Pigmen Monascus sp. yang dibentuk secara kimia
(Sumber: Shepherd, 1977 dalam Kanoni dan Astuti, 1988)
B. 1. Monascus purpureus

Jamur Monascus purpureus diklasifikasikan sebagai berikut:

Divisi : Ascomycotina
Sub divisi : Ascomycotina
Klas : Ascomycetes
Sub Klas : Plectonemiales
Ordo : Eurotiales
Genus : Monascus
(Alexopoulos dan Mims, 1979).

B. 2. Produk Angkak

Sejalan dengan berkembangnya industri pangan di Indonesia, pemakaian pewarna makanan di Indonesia terutama pewarna sintetik juga semakin meningkat (Jenie et al., 1994a). Mengingat pentingnya peningkatan penggunaan zat warna makanan alami untuk keselamatan dan kesehatan tubuh maka produksi angkak yang memiliki sifat-sifat menguntungkan tersebut perlu lebih dikembangkan secara optimal.

Secara tradisional, umumnya pembuatan pigmen angkak dilakukan dengan fermentasi padat yaitu fermentasi yang menggunakan medium padat (solid medium), karena teknisnya lebih sederhana dan praktis (Jenie et al., 1994a). Produksi angkak di Indonesia sampai saat ini dilakukan pada taraf industri rumah tangga dengan menggunakan beras sebagai medium fermentasi (Jenie et al., 1994b; Mitrajanti, 1994). Adapun proses pembuatan angkak menggunakan substrat beras dapat dilihat pada diagram alir (Gambar 4).

Beras sosoh

\[\text{Monascus purpureus + Beras sosoh + air} \]

\[\text{Inkubasi (33^\circ\text{C}, 10 hari)} \]

\[\text{pengukusan, 15' 80^\circ\text{C}} \]

\[\text{inokulum} \]

\[\text{pendinginan, Ijam 37^\circ\text{C}} \]

\[\text{Pencampuran dan inkubasi (33^\circ\text{C}, 12-15 hari)} \]

\[\text{Penambahan air 20 ml (3 x selama fermentasi)} \]

\[\text{angkak} \]

Gambar 4. Diagram alir pembuatan angkak
(Sumber : Stein Kraus, 1983)

Limbah tunggal, biji-bijian, maupun campuran beberapa limbah yang
digunakan sebagai substrat dalam penelitian yang sudah ada, tidak memperhatikan
perbandingan karbohidrat dan proteinnya hanya berdasarkan perbandingan
beratnya saja. Seperti yang dilakukan Kusumawati (1987), yang menggunakan
substrat jagung kuning dan putih; Sidik et al. (1988), menggunakan cantel; Sudarsono (1990) menggunakan ongkok dan tepung kedelai tetapi hanya dibandingkan karbohidratnya yaitu dengan perbandingan 2:1, 2:2, dan 2:3.

C. Media dan Substrat Fermentasi

Pentingnya media yang paling tepat untuk proses fermentasi memerlukan penelitian khusus. Namun pada dasarnya semua mikroorganisme membutuhkan air, sumber energi, karbon, vitamin serta oksigen untuk proses aerobik (Wibowo et al., 1990).

Lebih lanjut Wibowo et al. (1990) menyatakan, komposisi penyusun medium fermentasi harus lengkap sesuai dengan kebutuhan mikroorganisme untuk biomassa sel dan metabolit, dengan demikian penyusun medium harus pula cukup persediaan energi untuk biosintesis maupun pemeliharaan sel. Perencanaan
media yang ekonomis untuk kebutuhan tersebut juga perlu dipertimbangkan meskipun kadar substrat yang dibutuhkan harus terpenuhi.

Dalam industri fermentasi diperlukan substrat yang murah, mudah tersedia, dan mudah penggunaannya. Usaha selalu dilakukan untuk menemukan substrat baru yang lebih murah dan lebih baik. Dalam industri fermentasi dimana produk-produknya juga dapat dihasilkan secara sintetis atau dengan cara lainnya, pemilihan substrat merupakan hal yang kritis, harus sedemikian rupa sehingga harga produknya dapat bersaing dengan harga produk yang diproduksi dengan cara lain.

Substrat fermentasi harus tersedia sepanjang tahun. Substrat yang berasal dari limbah tanaman musiman tidak mudah didapat, terutama bila periode pemanenannya pendek dan bahan tersebut mudah terkontaminasi dan menjadi busuk. Substrat yang baik untuk industri adalah yang relatif stabil dan dapat disimpan selama beberapa bulan. Faktor lain yang mempengaruhi pemilihan substrat untuk fermentasi ialah sifat fermentasi itu sendiri (Fardiaz, 1987).

Carels dan Shepherd (1977), menunjukkan pada pembentukan pigmen dan penenatan tipe pigmen dalam fermentasi yang dihasilkan oleh *Monascus purpureus*, sangat dipengaruhi oleh komposisi medium terutama kadar karbon yang diperoleh dari kandungan karbohidrat substrat dan kadar nitrogen dari protein substrat fermentasi. Kedua medium sangat menentukan tipe dan intensitas warna yang terbentuk. Bermacam-macam karbohidrat dapat digunakan sebagai sumber karbon yang efektif untuk pembentukan pigmen, sebagai contoh laktosa, glukosa, maltosa, dan sakaarosa. Maltosa dan glukosa mempunyai sumber
karbon yang efektif dibanding sakarosa dan laktosa. Jenis sumber karbon mempengaruhi tipe pigmen yang terbentuk. Menurut Lilly dan Barnet (1951, dalam Jenis et al. 1994a), senyawa karbohidrat merupakan sumber energi dalam pembentukan struktur sel kapang dan pigmen.

