IMPLEMENTATION OF LEAN SIX SIGMA
IN PT. SAMUDERA LUAS PARAMACITRA

A THESIS
Submitted in Partial Fulfillment of the Requirement for the Bachelor Degree of Engineering in Industrial Engineering

CLARA VERANITA NUGROHO
12 14 06935

INTERNATIONAL INDUSTRIAL ENGINEERING PROGRAM
DEPARTMENT OF INDUSTRIAL ENGINEERING
FACULTY OF INDUSTRIAL TECHNOLOGY
UNIVERSITAS ATMA JAYA YOGYAKARTA
2016
IDENTIFICATION PAGE

A THESIS ON
IMPLEMENTATION OF LEAN SIX SIGMA
IN PT. SAMUDERA LUAS PARAMACITRA

Submitted by
Clara Veranita Nugroho
12 14 06935

have declared qualified on April 27, 2016

Faculty Supervisor,
Brillianta Budi Nugraha, S.T., M.T.

Co-Faculty Supervisor,
Boju Bawono, S.T., M.T.

Board of Examiners,
Chair,
Brillianta Budi Nugraha, S.T., M.T.

Member,
Slamet Setyo W., S.T., M.T.

Member,
Yosef Daryanto, S.T., M.Sc.

Yogyakarta, April 27, 2016
Universitas Atma Jaya Yogyakarta.
Faculty of Industrial Technology,
Dean,
Dr. A. Teguh Siswantoro, M.Sc.
DECLARATION OF ORIGINALITY OF RESEARCH

I certify that the research entitled "Implementation of Lean and Six Sigma in PT. Samudera Luas Paramacitra" in this thesis has not already been submitted for any other degree.

I certify that to the best of my knowledge and belief, this thesis which I wrote does not contain the works of parts of the works of other people, except those cited in the quotations and bibliography, as a scientific paper should.

In addition, I certify that I understand and abide the rule stated by the Ministry of Education and Culture The Republic of Indonesia, subject to the provisions of Peraturan Menteri Pendidikan Nasional Republik Indonesia Nomor 17 Tahun 2010 tentang Pencegahan dan Penanggulangan Plagiat di Perguruan Tinggi.

Signature

Student Name : Clara Veranita Nugroho
Student ID : 12 14 06935
Date : April 7th, 2016
ACKNOWLEDGEMENT

The author conducted the research on Implementation of Lean and Six Sigma in PT. Samudera Luas Paramacitra to fulfill partial requirement to earn bachelor degree of Industrial Engineer of Universitas Atma Jaya Yogyakarta.

The author would like to deliver highest appreciation to Mr. Brillianta Budi Nugraha, S.T., M.T. and Mr. Baju Bawono, S.T., M.T. as the faculty supervisor and co-supervisor for the help to the author while conducting this research.

The deepest appreciation for love and dedication goes to the author’s parents Mr. Ir. Benediktus Juliarto Nugroho and Mrs. Yovita Itta Maitawati, S.E. Their love and dedication for the author have been the main power to start, conduct and finally finish this research.

All other appreciation goes to author’s family, relatives and friends in Senat Mahasiswa Teknik Industri UAJY, Lecture’s Assistant of Industrial Control System Laboratory, and International Engineering batch 2012 for all the supports given to the author to finish this thesis. Last but not least, author is amicable for suggestions that boost the motivation for the next research.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Title Page</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>Identification Page</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>Declaration of Originality</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>Table of Content</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>List of Table</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>List of Figure</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>xi</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1. Background</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2. Problem Formulation</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3. Objectives</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.4. Scopes and Limitations</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Literature Review and Theoretical Background</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.1. Literature Review</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.2. Theoretical Background</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Methodology</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>3.1. Flowchart Methodology</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>3.2. Research Methodology</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>3.3. Data Processing and Analysis</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>3.4. Evaluation Phase</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>3.5. Report Writing</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>Company Profile and Data</td>
<td>47</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>4.1. Company Profile</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>4.2. Organizational Structure</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>4.3. Business Process</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>4.4. Quality Control Department</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>4.5. Data</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>5 Data Processing and Analysis</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>5.1. Waste Relationship Matrix</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>5.2. DMAIC</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>6 Conclusion</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>6.1. Conclusion</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>6.2. Suggestion</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Reference List</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Appendix</td>
<td>111</td>
<td></td>
</tr>
</tbody>
</table>
List of Table

Table 2.1. Lean Manufacturing, Six Sigma, and Lean Six Sigma Papers Classification 5
Table 2.2. Question List of Questionnaire 17
Table 2.3. Waste Relationship Matrix 22
Table 2.4. Conversion Value to Alphabet Symbol of WRM 22
Table 2.5. Matrix Value 23
Table 2.6. Operation Process’s Symbols 29
Table 2.7. Table of FMEA 35
Table 2.8. Table of Suggested DFMEA Severity Evaluation Criteria 36
Table 2.9. Table Frequency of Occurrence 37
Table 2.10. Table of Detection Rank 39
Table 4.1. List of Material and Supplier 49
Table 4.2. The Questionnaire’s Answer of Operational Manager 54
Table 4.3. The Questionnaire’s Answer of Operational Director 55
Table 4.4. The Questionnaire’s Answer of Section Chief of Production 56
Table 4.5. Description of Defect Products 57
Table 4.6. Defect Products in December 2015 58
Table 4.7. Defect Products in January 2016 59
Table 5.1. Waste Relationship Matrix of Operational Manager 60
Table 5.2. Waste Relationship Matrix of Operational Director 61
Table 5.3. Waste Relationship Matrix of Section Chief of Production 61
Table 5.4. Matrix Value 62
Table 5.5. Weights of Direct Waste Relations of Operational Manager 62
Table 5.6. Weights of Direct Waste Relations of Operational Director 63
Table 5.7. Weights of Direct Waste Relations of Section Chief of Production 63
Table 5.8. The Score of The Wastes that Affects The Other Wastes 63
Table 5.9. The Scores of The Wastes that Affected by The Other Wastes 64
Table 5.10. CTQ Description 74
Table 5.11. Production Process of RH Roll 79
Table 5.12. QC Report of RH Roll in PT. SLP December 2015 82
Table 5.13. Calculation of Control Limit in December 2015 83
Table 5.14. Calculation of Sigma Level and DPMO in December 2015 85
Table 5.15. Pareto Analysis of The CTQ 86
Table 5.16. Table PFMEA of D1

Table 5.17. The Background of Severity Value
Table 5.18. The Background of Occurrence Value
Table 5.19. The Background of Detection Value
Table 5.20. Performance Measurement after Implementation
Table 5.21. Calculation of Control Limit in January 2016
Table 5.22. Percentage D1 Before and After Implementation
List of Figure

Figure 2.1. Direct Wastes Relationship
Figure 2.2. Template of SIPOC Diagram
Figure 2.3. CTQ Tree Template
Figure 2.4. Operation Process Map
Figure 2.5. U-Control Chart
Figure 2.6. Pareto Chart
Figure 2.7. Fishbone Diagram
Figure 3.1. Flow Chart of Methodology Research
Figure 4.1. Rice Hulling Process
Figure 4.2. NIRI Rice Hulling Roll
Figure 5.1. SIPOC Diagram of Compound Division
Figure 5.2. SIPOC Diagram of Wheel Division
Figure 5.3. SIPOC Diagram of Roll Rubber Division
Figure 5.4. Critical to Quality of Defect
Figure 5.5. Non-standardized holes
Figure 5.6. Cracked Wheel
Figure 5.7. Chipped Wheel
Figure 5.8. Cracked Roll Rubber
Figure 5.9. Rough Surface
Figure 5.10. Non-standard thickness (19 mm)
Figure 5.11. Non-standard thickness (18 mm)
Figure 5.12. Perforated Rubber
Figure 5.13. Mark on The Surface
Figure 5.14. Operation Process Chart of Rubber Roll
Figure 5.15. U-Chart of Number of Nonconformities in December 2015
Figure 5.16. Pareto Chart of CTQ
Figure 5.17. Fishbone Diagram of Mark on The Surface
Figure 5.18. Rubber Roll with The Mold
Figure 5.19. Ring between Rubber Roll
Figure 5.20. Axle
Figure 5.21. Flap
Figure 5.22. The Arrangement of Rubber Roll in Autoclave Machine
Figure 5.23. The Layer Description of Rubber
Figure 5.24. Ring Position 91
Figure 5.25. Sigma Level Comparison 99
Figure 5.26. Data of Implementation in December 2015 99
Figure 5.27. Data of Implementation in January 2016 100
Figure 5.28. U-Chart of Number of Nonconformities in January 2016 98
Figure 5.19. Axle 103
ABSTRACT

In this globalization era, the industrial companies numbered are more frequent. The latest development in business extends a bump into business competition. Every company emulates to obtain a better improvement using the best tools and philosophy. PT. Samudra Luas Paramacitra (SLP) is a rubber company, which is located in West Java, Indonesia. In order to become a world class rubber company, PT. SLP attempt to reduce the wastes in their production floor. PT. SLP produce many kinds of rubber’s products. However, the focus of this research is Rice Hulling Roll (RH Roll).

The aims of this research are to determine the highest number of the waste in PT. SLP, to find out the root cause of the most waste, and to determine and implement the solution in order to decrease the number of the most waste. The philosophies used in this research are Lean Manufacturing and Six Sigma.

The research result is decreasing number of the most waste in PT. SLP. It shows from the value of sigma level before and after implementation, which are 4.0021 sigma and 4.1580 sigma. That result indicate that the implementation of Six Sigma in PT. SLP is success to reduce the most waste.

Key word : Lean Manufacturing, Six Sigma