D. Onggok Sebagai Sumber Karbohidrat

Proses pembuatan tepung tapioka dalam skala industri dapat dihasilkan limbah yang cukup banyak. Limbah yang terbesar adalah ampas tapioka (onggok), dimana pembuangan yang sembarangan akan menimbulkan pencemaran lingkungan. Berapa ampas tapioka yang dihasilkan di Indonesia, belum ada data yang pasti. Sebagai gambaran dapat diestimakakan bahwa dari 1.000.000 ton ketela pohon per tahun maka akan dihasilkan 750-900 ton ampas tapioka dalam keadaan basah (Sitorus, 1984).

Walaupun demikian karena jumlahnya yang sangat banyak maka masih perlu dicari alternatif lain untuk pemanfaatannya. Telah dikeluarkan bahwa ampas tapioka mempunyai pati yang cukup tinggi rata-rata seperti kandungan pati beras, dengan komposisi keduanya dapat dilihat pada Tabel 1. Megingat hal ini maka pemilihan ampas tapioka (onggok) sebagai salah satu substrat dalam media fermentasi produksi angkak oleh kapang Monascus purpureus masih sangat dimungkinkan.

Menurut Lin (1973), senyawa karbon merupakan energi dalam pembentukan sel dan pigmen. Medium yang paling baik untuk memproduksi pigmen angkak adalah bahan yang mengandung pati sebagai sumber karbohidrat.
Tabel 1. Komposisi limbah ampas tapioka dan beras

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Jumlah (% berat kering)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ampas tapioka</td>
</tr>
<tr>
<td>Air</td>
<td>13,96</td>
</tr>
<tr>
<td>Abu</td>
<td>0,71</td>
</tr>
<tr>
<td>Protein</td>
<td>0,48</td>
</tr>
<tr>
<td>Lemak</td>
<td>1,62</td>
</tr>
<tr>
<td>Serat kasar</td>
<td>7,30</td>
</tr>
<tr>
<td>Pati</td>
<td>75,92</td>
</tr>
</tbody>
</table>

Sumber: Jenie et al. (1994b).

Beras sebagai substrat yang biasa digunakan untuk produksi angkak, juga berpengaruh terhadap pembentukan angkak karena jenis beras yang bermacam-macam. Beras (Oryza sativa) termasuk familia Gramineae, dengan komposisi utananya pati (Tabel 1). Dikatakan oleh Winarno (1980) bahwa pati dalam jaringan tanaman mempunyai bentuk granula yang berbeda-beda. Amilosa
mempunyai struktur lurus dengan ikatan α-(1,4) glikosidik sedangkan amilopektin mempunyai cabang dengan ikatan α-(1,4) pada rantai lurus dan α-(1,6) glikosidik pada rantai cabang.

Berasarkan kandungan amilosanya, beras dapat dibagi menjadi empat golongan yaitu beras dengan kadar amilosa tinggi yaitu sekitar 25-30%, beras dengan kadar amilosa menengah sekitar 20-25%, beras dengan kadar amilosa rendah sekitar 9-20% dan kadar amilosa sangat rendah lebih kecil dari 9% (Anonim, 1985).

E. Ampas Tahu Sebagai Sumber Protein

Dalam produksi pigment angkak selain dibutuhkan sumber karbon dibutuhkan pula sumber nitrogen yang pada umumnya sebagian besar secara eami diperoleh dari protein substratnya, dan ini dapat dipenuhi dari substrat ampas tahu yang masih banyak mengandung unsur tersebut, sehingga limbah industri tahu dapat lebih didayagunakan.

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Jumlah (% berat kering)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>7,00</td>
</tr>
<tr>
<td>Abu</td>
<td>3,80</td>
</tr>
<tr>
<td>Protein</td>
<td>19,69</td>
</tr>
<tr>
<td>Lenak</td>
<td>11,30</td>
</tr>
<tr>
<td>Serat kasar</td>
<td>19,47</td>
</tr>
<tr>
<td>Pati</td>
<td>38,74</td>
</tr>
</tbody>
</table>

Sumber: Jenie et al. (1994b)

Menurut Wibowo et al. (1990), jenis sumber nitrogen yang digunakan dalam proses fermentasi juga sangat ditentukan oleh produk yang diharapkan. Nitrogen dapat diberikan dalam bentuk senyawa organik seperti protein, urea, asam amino, atau senyawa lain seperti gas amonia, garam amonium, dan garam nitrat. Penggunaan nitrogen secara cepat pada proses fermentasi akan

F. Hipotesis

Perbandingan karbohidrat dan protein yang sesuai sangat berpengaruh terhadap produksi pigmen angkak oleh Monascus purpureus sehingga pendekatan kadar karbohidrat dan protein dengan perbandingan seperti substrat yang biasa dipakai yaitu beras, akan dapat meningkatkan produk pigmen angkak yang diproduksi menggunakan beberapa jenis limbah termasuk ampas tapioka (ongkok) dan ampas tahu.